Factors Influencing the Perceptions of Smallholder Farmers towards Adoption of Digital Technologies in Eastern Cape Province, South Africa
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Description of Study Area
3.2. Conceptual Framework
3.3. Study Design
4. Results
Empirical Results
5. Discussion
6. Conclusions
7. Recommendations
8. Limitations of Study
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Qin, T.; Wang, L.; Zhou, Y.; Guo, L.; Jiang, G.; Zhang, L. Digital technology-and-services-driven sustainable transformation of agriculture: Cases of China and the EU. Agriculture 2022, 12, 297. [Google Scholar] [CrossRef]
- FAO; ITU. Status of Digital Agriculture in 47 Sub-Saharan African Countries; FAO: Rome, Italy, 2022. [Google Scholar]
- OECD; FAO. Agriculture in Sub-Saharan Africa: Prospects and challenges for the next decade. In OECD-FAO Agricultural Outlook 2016–2025; OECD; FAO: Rome, Italy, 2016; Volume 181, pp. 1–95. ISBN 9789264253223. [Google Scholar]
- Jayne, T.S.; Sanchez, P.A. Crop Yields on Existing Farmland. Science 2021, 372, 1045–1048. [Google Scholar] [CrossRef] [PubMed]
- Dlamini, P.; Ocholla, D.N. Information and Communication Technology Tools for Managing Indigenous Knowledge in KwaZulu-Natal Province, South Africa. Afr. J. Libr. Archeoloyg Inf. Sci. 2018, 28, 137–153. [Google Scholar]
- Maumbe, B. Mobile agriculture in South Africa: Implementation framework, value-added services and policy implication. Int. J. ICT Res. Dev. Afr. 2010, 1, 35–59. [Google Scholar] [CrossRef]
- Pishnyak, A.; Khalina, N. Perception of new technologies: Constructing an innovation openness index. Foresight STI Gov. 2021, 15, 39–55. [Google Scholar] [CrossRef]
- Caffaro, F.; Micheletti Cremasco, M.; Roccato, M.; Cavallo, E. Drivers of farmers’ intention to adopt technological innovations in Italy: The role of information sources, perceived usefulness, and perceived ease of use. J. Rural Stud. 2020, 76, 264–271. [Google Scholar] [CrossRef]
- Thomas, R.J.; O’Hare, G.; Coyle, D. Understanding technology acceptance in smart agriculture: A systematic review of empirical research in crop production. Technol. Forecast. Soc. Chang. 2023, 189, 122374. [Google Scholar] [CrossRef]
- Reissig, L.; Stoinescu, A.; Mack, G. Why farmers perceive the use of e-government services as an administrative burden: A conceptual framework on influencing factors. J. Rural Stud. 2022, 89, 387–396. [Google Scholar] [CrossRef]
- Adrian, A.M.; Norwood, S.H.; Mask, P.L. Producers’ perceptions and attitudes toward precision agriculture technologies. Comput. Electron. Agric. 2005, 48, 256–271. [Google Scholar] [CrossRef]
- Kaur, A.; Singh, R. Perception and Attitude of Agripreneurs toward Social Media Tools for Attaining Agribusiness Benefits. Indian J. Posit. Psychol. 2021, 12, 379–384. [Google Scholar]
- Aldosari, F.; Al Shunaifi, M.S.; Ullah, M.A.; Muddassir, M.; Noor, M.A. Farmers’ perceptions regarding the use of Information and Communication Technology (ICT) in Khyber Pakhtunkhwa, Northern Pakistan. J. Saudi Soc. Agric. Sci. 2019, 18, 211–217. [Google Scholar] [CrossRef]
- Meijer, S.S.; Catacutan, D.; Ajayi, O.C.; Sileshi, G.W.; Nieuwenhuis, M. The role of knowledge, attitudes and perceptions in the uptake of agricultural and agroforestry innovations among smallholder farmers in sub-Saharan Africa. Int. J. Agric. Sustain. 2015, 13, 40–54. [Google Scholar] [CrossRef]
- Pfeiffer, J.; Gabriel, A.; Gandorfer, M. Understanding the public attitudinal acceptance of digital farming technologies: A nationwide survey in Germany. Agric. Hum. Values 2021, 38, 107–128. [Google Scholar] [CrossRef]
- Dissanayake, C.A.K.; Jayathilake, W.; Wickramasuriya, H.V.A.; Dissanayake, U.; Kopiyawattage, K.P.P.; Wasala, W.M.C.B. Theories and models of technology adoption in agricultural sector. Hum. Behav. Emerg. Technol. 2022, 2022, 9258317. [Google Scholar] [CrossRef]
