Spatial Pattern of Farmland Transfer in Liaoning Province, China
Abstract
:1. Introduction
2. Study Area
3. Methods and Materials
3.1. Identification of Regional Core Area
3.2. Variable Selection and Data Source
3.3. Multinomial Logit Model
4. Results
4.1. Differences in FT under Different SDRRC
4.2. Regression Analysis
4.3. Robustness Tests
4.3.1. Replacing the Core Independent Variable
4.3.2. Using Cluster Robust Standard Errors
4.3.3. Replacing Regression Model
5. Discussion and Implication
5.1. Reasons for Forming the “Core-Periphery” Spatial Pattern of FT in Liaoning Province
5.1.1. Imperfect Urbanization Leading to Widespread Concurrent Business
5.1.2. Imperfect Urbanization Increasing FT Fees
5.2. Implications for Promoting FT in Liaoning Province
5.3. Prospects and Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Wang, J.; Liu, Y.; Long, H. Problem regions and regional problems of socioeconomic development in China: A perspective from the coordinated development of industrialization, informatization, urbanization and agricultural modernization. J. Geogr. Sci. 2014, 24, 1115–1130. [Google Scholar] [CrossRef]
- Zhang, P.; Yuan, H.; Tian, X. Sustainable development in China: Trends, patterns, and determinants of the “Five Modernizations” in Chinese cities. J. Clean. Prod. 2019, 214, 685–695. [Google Scholar] [CrossRef]
- Shuai, C.; Falla, J.S. Agro-industrialization: A comparative study of China and developed countries. Outlook Agric. 2006, 35, 177–182. [Google Scholar]
- Liu, Z.; Liu, L. Characteristics and driving factors of rural livelihood transition in the east coastal region of China: A case study of suburban Shanghai. J. Rural Stud. 2016, 43, 145–158. [Google Scholar] [CrossRef]
- Hanson, E.D.; Cossette, M.K.; Roberts, D.C. The adoption and usage of precision agriculture technologies in North Dakota. Technol. Soc. 2022, 71, 102087. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, J.; Luan, J.; Lan, X.; Fang, D. The analysis and inspiration of scale operation in agricultural process of United States and Japan. Issues Agric. Econ. 2014, 35, 101–109+112. [Google Scholar]
- Lam, H.M.; Remais, J.; Fung, M.C.; Xu, L.; Sun, S.S.M. Food supply and food safety issues in China. Lancet 2013, 381, 2044–2053. [Google Scholar] [CrossRef] [Green Version]
- Ye, J. Land Transfer and the Pursuit of Agricultural Modernization in China. J. Agrar. Chang. 2015, 15, 314–337. [Google Scholar] [CrossRef]
- Wang, Y.; Zang, L.; Araral, E. The impacts of land fragmentation on irrigation collective action: Empirical test of the social-ecological system framework in China. J. Rural Stud. 2020, 78, 234–244. [Google Scholar] [CrossRef]
- Wang, J.; Cao, Y.; Fang, X.; Li, G.; Cao, Y. Does land tenure fragmentation aggravate farmland abandonment? Evidence from big survey data in rural China. J. Rural Stud. 2022, 91, 126–135. [Google Scholar] [CrossRef]
- Sun, M.; Wang, J.; He, K. Analysis on the urban land resources carrying capacity during urbanization—A case study of Chinese YRD. Appl. Geogr. 2020, 116, 102170. [Google Scholar] [CrossRef]
