Analysis of Hotspots in Subsurface Drip Irrigation Research Using CiteSpace
(This article belongs to the Section Agricultural Water Management)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Research Methods
3. Results
3.1. Analysis of Annual Publication Volume and Countries of Origin
3.2. Analysis of Publishing Institution and Authors
3.3. Keyword Analysis
3.3.1. Exploration of Hot Topics in Review Articles
3.3.2. Analysis of Keyword Co-Occurrence
3.3.3. Keyword Clustering Relating to SDI Literature According to Time of Citation
3.3.4. Analysis of Keyword Bursts
3.4. Analysis of Reference Co-Citation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kandelous, M.M.; Šimůnek, J. Comparison of numerical, analytical, and empirical models to estimate wetting patterns for surface and subsurface drip irrigation. Irrig Sci. 2010, 28, 435–444. [Google Scholar] [CrossRef] [Green Version]
- Vollset, S.E.; Goren, E.; Yuan, C.W.; Cao, J.; Smith, A.E.; Hsiao, T.; Bisignano, C.; Azhar, G.S.; Castro, E.; Chalek, J.; et al. Fertility, mortality, migration, and population scenarios for 195 countries and territories from 2017 to 2100: A forecasting analysis for the Global Burden of Disease Study. Lancet 2020, 396, 1285–1306. [Google Scholar] [CrossRef]
- Hanjra, M.A.; Qureshi, M.E. Global water crisis and future food security in an era of climate change. Food Policy 2010, 35, 365–377. [Google Scholar] [CrossRef]
- Du, Y.-D.; Niu, W.-Q.; Gu, X.-B.; Zhang, Q.; Cui, B.-J.; Zhao, Y. Crop yield and water use efficiency under aerated irrigation: A meta-analysis. Agric. Water Manag. 2018, 210, 158–164. [Google Scholar] [CrossRef]
- Dirwai, T.L.; Mabhaudhi, T.; Kanda, E.K.; Senzanje, A. Moistube irrigation technology development, adoption and future prospects: A systematic scoping review. Heliyon 2021, 7, e06213. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.O. Irrigation Tile. U.S. Patent No. 1,350,229, 17 August 1920. [Google Scholar]
- Lamm, F.R.; Bordovsky, J.P.; Schwankl, L.J.; Grabow, G.L.; Enciso-Medina, J.; Peters, R.T.; Colaizzi, P.D.; Trooien, T.P.; Porter, D.O. Subsurface drip irrigation: Status of the technology in 2010. Trans. ASABE 2012, 55, 483–491. [Google Scholar] [CrossRef]
- Umair, M.; Hussain, T.; Jiang, H.; Ahmad, A.; Yao, J.; Qi, Y.; Zhang, Y.; Min, L.; Shen, Y. Water-saving potential of subsurface drip irrigation for winter wheat. Sustainability 2019, 11, 2978. [Google Scholar] [CrossRef] [Green Version]
- McHugh, A.D.; Bhattarai, S.; Lotz, G.; Midmore, D.J. Effects of subsurface drip irrigation rates and furrow irrigation for cotton grown on a vertisol on off-site movement of sediments, nutrients and pesticides. Agron. Sustain. Dev. 2008, 28, 507–519. [Google Scholar] [CrossRef] [Green Version]
- Sutton, K.F.L.; Lanini, W.T.; Mitchell, J.P.; Miyao, E.M.; Shrestha, A. Weed control, yield, and quality of processing tomato production under different irrigation, tillage, and herbicide systems. Weed Technol. 2006, 20, 831–838. [Google Scholar] [CrossRef]
- Sabe, M.; Pillinger, T.; Kaiser, S.; Chen, C.; Taipale, H.; Tanskanen, A.; Tiihonen, J.; Leucht, S.; Correll, C.U.; Solmi, M. Half a century of research on antipsychotics and schizophrenia: A scientometric study of hotspots, nodes, bursts, and trends. Neurosci. Biobehav. Rev. 2022, 136, 104608. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, Q.; Liu, Y. Analysis of knowledge bases and research focuses of cerebral ischemia-reperfusion from the perspective of mapping knowledge domain. Brain Res. Bull. 2020, 156, 15–24. [Google Scholar] [CrossRef]