- Mdoda, L.; Mdiya, L. Factors affecting the using information and communication technologies (ICTs) by livestock farmers in the Eastern Cape Province. Cogent Soc. Sci. 2022, 8, 2026017. [Google Scholar] [CrossRef]
- Makaula, Z. Information and communication technologies (ICT) towards agricultural development in rural areas: Case of smallholder farmers in Umzimvubu local municipality of the Eastern Cape Province in South Africa. S. Afr. J. Agric. Ext. 2021, 49, 81–90. [Google Scholar] [CrossRef]
- Akinsola, O.S. ICT adoption for bridging South African black farmers ’ knowledge gap. Int. J. Agric. Sci. Technol. 2014, 2, 39–47. [Google Scholar] [CrossRef]
- Mabaya, E.; Porciello, J. Can digital solutions transform agri-food systems in Africa? Can digital solutions transform agri-food systems in Africa? Agrekon 2022, 61, 67–79. [Google Scholar] [CrossRef]
- Mavilia, R.; Pisani, R. Blockchain for agricultural sector: The case of South Africa. African J. Sci. Technol. Innov. Dev. 2022, 14, 845–851. [Google Scholar] [CrossRef]
- Zantsi, S.; Nkunjana, T. A review of possibilities for using animal tracking devices to mitigate stock theft in smallholder livestock farming systems in rural South Africa. S. Afr. J. Agric. Ext. 2021, 49, 162–182. [Google Scholar] [CrossRef]
- Cavallo, E.; Ferrari, E.; Bollani, L.; Coccia, M. Attitudes and behaviour of adopters of technological innovations in agricultural tractors: A case study in Italian agricultural system. Agric. Syst. 2014, 130, 44–54. [Google Scholar] [CrossRef]
- Gerli, P.; Clement, J.; Esposito, G.; Mora, L.; Crutzen, N. The hidden power of emotions: How psychological factors influence skill development in smart technology adoption. Technol. Forecast. Soc. Chang. 2022, 180, 121721. [Google Scholar] [CrossRef]
- ECSECC. Ingquza Hill Local Municipality Socio Economic Review and Outlook, 2017; ECSECC: East London, South Africa, 2017; Available online: https://www.ecsecc.org/documentrepository/informationcentre/ngquza-hill-local-municipality_35291.pdf (accessed on 2 December 2022).
- ECSECC. Port St Johns Municipality Socio-Economic Review and Outlook; ECSECC: East London, South Africa, 2017; Available online: https://www.ecsecc.org/documentrepository/informationcentre/port-st-jonhs-local-municipality_82667.pdf (accessed on 14 January 2023).
- Wazimap Port St Johns. 2022. Available online: https://wazimap.co.za/profiles/municipality-EC154-port-st-johns/ (accessed on 1 December 2022).
- GoSA Vaccine FAQs. 2021. Available online: https://www.gov.za/covid-19-coronavirus-vaccine-frequently-asked-questions (accessed on 13 July 2021).
- OR Tambo DM. Coastal Management Programme 2016–2021; OR Tambo DM: Mthatha, South Africa, 2016. [Google Scholar]
- Kambanje, A.; Ngarava, S.; Mushunje, A.; Taruvinga, A. Labour dynamics in climate and techno reliand small scale maize production. J. Econ. Behav. Stud. 2018, 10, 262–276. [Google Scholar] [CrossRef] [PubMed]
- Kambanje, A.; Taruvinga, A.; Mushunje, A.; Mutengwa, C.; Ngarava, S. Determinants of Food Security Status amongst Smallholder Farmers Utilizing Different Maize Varieties in OR Tambo District, South Africa. J. Soc. Sci. Res. 2020, 6, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Ngcinela, S.; Mushunje, A.; Taruvinga, A.; Ngarava, S.; Mutengwa, C.S. Determinants of genetically modified (GM) maize adoption and the intensity of adoption in OR Tambo District Municipality, Eastern Cape Province, South Africa. GM Crop. Food 2019, 10, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wazimap Ingquza Hill Local Municiality. 2022. Available online: https://wazimap.co.za/profiles/municipality-EC153-ngquza-hill/ (accessed on 1 December 2022).