- Hao, P.; He, S. What is holding farmers back? Endowments and mobility choice of rural citizens in China. J. Rural Stud. 2022, 89, 66–72. [Google Scholar] [CrossRef]
- Nguyen, Q.; Kim, D.C. Reconsidering rural land use and livelihood transition under the pressure of urbanization in Vietnam: A case study of Hanoi. Land Use Policy 2020, 99, 104896. [Google Scholar] [CrossRef]
- Long, H.; Tu, S.; Ge, D.; Li, T.; Liu, Y. The allocation and management of critical resources in rural China under restructuring: Problems and prospects. J. Rural Stud. 2016, 47, 392–412. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Zhang, P.; Lo, K. Urbanization in remote areas: A case study of the Heilongjiang Reclamation Area, Northeast China. Habitat Int. 2014, 42, 103–110. [Google Scholar] [CrossRef]
- Ma, Z. Temporary migration and regional development in China. Environ. Plan. A 1999, 31, 783–802. [Google Scholar] [CrossRef]
- Li, Y.; Westlund, H.; Cars, G. Future urban-rural relationship in China: Comparison in a global context. China Agric. Econ. Rev. 2010, 2, 396–411. [Google Scholar] [CrossRef]
- Wilson, G.A.; Hu, Z.; Rahman, S. Community resilience in rural China: The case of Hu Village, Sichuan Province. J. Rural Stud. 2018, 60, 130–140. [Google Scholar] [CrossRef] [Green Version]
- Anh, L.T.K.; Vu, L.H.; Bonfoh, B.; Schelling, E. An analysis of interprovincial migration in Vietnam from 1989 to 2009. Glob. Health Action 2012, 5, 9334. [Google Scholar]
- Zhang, K.H.; Song, S. Rural–urban migration and urbanization in China: Evidence from time-series and cross-section analyses. China Econ. Rev. 2003, 14, 386–400. [Google Scholar] [CrossRef]
- Halás, M.; Klapka, P. Revealing the structures of internal migration: A distance and a time-space behaviour perspectives. Appl. Geogr. 2021, 137, 102603. [Google Scholar] [CrossRef]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46 (Suppl. 1), 234–240. [Google Scholar] [CrossRef]
- Fu, Z.; Chen, S.; Hong, J. The Location Choice of Rural Labor Flow: The Influencing Factors and Regional Differences—Based on Analysis of Farmers’ Decision-Making Behavior in 28 Provinces of China. J. Cent. China Norm. Univ. (Humanit. Soc. Sci.) 2017, 56, 45–56. [Google Scholar]
- Leng, Z.; Fu, C.; Xu, X. Family Income Structure, Income Gap, and Land Circulation: A Microscopic Analysis Based on CFPS Data. Econ. Rev. 2015, 5, 111–128. [Google Scholar]
- Wang, W.; Gong, J.; Wang, Y.; Shen, Y. Exploring the effects of rural site conditions and household livelihood capitals on agricultural land transfers in China. Land Use Policy 2021, 108, 105523. [Google Scholar] [CrossRef]
- Leimer, K.; Levers, C.; Sun, Z.; Müller, D. Market proximity and irrigation infrastructure determine farmland rentals in Sichuan Province, China. J. Rural Stud. 2022, 94, 375–384. [Google Scholar] [CrossRef]