- Li, T.; Baležentis, T.; Cao, L.; Zhu, J.; Kriščiukaitienė, I.; Melnikienė, R. Are the changes in China’s grain production sustainable: Extensive and intensive development by the LMDI approach. Sustainability 2016, 8, 1198. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Chen, W.; Chen, Y.; Zhang, F.; Yang, X. Assessing the impact of shallow subsurface pipe drainage on soil salinity and crop yield in arid zone. PeerJ 2021, 9, e12622. [Google Scholar] [CrossRef]
- Wu, W.Y.; Hu, Y.Q.; Guan, X.Y.; Xu, L.J. Advances in research of reclaimed water irrigation in China *. Irrig. Drain. 2020, 69, 119–126. [Google Scholar] [CrossRef]
- Small, H. Co-citation in scientific literature-new measure of relationship between 2 documents. J. Am. Soc. Inf. Sci. 1973, 24, 265–269. [Google Scholar] [CrossRef]
- Zhu, Y.; Kim, M.C.; Chen, C. An Investigation of the Intellectual Structure of Opinion Mining Research. Inf. Res. Int. Electron. J. 2017, 22, 739. [Google Scholar]
- Sheta, A.S.; Al-Omran, A.M.; Falatah, A.M.; Al-Harbi, A.R. Effect of clay deposits on physicochemical and intermittent evaporation characteristics of torripsamment. Arid. Land Res. Manag. 2006, 20, 295–307. [Google Scholar] [CrossRef]
- Jia, Y.; Gao, W.; Sun, X.; Feng, Y. Simulation of soil water and salt balance in three water-saving irrigation technologies with HYDRUS-2D. Agronomy 2023, 13, 164. [Google Scholar] [CrossRef]
- Nolz, R.; Loiskandl, W.; Kammerer, G.; Himmelbauer, M.L. Survey of soil water distribution in a vineyard and implications for subsurface drip irrigation control. Soil Water Res. 2016, 11, 250–258. [Google Scholar] [CrossRef] [Green Version]
- Lamm, F.R.; Colaizzi, P.D.; Sorensen, R.B.; Bordovsky, J.P.; Dougherty, M.; Balkcom, K.; Zaccaria, D.; Bali, K.M.; Rudnick, D.R.; Peters, R.T. A 2020 Vision of subsurface drip irrigation in the U.S. Trans. ASABE 2021, 64, 1319–1343. [Google Scholar] [CrossRef]
- Lamm, F.R.; Rogers, D.H. Longevity and performance of a subsurface drip irrigation system. Trans. ASABE 2017, 60, 931–939. [Google Scholar] [CrossRef]
- Volschenk, T. Water use and irrigation management of pomegranate trees-A review. Agric. Water Manag. 2020, 241, 106375. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Hashem, F.A.; Maze, M.; Shalaby, T.A.; Shehata, W.F.; Taha, N.M. Control of gas emissions (N2O and CO2) associated with applied different rates of nitrogen and their influences on growth, productivity, and physio-biochemical attributes of green bean plants grown under different irrigation methods. Agronomy 2022, 12, 249. [Google Scholar] [CrossRef]
- Irmak, S.; Mohammed, A.T.; Kukal, M.S. Maize response to coupled irrigation and nitrogen fertilization under center pivot, subsurface drip and surface (furrow) irrigation: Growth, development and productivity. Agric. Water Manag. 2022, 263, 107457. [Google Scholar] [CrossRef]
- Hamad, A.A.A.; Wei, Q.; Wan, L.; Xu, J.; Hamoud, Y.A.; Li, Y.; Shaghaleh, H. Subsurface drip irrigation with emitters placed at suitable depth can mitigate N2O emissions and enhance Chinese cabbage yield under greenhouse cultivation. Agronomy 2022, 12, 745. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace: A Practical Guide for Mapping Scientific Literature; Nova Science Publishers: Hauppauge, NY, USA, 2016. [Google Scholar]
- Li, S.; Tan, D.; Wu, X.; Degré, A.; Long, H.; Zhang, S.; Lu, J.; Gao, L.; Zheng, F.; Liu, X.; et al. Negative pressure irrigation increases vegetable water productivity and nitrogen use efficiency by improving soil water and NO3−-N distributions. Agric. Water Manag. 2021, 251, 106853. [Google Scholar] [CrossRef]
- Bordovsky, J.P. Preplant and early-season cotton irrigation timing with deficit amounts using subsurface drip (SDI) systems in the Texas High Plains. Irrig. Sci. 2020, 38, 485–499. [Google Scholar] [CrossRef]