- Geng, L.; Li, Y.; Xue, Y. Will the interest triggered by virtual reality (VR) turn into intention to travel (VR vs. Corporeal)? The moderating effects of customer segmentation. Sustainability 2022, 14, 7010. [Google Scholar] [CrossRef]
- Erdogdu, A.I. Social Marketing of Post-Pandemic Teleworking to Improve the Well-Being of White-Collar Workers in Instanbul. Master’s Thesis, Middle East Technical University, Çankaya, Ankara, 2021. [Google Scholar]
- Rawal, P. AIDA Marketing Communication Model: Stimulating a Purchase. IRC’s Int. J. Multidiscip. Res. Insocial Manag. Sci. 2013, 1, 37–44. [Google Scholar]
- Le, T.M.; Liaw, S.; Bui, T. The role of perceived risk and trust propensity in the relationship between negative perceptions of applying big data analytics and consumers’ responses. WEAS Trans. Bus. Econ. 2020, 17, 426–435. [Google Scholar] [CrossRef]
- Ngarava, S.; Mushunje, A.; Chaminuka, P. Qualitative Benefits of Livestock Development Programmes. Evidence from the Kaonafatso ya Dikgomo (KyD) Scheme in South Africa. Eval. Program Plann. 2020, 78, 101722. [Google Scholar] [CrossRef] [PubMed]
- Michels, M.; Musshoff, O. A tobit regression model for the timing of smartphone adoption in agriculture. Heliyon 2022, 8, e11272. [Google Scholar] [CrossRef] [PubMed]
- Tobin, B.Y.J. Estimation of relationships for limited dependent variables. Econometrica 1985, 26, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Greene, W.H. Econometric Analysis. In Intellectual Property Management; Physica-Verlag HD: Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Introductory Econometrics, 6th ed.; Cengage Learning: Boston, MA, USA, 2016; Volume 42, ISBN 9781305270107. [Google Scholar]
- Migiro, S.O.; Kwake, A. Information needs and communication technology adoption in Africa: A comparative study of rural women in Kenya and South Africa. J. Soc. Dev. Afr. 2007, 22, 109–141. [Google Scholar]
- Strydom, P.D.F. Digital technologies, employment and labour-market polarisation in Africa. In Africa’s Digital Future: From Theory to Action (The Future of International Trade and Development); Viviers, W., Parry, A., Jansen van Rensburg, S.J., Eds.; AOSIS: Cape Town, South Africa, 2021; pp. 101–127. [Google Scholar]
- Patil, M.D.; Anatha, K.H.; Wani, S.P. Digital technologies for agricultural extension. In Harnessing Dividends from Drylands: Innovative Scaling up with Soil Nutrients; Raju, K.V., Wani, S.P., Eds.; CABI Digital Library: Oxfordshire, UK, 2016; pp. 331–334. [Google Scholar]
- Jeanneaux, P. Towards the End of Farmers’ Decision-Making Autonomy? 2018. Available online: https://agris.fao.org/agris-search/search.do?recordID=FR2021007992 (accessed on 4 October 2022).
- Fourati-jamoussi, F.; Dantan, J.; Dubois, M.J.F.; Rizzo, D. Impact of Digital Technologies on Farms’ Business Models—CahierCOSTECH. 2023. Available online: https://hal.science/hal-04010330v1/file/CosTECH-2023-02-Fourati-Jamoussi_et-al-impact-digital-technologies-farm-business-model.pdf (accessed on 7 February 2023).