- Beckers, V.; Poelmans, L.; Van Rompaey, A.; Dendoncker, N. The impact of urbanization on agricultural dynamics: A case study in Belgium. J. Land Use Sci. 2020, 15, 626–643. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Xin, L.; Tan, M.; Jiang, M. Spatiotemporal changes in Chinese land circulation between 2003 and 2013. J. Geogr. Sci. 2018, 28, 707–724. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.; Wu, W.; Verburg, P.H.; van Vliet, J.; Yang, P.; Zhou, Q.; Tang, H. A survey-based exploration of land-system dynamics in an agricultural region of Northeast China. Agric. Syst. 2013, 121, 106–116. [Google Scholar] [CrossRef]
- Nguyen, Q.; Kim, D.C. Farmers’ landholding strategy in urban fringe areas: A case study of a transitional commune near Ho Chi Minh City, Vietnam. Land Use Policy 2019, 83, 95–104. [Google Scholar] [CrossRef]
- Lange, A.; Piorr, A.; Siebert, R.; Zasada, I. Spatial differentiation of farm diversification: How rural attractiveness and vicinity to cities determine farm households’ response to the CAP. Land Use Policy 2013, 31, 136–144. [Google Scholar] [CrossRef]
- Gu, Z.; Xie, Y.; Gao, Y.; Ren, X.; Cheng, C.; Wang, S. Quantitative assessment of soil productivity and predicted impacts of water erosion in the black soil region of northeastern China. Sci. Total Environ. 2018, 637, 706–716. [Google Scholar] [CrossRef] [PubMed]
- National Bureau of Statistics of China. China Rural Statistical Yearbook 2021; China Statistics Press: Beijing, China, 2021. [Google Scholar]
- National Bureau of Statistics of China. China Statistical Yearbook 2021; China Statistics Press: Beijing, China, 2021. [Google Scholar]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Statistical Annual Report on China’s Rural Policy and Reform 2020; China Agriculture Press: Beijing, China, 2021. [Google Scholar]
- Lu, M.; Wei, L.; Ge, D.; Sun, D.; Zhang, Z.; Lu, Y. Spatial optimization of rural settlements based on the perspective of appropriateness–domination: A case of Xinyi City. Habitat Int. 2020, 98, 102148. [Google Scholar] [CrossRef]
- Shi, L.; Wurm, M.; Huang, X.; Zhong, T.; Taubenböck, H. Measuring the spatial hierarchical urban system in China in reference to the Central Place Theory. Habitat Int. 2020, 105, 102264. [Google Scholar] [CrossRef]
- Zhao, W.; Zou, Y. Hefei: An emerging city in inland China. Cities 2018, 77, 158–169. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, K.; Wang, F. Economic growth mechanism of county-to-district conversion and its dialectical relationship with city shrinkage: Case study of county-to-district conversion in Hangzhou, China. J. Urban Plan. Dev. 2020, 146, 05020029. [Google Scholar] [CrossRef]
- Liu, H.; Yang, Q.; Hu, H.; Chen, J. Measure Research of Center City and Hinterland Relationship on Scale of One Hour Economic Circle—Taking Four Core City Metropolitan Area of Northeast China as an Example. Resour. Dev. Mark. 2014, 30, 462–466. [Google Scholar]
- Sun, J.; Cheng, P.; Liu, Z. Social Security, Intergenerational Care, and Cultivated Land Renting Out Behavior of Elderly Farmers: Findings from the China Health and Retirement Longitudinal Survey. Land 2023, 12, 392. [Google Scholar] [CrossRef]
- Jansuwan, P.; Zander, K.K. What to do with the farmland? Coping with ageing in rural Thailand. J. Rural Stud. 2021, 81, 37–46. [Google Scholar] [CrossRef]