- Lipan, L.; Carbonell-Pedro, A.A.; Cárceles Rodríguez, B.; Durán-Zuazo, V.H.; Franco Tarifa, D.; García-Tejero, I.F.; Gálvez Ruiz, B.; Cuadros Tavira, S.; Muelas, R.; Sendra, E.; et al. Can Sustained Deficit Irrigation Save Water and Meet the Quality Characteristics of Mango? Agriculture 2021, 11, 448. [Google Scholar] [CrossRef]
- Li, X.; Ma, J.; Zheng, L.; Chen, J.; Sun, X.; Guo, X. Optimization of the Regulated Deficit Irrigation Strategy for Greenhouse Tomato Based on the Fuzzy Borda Model. Agriculture 2022, 12, 324. [Google Scholar] [CrossRef]
- Schiavon, M.; Leinauer, B.; Serena, M.; Maier, B.; Sallenave, R. Plant growth regulator and soil surfactants’ effects on saline and deficit irrigated warm-season grasses: I. Turf quality and soil moisture. Crop. Sci. 2014, 54, 2815–2826. [Google Scholar] [CrossRef] [Green Version]
- Resende, R.S.; Nascimento, T.; Carvalho, T.B.; Amorim, J.R.A.; Rodrigues, L. Reducing sugarcane irrigation demand through planting date adjustment in Alagoas State, Brazil. Rev. Bras. Eng. Agric. Ambient. 2021, 25, 75–81. [Google Scholar] [CrossRef]
- Silva, A.L.B.D.O.; Pires, R.C.M.; Ribeiro, R.V.; Machado, E.C.; Blain, G.C.; Ohashi, A.Y.P. Development, yield and quality attributes of sugarcane cultivars fertigated by subsurface drip irrigation. Rev. Bras. Eng. Agric. Ambient. 2016, 20, 525–532. [Google Scholar] [CrossRef] [Green Version]
- Elliott, M.L.; McInroy, J.A.; Xiong, K.; Kim, J.H.; Skipper, H.D.; Guertal, E.A. Taxonomic diversity of rhizosphere bacteria in golf course putting greens at representative sites in the Southeastern United States. HortScience 2008, 43, 514–518. [Google Scholar] [CrossRef] [Green Version]
- Souza, C.F.; Bizari, D.R. Soil solution distribution in subsurface drip irrigation in sugarcane. Eng. Agric. 2018, 38, 217–224. [Google Scholar] [CrossRef]
- Vishwakarma, D.K.; Kumar, R.; Kumar, A.; Kushwaha, N.L.; Kushwaha, K.S.; Elbeltagi, A. Evaluation and development of empirical models for wetted soil fronts under drip irrigation in high-density apple crop from a point source. Irrig. Sci. 2022, 1–24. [Google Scholar] [CrossRef]
- Subbaiah, R. A review of models for predicting soil water dynamics during trickle irrigation. Irrig. Sci. 2013, 31, 225–258. [Google Scholar] [CrossRef]
- Elmaloglou, S.; Diamantopoulos, E. The effect of intermittent water application by surface point sources on the soil moisture dynamics and on deep percolation under the root zone. Comput. Electron. Agric. 2008, 62, 266–275. [Google Scholar] [CrossRef]
- Bin Zainal Abidin, M.S.; Shibusawa, S.; Ohaba, M.; Li, Q.; Bin Khalid, M. Capillary flow responses in a soil–plant system for modified subsurface precision irrigation. Precis. Agric. 2014, 15, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Pendergast, L.; Bhattarai, S.P.; Midmore, D.J. Benefits of oxygation of subsurface drip-irrigation water for cotton in a Vertosol. Crop. Pasture Sci. 2013, 64, 1171–1181. [Google Scholar] [CrossRef]
- Zhu, Y.; Cai, H.; Song, L.; Wang, X.; Shang, Z.; Sun, Y. Aerated irrigation of different irrigation levels and subsurface dripper depths affects fruit yield, quality and water use efficiency of greenhouse tomato. Sustainability 2020, 12, 2703. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Dhungel, J.; Bhattarai, S.P.; Torabi, M.; Pendergast, L.; Midmore, D.J. Impact of oxygation on soil respiration, yield and water use efficiency of three crop species. J. Plant Ecol. 2011, 4, 236–248. [Google Scholar] [CrossRef]
- Zhu, Y.; Dyck, M.; Cai, H.-J.; Song, L.-B.; Chen, H. The effects of aerated irrigation on soil respiration, oxygen, and porosity. J. Integr. Agric. 2019, 18, 2854–2868. [Google Scholar] [CrossRef]