- Leeuwis, C.; Aarts, N. Rethinking Adoption and Diffusion as a Collective Social Process: Towards an Interactional Perspective; Campos, H., Ed.; Springer: Berlin/Heidelberg, Germany, 2020; ISBN 9783030509910. [Google Scholar]
- Ayamga, M.; Lawani, A.; Akaba, S.; Birindwa, A. Developing institutions and inter-organizational synergies through digitalization and youth engagement in african agriculture: The case of “Africa Goes Digital”. Land 2023, 12, 199. [Google Scholar] [CrossRef]
- Sidibé, A.; Olabisi, L.S.; Doumbia, H.; Touré, K.; Niamba, C.A. Barriers and enablers of the use of digital technologies for sustainable agricultural development and food security: Learning from cases in Mali. Elementa 2021, 9, 00106. [Google Scholar] [CrossRef]
- Born, L.; Chirinda, N.; Mabaya, E.; Afun-Ogidan, O.; Girvetz, E.H.; Jarvis, A.; Kropff, W. Digital Agriculture Profile: South Africa; FAO: Rome, Italy, 2021; Available online: https://www.fao.org/3/cb2506en/cb2506en.pdf (accessed on 14 January 2023).
- McCampbell, M.; Schumann, C.; Klerkx, L. Good intentions in complex realities: Challenges for designing responsibly in digital agriculture in low-income countries. Sociol. Rural. 2022, 62, 279–304. [Google Scholar] [CrossRef]
- Engås, K.G.; Raja, J.Z.; Neufang, I.F. Decoding technological frames: An exploratory study of access to and meaningful engagement with digital technologies in agriculture. Technol. Forecast. Soc. Chang. 2023, 190, 122405. [Google Scholar] [CrossRef]
- Florez, M.; Melo, J.; Bourdon, I.; Piot-LePetit, I.; Gauche, K. Digital divide between Colombian and French agriculture. In Proceedings of the 27th Annual Americas Conference on Information Systems, AMCIS 2021, Virtual, 9–13 August 2021. [Google Scholar]
- FAO. Realizing the Potential of Digitalization to Improve the Agri-Food System: Proposing a New International Digital Council for Food and Agriculture. A Concept Note; FAO: Rome, Italy, 2020. [Google Scholar]
- Hackfort, S. Patterns of inequalities in digital agriculture: A systematic literature review. Sustainability 2021, 13, 12345. [Google Scholar] [CrossRef]
- Renda, A. The age of foodtech: Optimizing the agri-food chain with digital technologies. In Achieving the Sustainable Development Goals through Sustainable Food Systems; Valentini, R., Sievenpiper, J.L., Antonelli, M., Dembska, K., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Oosterlaken, I. Design for development: A capability approach. Des. Issues 2009, 25, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Sen, A. Capability and Well-Being. In The Quality of Life; Nussbaum, M., Sen, A., Eds.; Clarendon Press: Oxford, UK, 1993; pp. 30–53. [Google Scholar]
- Sen, A. Development as Capability Expansion. J. Dev. Plan. 1989, 19, 41–58. [Google Scholar]
- Achieng, M.S. Digitalisation of indigenous knowledge of agricultural practices: A strategy for food security in Africa. J. Public Adm. 2022, 57, 802–818. [Google Scholar]
- Ghimire, P. Digitalization of indigenous knowledge in Nepal—Review article. Acta Inform. Malays. 2021, 5, 42–47. [Google Scholar] [CrossRef]
- Kantiza, A.; Loytty, T.; Cherenet, E.; Sabimana, R.; Horak, P.; Osmancelebioglu, D.; Hajek, P.; Zadrazil, F.; Cerba, O.; Charvat, K.; et al. Digitalization of indigenous knowledge in African agriculture for fostering food security. In Proceedings of the 2021 IST-Africa Conference, IST-Africa 2021, Virtual Conference, 10–14 May 2021; pp. 1–13. [Google Scholar]
- Franco, W.; Barbera, F.; Bartolucci, L.; Felizia, T.; Focanti, F. Developing intermediate machines for high-land agriculture. Dev. Eng. 2020, 5, 100050. [Google Scholar] [CrossRef]
- Pope, M.; Sonka, S.; Quantifying the Eocnomic Benefits of on-Farm Digital Technologies. Farmdoc Daily. 4 March 2020. Available online: https://farmdocdaily.illinois.edu/2020/03/quantifying-the-economic-benefits-of-on-farm-digital-technologies.html (accessed on 3 August 2022).