- Emamian, A.; Rashki, A.; Kaskaoutis, D.G.; Gholami, A.; Opp, C.; Middleton, N. Assessing vegetation restoration potential under different land uses and climatic classes in northeast Iran. Ecol. Indic. 2021, 122, 107325. [Google Scholar] [CrossRef]
- Wang, D.; Qian, W.; Guo, X. Gains and losses: Does farmland acquisition harm farmers’ welfare? Land Use Policy 2019, 86, 78–90. [Google Scholar] [CrossRef]
- Luo, C.; Li, S.; Sicular, T. The long-term evolution of national income inequality and rural poverty in China. China Econ. Rev. 2020, 62, 101465. [Google Scholar] [CrossRef]
- Li, C.; Yu, Y.; Li, Q. Top-income data and income inequality correction in China. Econ. Model. 2021, 97, 210–219. [Google Scholar] [CrossRef]
- Su, Y.; Qian, K.; Lin, L.; Wang, K.; Guan, T.; Gan, M. Identifying the driving forces of non-grain production expansion in rural China and its implications for policies on cultivated land protection. Land Use Policy 2020, 92, 104435. [Google Scholar] [CrossRef]
- Buya, S.; Tongkumchum, P.; Owusu, B.E. Modelling of land-use change in Thailand using binary logistic regression and multinomial logistic regression. Arab. J. Geosci. 2020, 13, 437. [Google Scholar] [CrossRef]
- Li, X.; Gong, P.; Zhou, Y.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Xiao, Y.; Xu, B.; Yang, J.; et al. Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environ. Res. Lett. 2020, 15, 094044. [Google Scholar] [CrossRef]
- Juntti, M.; Costa, H.; Nascimento, N. Urban environmental quality and wellbeing in the context of incomplete urbanisation in Brazil: Integrating directly experienced ecosystem services into planning. Prog. Plan. 2021, 143, 100433. [Google Scholar] [CrossRef]
- Makhrova, A.G.; Nefedova, T.G.; Pallot, J. The specifics and spatial structure of circular migration in Russia. Eurasian Geogr. Econ. 2016, 57, 802–818. [Google Scholar] [CrossRef]
- Kaya, I.; Zengel, R. A marginal place for the Gypsy community in a prosperous city: Izmir, Turkey. Cities 2005, 22, 151–160. [Google Scholar] [CrossRef]
- Shieh, L. Becoming urban: Rural-urban integration in Nanjing, Jiangsu province. Pac. Aff. 2011, 84, 475–494. [Google Scholar] [CrossRef]
- Zhang, P.; Yuan, H.; Bai, F.; Tian, X.; Shi, F. How do carbon dioxide emissions respond to industrial structural transitions? Empirical results from the northeastern provinces of China. Struct. Chang. Econ. Dyn. 2018, 47, 145–154. [Google Scholar] [CrossRef]
- Wang-Lu, H.; Valerio Mendoza, O.M. Job prospects and labour mobility in China. J. Int. Trade Econ. Dev. 2022, 1–44. [Google Scholar] [CrossRef]
- Li, L.; Zhang, P.; Guan, H.; Tan, J. Analysis of the regional economic resilience characteristics based on Shift-Share method in Liaoning old industrial base. Geogr. Res. 2019, 38, 1807–1819. [Google Scholar]
- Chen, X. A Study on Employment Quality and Influencing Factors of Inflow Population in Liaoning Province. Master’s Thesis, Shenyang Normal University, Shenyang, China, 2021. [Google Scholar]
- Li, J.; Liu, W.; Guo, Q. The Generation Conditions, Effects and Evolution Direction of Farmers’ Concurrent Operations. Economist 2021, 5, 120–128. [Google Scholar]