- Yang, M.D.; Leghari, S.J.; Guan, X.K.; Ma, S.C.; Ding, C.M.; Mei, F.J.; Wei, L.; Wang, T.C. Deficit subsurface drip irrigation improves water use efficiency and stabilizes yield by enhancing subsoil water extraction in winter wheat. Front. Plant Sci. 2020, 11, 508. [Google Scholar] [CrossRef]
- Çetin, Ö.; Üzen, N.; Temiz, M.G.; Altunten, H. Improving cotton yield, water use and net income in different drip irrigation systems using real-time crop evapotranspiration. Pol. J. Environ. Stud. 2021, 30, 4463–4474. [Google Scholar] [CrossRef]
- Mohammed, A.T.; Irmak, S. Maize response to coupled irrigation and nitrogen fertilization under center pivot, subsurface drip and surface (furrow) irrigation: Soil-water dynamics and crop evapotranspiration. Agric. Water Manag. 2022, 267, 107634. [Google Scholar] [CrossRef]
- Ganjegunte, G.; Leinauer, B.; Schiavon, M.; Serena, M. Using electro-magnetic induction to determine soil salinity and sodicity in turf root zones. Agron. J. 2013, 105, 836–844. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, L.A.; Woodbury, B.L.; de Miranda, J.H.; Stromer, B.S. Using electromagnetic induction technology to identify atrazine leaching potential at field scale. Geoderma 2020, 375, 114525. [Google Scholar] [CrossRef]
- Chen, C. A glimpse of the first eight months of the COVID-19 literature on Microsoft academic graph: Themes, citation contexts, and uncertainties. Front. Res. Metr. Anal. 2020, 5, 607286. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Song, M. Visualizing a field of research: A methodology of systematic scientometric reviews. PLoS ONE 2019, 14, e0223994. [Google Scholar] [CrossRef] [Green Version]
- Niu, W.; Guo, Q.; Zhou, X.; Helmers, M.J. Effect of aeration and soil water redistribution on the air permeability under subsurface drip irrigation. Soil Sci. Soc. Am. J. 2012, 76, 815–820. [Google Scholar] [CrossRef]
- Al-Eter, A.L.I.; Nadeem, M.; Wahb-Allah, M.A.; Al-Harbi, A.R.; Al-Omran, A.M. Impact of irrigation water quality, irrigation systems, irrigation rates and soil amendments on tomato production in sandy calcareous soil. Turk. J. Agric. For. 2010, 34, 59–73. [Google Scholar]
- Bern, C.R.; Breit, G.N.; Healy, R.W.; Zupancic, J.W. Deep subsurface drip irrigation using coal-bed sodic water: Part II. Geochemistry. Agric. Water Manag. 2013, 118, 135–149. [Google Scholar] [CrossRef] [Green Version]
- Palacios-Diaz, M.D.P.; Fernández-Vera, J.R.; Hernández-Moreno, J.M.; Amorós, R.; Mendoza-Grimón, V. Effect of Irrigation Management and Water Quality on Soil and Sorghum bicolor Payenne Yield in Cape Verde. Agriculture 2023, 13, 192. [Google Scholar] [CrossRef]
- Allende, A.; Monaghan, J. Irrigation water quality for leafy crops: A perspective of risks and potential solutions. Int. J. Environ. Res. Public Health 2015, 12, 7457–7477. [Google Scholar] [CrossRef] [Green Version]
- Palacios-Díaz, M.P.; Mendoza-Grimón, V.; Fernández-Vera, J.R.; Rodríguez-Rodríguez, F.; Tejedor-Junco, M.T.; Hernández-Moreno, J.M. Subsurface drip irrigation and reclaimed water quality effects on phosphorus and salinity distribution and forage production. Agric. Water Manag. 2009, 96, 1659–1666. [Google Scholar] [CrossRef]
- He Xinlin, L.H.; Jianwei, Y.; Guang, Y.; Mingsi, L.; Ping, G.; Aimaiti, A. Comparative Investigation on Soil Salinity Leaching under Subsurface Drainage and Ditch Drainage in Xinjiang Arid Region. Int. J. Agric. Biol. Eng. 2013, 9, 109–118. [Google Scholar]