- Bronson, K.; Knezevic, I. The digital divide and how it matters for Canadian food system equity. Can. J. Commun. 2019, 44, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Annosi, M.C.; Brunetta, F.; Monti, A.; Nat, F. Is the trend your friend? An analysis of technology 4.0 investment decisions in agricultural SMEs. Comput. Ind. 2019, 109, 59–71. [Google Scholar] [CrossRef]
- Tagarakis, A.C.; van Evert, F.K.; Kempenaar, C.; Ljubicic, N.; Milic, D.; Bengin, V.; Crnojevic, V. Opportunities for precision agriculture in Serbia. In Proceedings of the 14th International Conference on Precision Agriculture, Montreal, QC, Canada, 24 June–27 June 2018; pp. 1–12. [Google Scholar]
- Groher, T.; Heitkämper, K.; Umstätter, C. Digital technology adoption in livestock production with a special focus on ruminant farming. Animal 2020, 14, 2404–2413. [Google Scholar] [CrossRef] [PubMed]
- Kernecker, M.; Knierim, A.; Wurbs, A.; Kraus, T.; Borges, F. Experience versus expectation: Farmers’ perceptions of smart farming technologies for cropping systems across Europe. Precis. Agric. 2020, 21, 34–50. [Google Scholar] [CrossRef]
- Giua, C.; Materia, V.C.; Camanzi, L. Smart farming technologies adoption: Which factors play a role in the digital transition? Technol. Soc. 2022, 68, 101869. [Google Scholar] [CrossRef]
- Omulo, G.; Kumeh, E.M. Technological Forecasting & Social Change Farmer-to-farmer digital network as a strategy to strengthen agricultural performance in Kenya: A research note on ‘ Wefarm ’ platform. Technol. Forecast. Soc. Chang. 2020, 158, 120120. [Google Scholar] [CrossRef]
- Da Silveira, F.; da Silva, S.L.C.; Machado, F.M.; Barbedo, J.G.A.; Amaral, F.G. Farmers’ perception of barriers that difficult the implementation of agriculture 4.0. Agric. Syst. 2023, 208, 103656. [Google Scholar] [CrossRef]
- Alant, B.P.; Bakare, O.O. A case study of the relationship between smallholder farmers’ ICT literacy levels and demographic data w.r.t. their use and adoption of ICT for weather forecasting. Heliyon 2021, 7, e06403. [Google Scholar] [CrossRef]
- Schulze Schwering, D.; Bergmann, L.; Isabel Sonntag, W. How to encourage farmers to digitize? A study on user typologies and motivations of farm management information systems. Comput. Electron. Agric. 2022, 199, 107133. [Google Scholar] [CrossRef]
- Gabriel, A.; Gandorfer, M. Adoption of digital technologies in agriculture—An inventory in a european small-scale farming region. Precis. Agric. 2023, 24, 68–91. [Google Scholar] [CrossRef]
- Kvam, G.T.; Hårstad, R.M.B.; Stræte, E.P. The role of farmers’ microAKIS at different stages of uptake of digital technology. J. Agric. Educ. Ext. 2022, 28, 671–688. [Google Scholar] [CrossRef]
Perceptions of Adoption of Digital Technologies |
---|
Adoption of digital technologies can make farming easier |
I have adequate knowledge of digital technologies |
Use of digital technologies will be labour-saving |
Use of digital technologies improves agricultural production |
Through digital technologies smallholder farmers access information on time |
Through digital technologies farmers access extension services easily |
The use of digital technologies helps smallholder farmers to access the market |
It is easy to access farm loans through digital technologies |
Digital technologies are expensive compared to other agricultural innovations |
The use of agricultural digital technologies improved household income |
Digital technologies are user-friendly |
Digital technologies are complicated |
Digital technologies are the cause of the digital divide between smallholder and commercial farmers |
Unequal access to digital technologies exists among smallholders |
Digital technologies will discourage the use of Indigenous Knowledge and skills |