- Wang, Q.; Zhang, X. Three rights separation: China’s proposed rural land rights reform and four types of local trials. Land Use Policy 2017, 63, 111–121. [Google Scholar] [CrossRef]
- Zhu, W.; Paudel, K.P.; Luo, B. The influence of land titling on the disparity between willingness to accept and willingness to pay values. J. Environ. Plan. Manag. 2021, 64, 930–953. [Google Scholar] [CrossRef]
- Su, B.; Li, Y.; Li, L.; Wang, Y. How does nonfarm employment stability influence farmers’ farmland transfer decisions? Implications for China’s land use policy. Land Use Policy 2018, 74, 66–72. [Google Scholar] [CrossRef]
- Tian, G.; Duan, J.; Yang, L. Spatio-temporal pattern and driving mechanisms of cropland circulation in China. Land Use Policy 2021, 100, 105118. [Google Scholar] [CrossRef]
- Rocchi, B.; Marino, M.; Severini, S. Does an income gap between farm and nonfarm households still exist? The case of the European Union. Appl. Econ. Perspect. Policy 2021, 43, 1672–1697. [Google Scholar] [CrossRef]
- Shi, X.; Heerink, N.; Qu, F. Choices between different off-farm employment sub-categories: An empirical analysis for Jiangxi Province, China. China Econ. Rev. 2007, 18, 438–455. [Google Scholar] [CrossRef]
- Dodd, W.; Humphries, S.; Patel, K.; Majowicz, S.; Dewey, C. Determinants of temporary labour migration in southern India. Asian Popul. Stud. 2016, 12, 294–311. [Google Scholar] [CrossRef]
- Li, C.; Xu, J.; Kong, X. Farm household livelihood diversity and land use in suburban areas of the metropolis: The case study of Daxing District, Beijing. Geogr. Res. 2012, 31, 1039–1049. [Google Scholar]
- Chang, X.; Liu, L. Characterizing rural household differentiation from the perspective of farmland transfer in eastern China using an agent based model. Hum. Ecol. 2018, 46, 875–886. [Google Scholar] [CrossRef]
- Tang, S.; Hao, P. The return intentions of China’s rural migrants: A study of Nanjing and Suzhou. J. Urban Aff. 2019, 41, 354–371. [Google Scholar] [CrossRef]
- Park, J. Land rent theory revisited. Sci. Soc. 2014, 78, 88–109. [Google Scholar] [CrossRef]
- Huang, H.; Miller, G.Y.; Sherrick, B.J.; Gomez, M.I. Factors influencing Illinois farmland values. Am. J. Agric. Econ. 2006, 88, 458–470. [Google Scholar] [CrossRef]
- Sills, E.O.; Caviglia-Harris, J.L. Evolution of the Amazonian frontier: Land values in Rondônia, Brazil. Land Use Policy 2009, 26, 55–67. [Google Scholar] [CrossRef]
- Tione, S.E.; Holden, S.T. Urban proximity, demand for land and land shadow prices in Malawi. Land Use Policy 2020, 94, 104509. [Google Scholar] [CrossRef]
- National Development and Reform Commission of China. Summary of National Agricultural Product Cost Income Data 2021; China Statistics Press: Beijing, China, 2021. [Google Scholar]
- Xin, L.; Li, X. Rental rates of grain land for consolidated plots and their determinants in present-day China. Land Use Policy 2019, 86, 421–426. [Google Scholar] [CrossRef]
- Wästfelt, A.; Zhang, Q. Keeping agriculture alive next to the city–The functions of the land tenure regime nearby Gothenburg, Sweden. Land Use Policy 2018, 78, 447–459. [Google Scholar] [CrossRef]