- Hanson, B.R.; May, D.E.; Simünek, J.; Hopmans, J.W.; Hutmacher, R.B. Drip irrigation provides the salinity control needed for profitable irrigation of tomatoes in the San Joaquin valley. Calif. Agric. 2009, 63, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Chase, C.A.; Stall, W.M.; Simonne, E.H.; Hochmuth, R.C.; Dukes, M.D.; Weiss, A.W. Nutsedge control with drip-applied 1,3-dichloropropene plus chloropicrin in a sandy soil. Horttechnology 2006, 16, 641–648. [Google Scholar] [CrossRef] [Green Version]
- Sevostianova, E.; Leinauer, B.; Sallenave, R.; Karcher, D.; Maier, B. Soil salinity and quality of sprinkler and drip irrigated cool-season turfgrasses. Agron. J. 2011, 103, 1503–1513. [Google Scholar] [CrossRef] [Green Version]
- Zamani, S.; Fatahi, R.; Provenzano, G. A comprehensive model for hydraulic analysis and wetting patterns simulation under subsurface drip laterals. Water 2022, 14, 1965. [Google Scholar] [CrossRef]
- Yang, T.; Šimůnek, J.; Mo, M.; McCullough-Sanden, B.; Shahrokhnia, H.; Cherchian, S.; Wu, L. Assessing salinity leaching efficiency in three soils by the HYDRUS-1D and -2D simulations. Soil Tillage Res. 2019, 194, 104342. [Google Scholar] [CrossRef] [Green Version]
- El-Nesr, M.N.; Alazba, A.A.; Šimůnek, J. HYDRUS simulations of the effects of dual-drip subsurface irrigation and a physical barrier on water movement and solute transport in soils. Irrig. Sci. 2014, 32, 111–125. [Google Scholar] [CrossRef] [Green Version]
- Kandelous, M.M.; Šimůnek, J.; van Genuchten, M.T.; Malek, K. Soil water content distributions between two emitters of a subsurface drip irrigation system. Soil Sci. Soc. Am. J. 2011, 75, 488–497. [Google Scholar] [CrossRef]
- Niu, W.-Q.; Fan, W.-T.; Persaud, N.; Zhou, X.-B. Effect of post-irrigation aeration on growth and quality of greenhouse cucumber. Pedosphere 2013, 23, 790–798. [Google Scholar] [CrossRef]
- Chen, H.; Shang, Z.; Cai, H.; Zhu, Y. Irrigation combined with aeration promoted soil respiration through increasing soil microbes, enzymes, and crop growth in tomato fields. Catalysts 2019, 9, 945. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.; Trooien, T.P.; Dumler, T.J.; Rogers, D.H. Using subsurface drip irrigation for alfalfa. J. Am. Water Resour. Assoc. 2002, 38, 1715–1721. [Google Scholar] [CrossRef]
- Wang, Y.D.; Kou, D.; Muneer, M.A.; Fang, G.J.; Su, D.R. The effects of irrigation regimes on soil moisture dynamics, yield and quality of Lucerne under subsurface drip irrigation. Appl. Ecol. Environ. Res. 2020, 18, 4179–4194. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Chang, T.T.; Guan, Y.L.; Shao, X.H.; Zhang, J.; Li, M.H. Soil Moisture Content, Soil Salinity And Water Use Efficiency Under Surface Drip and Flood Irrigation In Continuous Cropping Plastic Greenhouse of Eastern China. Fresenius Environ. Bull. 2018, 27, 6668–6676. [Google Scholar]
- Qu, D.Y.; Wang, X.B.; Kang, C.P.; Liu, Y. Promoting agricultural and rural modernization through application of information and communication technologies in China. Int. J. Agric. Biol. Eng. 2019, 11, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Nolz, R.; Loiskandl, W. Evaluating soil water content data monitored at different locations in a vineyard with regard to irrigation control. Soil Water Res. 2017, 12, 152–160. [Google Scholar] [CrossRef] [Green Version]
- Jadoon, K.Z.; Moghadas, D.; Jadoon, A.; Missimer, T.M.; Al-Mashharawi, S.K.; McCabe, M.F. Estimation of soil salinity in a drip irrigation system by using joint inversion of multicoil electromagnetic induction measurements. Water Resour. Res. 2015, 51, 3490–3504. [Google Scholar] [CrossRef] [Green Version]
- Zhangzhong, L.L.; Yang, P.L.; Zheng, W.G.; Liu, Y.; Guo, M.J.; Yang, F.R. Effects of Drip Irrigation Frequency on Emitter Clogging using Saline Water for Processing Tomato Production. Irrig. Drain. 2019, 68, 464–475. [Google Scholar] [CrossRef]