All the digital technologies are suitable for smallholder farms |
Use of digital technology will increase smallholder farmers’ farming output |
Use of digital technologies requires specific skills |
Variable | Explanation | Measurement | Expected Sign |
---|---|---|---|
Dependent | |||
PI | Perceptive Index | Truncated: 0 (negative)–1 (positive) | |
Independent | |||
GEN | Gender | Nominal: 0—male, 1—female | − |
AGE | Age (Years) | Nominal: 0—less than 40 years, 1—otherwise | − |
MARST | Marital status | Nominal: 0—married, 1—not married | − |
EDU | Education level | Nominal: 0—none, 1—otherwise | + |
EMPL | Employment status | Nominal: 0—full-time farmer, 1—part-time farmer | − |
SOUINC | Source of income | Nominal 0—social grant, 1—otherwise | +/− |
MI | Monthly income (ZAR) | Nominal: 0—less than 1000, 1—otherwise | + |
HHS | Household size | Nominal: 0—up to 5, 1—otherwise | +/− |
FEN | Farming enterprise | Nominal: 0—crop production, 1—otherwise | +/− |
TEN | Tenure | Nominal: 0—communal, 1—leased | + |
FEX | Farming experience (Years) | Nominal: 0—less than 5 years, 1—otherwise | + |
TR | Training | Nominal: 0—yes, 1—no | − |
COOP | Part of cooperative member | Nominal: 0—yes, 1—no | − |
p-Value | |||||
---|---|---|---|---|---|
Maize | Production | 2.61 | 0.09 | 0.11 | 0.27 |
Land size | 5.40 | −0.10 | 0.11 | 0.49 | |
Sale | 17.89 | −0.25 | 0.26 | 0.12 | |
Consumption | 6.86 | −0.08 | 0.13 | 0.33 | |
Cabbage | Production | 4.02 | 0.15 | 0.17 | 0.13 |
Land size | 1.92 | −0.04 | 0.08 | 0.75 | |
Sale | 10.13 | 0.16 | 0.27 | 0.12 | |
Consumption | 8.50 | −0.16 | 0.17 | 0.20 | |
Livestock kept | 35.93 *** | 0.19 | 0.36 | 0.00 | |
Total land size for crop and vegetables | 14.88 ** | 0.14 | 0.18 | 0.02 | |
Total land size for livestock | 2.48 | −0.13 | 0.13 | 0.29 | |
Tenure of agricultural land | 5.51 | −0.03 | 0.15 | 0.06 |
Variable | ||||
---|---|---|---|---|
Gender | 0.55 | 1.47 | 0.35 | 0.66 |
Age | −1.24 ** | 0.79 | −1.65 | 0.03 |
Marital status | −0.59 | 0.90 | −0.72 | 0.50 |
Education level | −3.22 *** | 0.95 | −3.13 | 0.01 |
Employment status | −1.74 ** | 0.54 | −2.97 | 0.04 |
Source of income | 0.93 * | 0.50 | 1.96 | 0.09 |
Monthly income | 2.99 * | 1.13 | 2.83 | 0.07 |
Household size | −2.96 * | 0.98 | −2.79 | 0.08 |
Farming enterprise | 0.74 | 0.71 | 1.00 | 0.26 |
Tenure | −5.21 | 3.26 | −1.59 | 0.14 |
Farming experience | −1.03 | 1.28 | −0.84 | 0.44 |
Training | −0.44 | 0.50 | −0.70 | 0.45 |
Part of cooperative member | −4.14 ** | 1.42 | −2.85 | 0.04 |
Constant | 78.91 | 4.80 | 18.33 | 0.03 |
Summary statistics | ||||
Sigma | 15.43 | 0.62 | ||
45.45 | ||||
0.00 | ||||
0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bontsa, N.V.; Mushunje, A.; Ngarava, S. Factors Influencing the Perceptions of Smallholder Farmers towards Adoption of Digital Technologies in Eastern Cape Province, South Africa. Agriculture 2023, 13, 1471. https://doi.org/10.3390/agriculture13081471
Bontsa NV, Mushunje A, Ngarava S. Factors Influencing the Perceptions of Smallholder Farmers towards Adoption of Digital Technologies in Eastern Cape Province, South Africa. Agriculture. 2023; 13(8):1471. https://doi.org/10.3390/agriculture13081471
Chicago/Turabian StyleBontsa, Nasiphi Vusokazi, Abbyssinia Mushunje, and Saul Ngarava. 2023. "Factors Influencing the Perceptions of Smallholder Farmers towards Adoption of Digital Technologies in Eastern Cape Province, South Africa" Agriculture 13, no. 8: 1471. https://doi.org/10.3390/agriculture13081471
APA StyleBontsa, N. V., Mushunje, A., & Ngarava, S. (2023). Factors Influencing the Perceptions of Smallholder Farmers towards Adoption of Digital Technologies in Eastern Cape Province, South Africa. Agriculture, 13(8), 1471. https://doi.org/10.3390/agriculture13081471