- Wästfelt, A.; Zhang, Q. Reclaiming localisation for revitalising agriculture: A case study of peri-urban agricultural change in Gothenburg, Sweden. J. Rural Stud. 2016, 47, 172–185. [Google Scholar] [CrossRef]
- Feng, J.; Su, X. The Success and Enlightenment of Agricultural Scale Management in France. Econ. Perspect. 1992, 10, 61–64. [Google Scholar]
- Fan, Y.; Zhao, J.; Zhang, X. The implications of agricultural land withdrawal in France for integrated urban-rural development. Macroecon. Manag. 2020, 9, 66–68. [Google Scholar]
- Ma, H. Japan’s difficult exploration of breaking the pattern of small-scale peasant: Progress, result and reasons. Contemp. Econ. Jpn. 2023, 42, 83–94. [Google Scholar]
Crop Type | Sown Area (103 ha) | Percentage of Sown Area | Output Value (108 Yuan) |
---|---|---|---|
Grain crops | 3527.2 | 82.3% | 568.2 |
Grain crops: Maize | 2699.3 | 63.0% | 425.9 |
Grain crops: Rice | 520.4 | 12.1% | 115.4 |
Grain crops: Soybeans | 103.2 | 2.4% | 6.1 |
Vegetables | 325.6 | 7.6% | 970.1 |
Oil-bearing crops | 309.6 | 7.2% | 51.5 |
Independent Variable | Symbol | Mean | Std. Dev. |
---|---|---|---|
SDRRC (continuous variable) | SDRRCco | 103.965 | 80.628 |
SDRRC (categorical variable) | SDRRCca | 0.427 | 0.495 |
Labor age structure | LAS | 51.175 | 11.035 |
Agricultural labor scale | ALS | 1.529 | 0.940 |
Social status | SS | 0.059 | 0.235 |
Health condition | HC | 0.072 | 0.200 |
Cost of living | CL | 2.383 | 1.631 |
Terrain condition | TC | 0.950 | 0.725 |
Whether it belongs to the municipal district | MD | 0.141 | 0.348 |
Variable | Model (1) | Model (2) | ||
---|---|---|---|---|
Coef. | Std. Err. | Coef. | Std. Err. | |
FTO | ||||
SDRRCco | 0.009 *** | 0.003 | ||
SDRRCca | 1.362 *** | 0.405 | ||
LAS | 0.016 | 0.015 | 0.012 | 0.015 |
ALS | −2.062 *** | 0.252 | −2.100 *** | 0.268 |
SS | −0.527 | 0.636 | −0.484 | 0.616 |
HC | −0.917 | 0.788 | −0.950 | 0.756 |
CL | 0.087 | 0.165 | 0.048 | 0.171 |
TC | −1.599 *** | 0.401 | −1.283 *** | 0.300 |
MD | −0.349 | 0.502 | −0.380 | 0.487 |
FTI | ||||
SDRRCco | 0.006 *** | 0.002 | ||
SDRRCca | 0.933 *** | 0.294 | ||
LAS | −0.046 *** | 0.014 | −0.047 *** | 0.014 |
ALS | 0.431 *** | 0.152 | 0.419 *** | 0.150 |
SS | 0.500 | 0.578 | 0.535 | 0.592 |
HC | −2.081 * | 1.102 | −1.963 * | 1.062 |
CL | −0.170 * | 0.088 | −0.187 ** | 0.091 |
TC | −0.897 *** | 0.265 | −0.691 *** | 0.205 |
MD | 0.449 | 0.426 | 0.346 | 0.420 |
McFadden’s R2 | 0.245 | 0.251 | ||
Log likelihood | −329.497 | −327.077 |
Variable | Model (3) | Model (4) | Model (5) | |||
---|---|---|---|---|---|---|
Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. | |
FTO | ||||||
DCU | 0.009 *** | 0.003 | ||||
TD | 0.006 *** | 0.002 | ||||
SL | −1.115 ** | 0.498 | ||||
LAS | 0.017 | 0.015 | 0.016 | 0.015 | 0.017 | 0.015 |
ALS | −2.053 *** | 0.250 | −2.073 *** | 0.257 | −1.991 *** | 0.236 |
SS | −0.518 | 0.638 | −0.485 | 0.634 | −0.464 | 0.614 |
HC | −0.925 | 0.789 | −0.964 | 0.771 | −0.821 | 0.805 |
CL | 0.085 | 0.163 | 0.070 | 0.166 | 0.078 | 0.150 |
TC | −1.563 *** | 0.389 | −1.374 *** | 0.327 | −1.322 *** | 0.307 |