- Du, P.S.; Li, Z.Q.; Wang, C.C.; Ma, J.J. Analysis of the Influence of the Channel Layout and Size on the Hydraulic Performance of Emitters. Agriculture 2022, 12, 541. [Google Scholar] [CrossRef]
- Wang, C.C.; Li, Z.Q.; Ma, J.J. Influence of Emitter Structure on Its Hydraulic Performance Based on the Vortex. Agriculture 2021, 11, 508. [Google Scholar] [CrossRef]
- Cai, Y.; Wu, P.; Zhu, D.; Zhang, L.; Zhao, X.; Gao, X.; Ge, M.; Song, X.; Wu, Y.; Dai, Z. Subsurface irrigation with ceramic emitters: An effective method to improve apple yield and irrigation water use efficiency in the semiarid Loess Plateau. Agric. Ecosyst. Environ. 2021, 313, 107404. [Google Scholar] [CrossRef]
- Yadav, A.; Sharma, N.; Upreti, H.; Singhal, G.D. Techno-economic analysis of irrigation systems for efficient water use in the backdrop of climate change. Curr. Sci. 2022, 122, 664–673. [Google Scholar] [CrossRef]
- Ma, X.; Sanguinet, K.A.; Jacoby, P.W. Direct root-zone irrigation outperforms surface drip irrigation for grape yield and crop water use efficiency while restricting root growth. Agric. Water Manag. 2020, 231, 105993. [Google Scholar] [CrossRef]
- Lamm, F.R. Cotton, Tomato, corn, and onion production with subsurface drip irrigation: A review. Trans. ASABE 2016, 59, 263–278. [Google Scholar] [CrossRef] [Green Version]
- Badr, M.A.; Abou Hussein, S.D.; El-Tohamy, W.A.; Gruda, N. Efficiency of subsurface drip irrigation for potato production under different dry stress conditions. Gesunde Pflanz. 2010, 62, 63–70. [Google Scholar] [CrossRef]
- Trejo, J.A.M.; Aguiluz, H.W.A.; Ramirez, J.O.; Lopez, A.R.; Gonzalez, M.R.; Rangel, P.P.; Trejo, I.D.M.; Castruita, M.A.S.; Vidal, J.A.O.; Coronado, P.Y. Water use in alfalfa (Medicago sativa) with subsurface drip irrigation. Rev. Mex. de Cienc. Pecu. 2010, 1, 145–156. [Google Scholar]
- Diotto, A.V.; Irmak, S. Embodied energy and energy return on investment analyses in maize production for grain and ethanol under center pivot, subsurface drip, and surface (furrow) irrigation with disk tillage and no-till practices. Trans. ASABE 2016, 59, 873–884. [Google Scholar] [CrossRef]
Rank | Number of Papers | Percentage % | Centrality | Burst | Country |
---|---|---|---|---|---|
1 | 386 | 35.78 | 0.57 | 28.42 | USA |
2 | 241 | 22.34 | 0.17 | China | |
3 | 73 | 6.77 | 0.25 | Spain | |
4 | 72 | 6.67 | 0.12 | 5.67 | Brazil |
5 | 56 | 5.19 | 0.07 | 4.02 | Egypt |
6 | 48 | 4.45 | 0.12 | 3.68 | Israel |
7 | 47 | 4.35 | 0.08 | India | |
8 | 46 | 4.25 | 0.14 | Iran | |
9 | 45 | 4.15 | 0.04 | 8.08 | Australia |
10 | 40 | 3.70 | 0.02 | Turkey | |
11 | 40 | 3.70 | 0.14 | Saudi Arabia | |
12 | 28 | 2.59 | 0.11 | Italy | |
13 | 23 | 2.13 | 0.00 | 3.68 | Canada |
14 | 19 | 1.76 | 0.10 | Germany | |
15 | 17 | 1.57 | 0.06 | 4.05 | Greece |
16 | 15 | 1.39 | 0.01 | Pakistan | |
17 | 14 | 1.29 | 0.09 | England | |
18 | 14 | 1.29 | 0.10 | South Africa | |
19 | 13 | 1.20 | 0.14 | France | |
20 | 13 | 1.20 | 0.13 | Portugal |
Frequency | Centrality | Burst | Institution |
---|---|---|---|
103 | 0.25 | 7.27 | US Department of Agriculture Agricultural Research Service |
49 | 0.01 | 9.74 | Northwest A&F University |
34 | 0.04 | University of California, Davis | |
30 | 0.06 | China Agricultural University | |
28 | 0.07 | Chinese Academy of Science | |
27 | 0.04 | 4.78 | University of Arizona |
26 | 0.08 | University of California, Riverside | |
24 | 0.02 | 5.04 | Texas A&M University |
22 | 0.04 | Ben Gurion University of the Negev | |
22 | 0.03 | King Saud University | |
21 | 0.02 | China Institute of Water Resources and Hydropower Resources | |