MD | −0.304 | 0.511 | −0.138 | 0.522 | −0.820 * | 0.472 |
FTI | ||||||
DCU | 0.006 *** | 0.002 | ||||
TD | 0.004 *** | 0.001 | ||||
SL | −0.955 ** | 0.405 | ||||
LAS | −0.045 *** | 0.014 | −0.046 *** | 0.014 | −0.043 *** | 0.014 |
ALS | 0.433 *** | 0.152 | 0.426 *** | 0.150 | 0.450 *** | 0.146 |
SS | 0.497 | 0.578 | 0.507 | 0.581 | 0.437 | 0.573 |
HC | −2.062 * | 1.097 | −1.971 * | 1.070 | −2.009 * | 1.108 |
CL | −0.169 * | 0.088 | −0.176 ** | 0.089 | −0.169 * | 0.087 |
TC | −0.883 *** | 0.261 | −0.721 *** | 0.216 | −0.791 *** | 0.223 |
MD | 0.495 | 0.431 | 0.550 | 0.438 | −0.005 | 0.399 |
McFadden’s R2 | 0.245 | 0.247 | 0.235 | |||
Log likelihood | −329.733 | −328.621 | −333.777 |
Variable | Model (6) | Model (7) | Model (8) | Model (9) | ||||
---|---|---|---|---|---|---|---|---|
Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. | |
FTO | ||||||||
SDRRCco | 0.009 *** | 0.002 | 0.007 *** | 0.002 | ||||
SDRRCca | 1.362 *** | 0.192 | 0.966 *** | 0.281 | ||||
LAS | 0.016 | 0.016 | 0.012 | 0.016 | 0.012 | 0.011 | 0.009 | 0.011 |
ALS | −2.062 *** | 0.359 | −2.100 *** | 0.376 | −1.493 *** | 0.167 | −1.499 *** | 0.173 |
SS | −0.527 | 0.616 | −0.484 | 0.600 | −0.417 | 0.471 | −0.365 | 0.466 |
HC | −0.917 | 0.593 | −0.950 | 0.634 | −0.733 | 0.564 | −0.718 | 0.551 |
CL | 0.087 | 0.143 | 0.048 | 0.152 | 0.064 | 0.100 | 0.037 | 0.103 |
TC | −1.599 *** | 0.261 | −1.283 *** | 0.198 | −1.171 *** | 0.277 | −0.933 *** | 0.210 |
MD | −0.349 | 0.446 | −0.380 | 0.518 | −0.163 | 0.381 | −0.184 | 0.368 |
FTI | ||||||||
SDRRCco | 0.006 *** | 0.001 | 0.005 *** | 0.002 | ||||
SDRRCca | 0.933 *** | 0.250 | 0.793 *** | 0.228 | ||||
LAS | −0.046 *** | 0.010 | −0.047 *** | 0.011 | −0.034 *** | 0.011 | −0.036 *** | 0.011 |
ALS | 0.431 *** | 0.148 | 0.419 *** | 0.146 | 0.298 ** | 0.117 | 0.294 ** | 0.115 |
SS | 0.500 | 0.434 | 0.535 | 0.423 | 0.421 | 0.446 | 0.466 | 0.452 |
HC | −2.081 ** | 0.940 | −1.963 ** | 0.842 | −1.327 * | 0.758 | −1.299 * | 0.727 |
CL | −0.170 | 0.107 | −0.187 * | 0.113 | −0.139 ** | 0.068 | −0.150 ** | 0.070 |
TC | −0.897 *** | 0.154 | −0.691 *** | 0.130 | −0.738 *** | 0.194 | −0.587 *** | 0.159 |
MD | 0.449 | 0.611 | 0.346 | 0.634 | 0.349 | 0.329 | 0.293 | 0.324 |
McFadden’s R2 | 0.245 | 0.251 | — | — | ||||
Log likelihood | −329.497 | −327.077 | −330.038 | −327.664 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, J.; Zhang, P.; Yang, Q.; Ma, Z. Spatial Pattern of Farmland Transfer in Liaoning Province, China. Agriculture 2023, 13, 1453. https://doi.org/10.3390/agriculture13071453
Ning J, Zhang P, Yang Q, Ma Z. Spatial Pattern of Farmland Transfer in Liaoning Province, China. Agriculture. 2023; 13(7):1453. https://doi.org/10.3390/agriculture13071453
Chicago/Turabian StyleNing, Jiachen, Pingyu Zhang, Qifeng Yang, and Zuopeng Ma. 2023. "Spatial Pattern of Farmland Transfer in Liaoning Province, China" Agriculture 13, no. 7: 1453. https://doi.org/10.3390/agriculture13071453
APA StyleNing, J., Zhang, P., Yang, Q., & Ma, Z. (2023). Spatial Pattern of Farmland Transfer in Liaoning Province, China. Agriculture, 13(7), 1453. https://doi.org/10.3390/agriculture13071453