20 | 0.02 | Kansas State University |
Tags | Keywords | Count |
---|---|---|
Irrigation method | subsurface drip irrigation × 9; irrigation × 6; micro irrigation × 5; irrigation methods × 4; trickle irrigation × 3; deficit irrigation × 3; drip irrigation × 3; irrigation systems × 2; SDI × 2; sprinkler irrigation × 2; surface irrigation × 2; limiting flow; furrow irrigation; spray irrigation; subsurface irrigation | 45 |
Soil moisture distribution and changes | water-table; soil moisture distribution pattern; wetting pattern; transport; drying-rewetting frequency; soil water; water movement; hydraulic conductivity; integrated water; variably saturated flow; one dimensional infiltration; surface point source; dependent linearized infiltration; unsaturated hydraulic conductivity; steady state flows; groundwater; soil water potential; soil water potential threshold; soil hydraulic properties; root water uptake; soil management; root distribution; root water; root zone water; fine root; sorption; evapotranspiration; | 27 |
Environmental issues and pollution | microbial contamination; environmental health; microbial activity; oxide emissions; denitrification; nitrogen-fixation; similarity solutions; soil properties; heavy metals; boron toxicity; steady state; excess boron; chemigation; soil contamination; pathogens; health risks; soil contamination; ammonia volatilization; N2O; CO2; CH4; C2H2 | 22 |
Crop | lettuce; cotton; wheat cropping system; winter-wheat; rice; grassland soils; pomegranate; tomato root distribution; cropping systems; cotton; sugarcane; plant; vitis vinifera; wine; plant growth; plant conditioners; corn; interspecific interaction; niche differentiation; plant breeding; plant roots; winter wheat | 22 |
New technologies | remote sensing × 3; discharge rate; technical parameters; wireless sensor networks; soil-moisture; precision agriculture; screenhouse; automation; innovation and technology; low energy precision application; tensiometer; soil water potential sensor; walled carbon nanotubes; ground penetrating radar; electrical conductivity | 17 |
Water use efficiency | water use efficiency × 7; water saving × 2; water requirements; water use productivity; crop water productivity; water use; crop productivity; water productivity; water resources | 16 |
Nonconventional water resource utilization | treated wastewater × 3; water quality; wastewater reuse; low quality water; virtual water; unconventional water resources; site waste water; wastewater; salinity; soil salinity; nonuniform transient salinity; coal salt tolerance; n-mineralization | 15 |
Yield | Yield × 3; crop production × 2; aril colour; fruit quality; plant growth; physical properties; waste of water and feed; crop quality; yield response; grain-yield | 13 |
Irrigation strategy and management | water management × 3; management; management strategies; irrigation management strategies; design; operation systems; irrigation schemes; irrigation management × 2; irrigation scheduling | 12 |
Agricultural development | Sustainability × 3; conservation agriculture × 2; protected cultivation; residue management; zero tillage; cereal system; sustainable irrigation; agriculture | 11 |
Climate change and water resources | climate change × 3; groundwater depletion; drought; environmental impact; micro-climate regulation; heat stress; temperature | 9 |
Region and terrain | coastal-plain; India; basin tillage; ceramic pots; sub-Sahara; ogalla aquifer; indo-gangetic plains of India | 7 |
Fertilizers and nutrition | Fertigation × 2; controlled release fertilizers; macronutrients; nutrients; nutrient source | 6 |
Economic benefits | payoff period; runoff; water pricing and rationing | 3 |
Others | LEPA; uniformity; prisma-p; semi-permeable membrane; nitrogen isotope; semifield; conservative numerical-solution; finite-element method; conservative numerical-solution; finite-element method, meta-analysis; bibliometric analysis; Green-ampt analysis | 13 |
Rank | Count | Centrality | Burst | Keyword |
---|---|---|---|---|
1 | 380 | 0.02 | subsurface drip irrigation | |
2 | 244 | 0.06 | yield | |
3 | 174 | 0.05 | water use efficiency | |
4 | 170 | 0.11 | drip irrigation | |
5 | 161 | 0.06 | growth | |
6 | 155 | 0.10 | management | |
7 | 151 | 0.17 | soil | |
8 | 122 | 0.06 | water | |
9 | 117 | 0.06 | deficit irrigation | |
10 | 113 | 0.09 | quality | |
11 | 93 | 0.08 | use efficiency | |
12 | 88 | 0.05 | system | |
13 | 71 | 0.10 | irrigation | |
14 | 67 | 0.05 | model | |
15 | 66 | 0.10 | nitrogen | |
16 | 61 | 0.08 | crop | |
17 | 59 | 0.07 | subsurface drip | |
18 | 55 | 0.05 | corn | |
19 | 53 | 0.01 | simulation | |
20 | 51 | 0.07 | surface | |
21 | 48 | 0.05 | cotton | |
22 | 44 | 0.04 | fruit quality | |
23 | 43 | 0.04 | dynamics | |
24 | 43 | 0.03 | field | |
25 | 43 | 0.07 | subsurface | |
26 | 41 | 0.07 | evapotranspiration | |
27 | 41 | 0.04 | hydraulic conductivity | |
28 | 39 | 0.05 | stress | |
29 | 38 | 0.03 | 5.36 | flow |
30 | 35 | 0.13 | 5.48 | furrow irrigation |
Frequency | Centrality | Burst | Author | Source | Year |
---|---|---|---|---|---|
29 | 0.05 | 10.43 | Ayars, J.E. | Agr. Water Manag. | 2015 |
25 | 0.00 | 10.27 | Lamm, F.R. | Trans. ASABE | 2016 |
19 | 0.01 | 6.66 | Ben-Noah, I. | Agr. Water Manag. | 2016 |
18 | 0.08 | 6.36 | Simunek, J. | Vadose Zone J. | 2016 |
17 | 0.02 | 5.29 | Du, Y.D. | Agr. Water Manag. | 2018 |
16 | 0.00 | 7.49 | Li, Y. | Soil Sci. Soc. Am. J. | 2016 |
15 | 0.25 | 7.40 | Kandelous, M.M. | Agr. Water Manag. | 2010 |
15 | 0.17 | 5.24 | Irmak, S. | Irrig. Sci. | 2016 |
13 | 0.15 | 4.04 | Cai, Y.H. | Agr. Water Manag. | 2017 |
13 | 0.24 | 7.93 | Lamm, F.R. | Irrig. Sci. | 2003 |
11 | 0.22 | 5.65 | Simunek, J. | Vadose Zone J. | 2008 |
10 | 0.20 | 4.40 | Dabach, S. | Agr. Water Manag. | 2015 |
10 | 0.11 | 5.79 | Gardenas, A.I. | Agr. Water Manag. | 2005 |
8 | 0.22 | 4.79 | Kandelous, M.M. | Soil Sci. Soc. Am. J. | 2011 |
6 | 0.21 | 3.13 | Payero, J.O. | Agr. Water Manag. | 2006 |
6 | 0.13 | 3.59 | Kandelous, M.M. | Agr. Water Manag. | 2012 |
4 | 0.15 | Thompson, T.L. | Soil Sci. Soc. Am. J. | 2002 | |
4 | 0.20 | Ajdary, K. | Agr. Water Manag. | 2007 | |
4 | 0.13 | Evett, S.R. | Agr. Water Manag. | 2002 | |
3 | 0.22 | Abou Lila, T.S. | Irrig. Sci. | 2013 | |
3 | 0.12 | Bekele, S. | Agr. Water Manag. | 2007 | |
3 | 0.11 | Selim, T. | Soil Sci. Soc. Am. J. | 2013 | |
2 | 0.12 | Thompson, T.L. | Soil Sci. Soc. Am. J. | 2002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Sun, C.; Wang, D.; Li, H.; Guo, W. Analysis of Hotspots in Subsurface Drip Irrigation Research Using CiteSpace. Agriculture 2023, 13, 1463. https://doi.org/10.3390/agriculture13071463
Xiao Y, Sun C, Wang D, Li H, Guo W. Analysis of Hotspots in Subsurface Drip Irrigation Research Using CiteSpace. Agriculture. 2023; 13(7):1463. https://doi.org/10.3390/agriculture13071463
Chicago/Turabian StyleXiao, Yatao, Chaoxiang Sun, Dezhe Wang, Huiqin Li, and Wei Guo. 2023. "Analysis of Hotspots in Subsurface Drip Irrigation Research Using CiteSpace" Agriculture 13, no. 7: 1463. https://doi.org/10.3390/agriculture13071463
APA StyleXiao, Y., Sun, C., Wang, D., Li, H., & Guo, W. (2023). Analysis of Hotspots in Subsurface Drip Irrigation Research Using CiteSpace. Agriculture, 13(7), 1463. https://doi.org/10.3390/agriculture13071463