Mixed Use of Chemical Pesticides and Biopesticides among Rice–Crayfish Integrated System Farmers in China: A Multivariate Probit Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rice–Crayfish Integrated Systems in China
2.2. Differences between Chemical Pesticides and Biopesticides
2.3. Survey Data
2.4. Model and Variables
3. Results and Discussion
3.1. Farmers’ Mixed Use of Chemical Pesticides and Biopesticides
3.2. Relationship between Biopesticides and Chemical Pesticides Adoption and Their Influencing Factors
3.3. Farmers’ Concerns for Pesticides Attribute and Application
3.4. Consequences of Farmers’ Mixed Use of Pesticides
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide Pesticide Usage and Its Impacts on Ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef] [Green Version]
- Pelosi, C.; Bertrand, C.; Daniele, G.; Coeurdassier, M.; Benoit, P.; Nélieu, S.; Lafay, F.; Bretagnolle, V.; Gaba, S.; Vulliet, E.; et al. Residues of Currently Used Pesticides in Soils and Earthworms: A Silent Threat? Agric. Ecosyst. Environ. 2021, 305, 107167. [Google Scholar] [CrossRef]
- Gould, F.; Brown, Z.S.; Kuzma, J. Wicked Evolution: Can We Address the Sociobiological Dilemma of Pesticide Resistance? Science 2018, 360, 728–732. [Google Scholar] [CrossRef] [Green Version]
- Lai, W. Pesticide Use and Health Outcomes: Evidence from Agricultural Water Pollution in China. J. Environ. Econ. Manag. 2017, 86, 93–120. [Google Scholar] [CrossRef]
- Li, H.; Yuan, K.; Cao, A.; Zhao, X.; Guo, L. The Role of Crop Insurance in Reducing Pesticide Use: Evidence from Rice Farmers in China. J. Environ. Manag. 2022, 306, 114456. [Google Scholar] [CrossRef]
- World Health Organization & Joint FAO/WHO Expert Committee on Food Additives. Evaluation of Certain Contaminants in Food: Eighty-Third Report of the Joint Fao/Who Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Abtew, A.; Niassy, S.; Affognon, H.; Subramanian, S.; Kreiter, S.; Garzia, G.T.; Martin, T. Farmers’ Knowledge and Perception of Grain Legume Pests and Their Management in the Eastern Province of Kenya. Crop Prot. 2016, 87, 90–97. [Google Scholar] [CrossRef]
- Ruiu, L. Microbial Biopesticides in Agroecosystems. Agronomy 2018, 8, 235. [Google Scholar] [CrossRef] [Green Version]
- Ayilara, M.S.; Adeleke, B.S.; Akinola, S.A.; Fayose, C.A.; Adeyemi, U.T.; Gbadegesin, L.A.; Omole, R.K.; Johnson, R.M.; Uthman, Q.O.; Babalola, O.O. Biopesticides as a Promising Alternative to Synthetic Pesticides: A Case for Microbial Pesticides, Phytopesticides, and Nanobiopesticides. Front. Microbiol. 2023, 14, 1040901. [Google Scholar] [CrossRef]
- Samada, L.H.; Tambunan, U.S.F. Biopesticides as Promising Alternatives to Chemical Pesticides: A Review of Their Current and Future Status. Online J. Biol. Sci 2020, 20, 66–76. [Google Scholar] [CrossRef]
- Hernandez-Tenorio, F.; Miranda, A.M.; Rodriguez, C.A.; Giraldo-Estrada, C.; Saez, A.A. Potential Strategies in the Biopesticide Formulations: A Bibliometric Analysis. Agronomy 2022, 12, 2665. [Google Scholar] [CrossRef]
- Pan, F.; Gao, L.-J.; Zhu, K.-H.; Du, G.-L.; Zhu, M.-M.; Zhao, L.; Gao, Y.-L.; Tu, X.-B.; Zhang, Z.-H. Regional Selection of Insecticides and Fungal Biopesticides to Control Aphids and Thrips and Improve the Forage Quality of Alfalfa Crops. J. Integr. Agric. 2023, 22, 185–194. [Google Scholar] [CrossRef]
- Chakraborty, N.; Mitra, R.; Pal, S.; Ganguly, R.; Acharya, K.; Minkina, T.S.A.; Keswani, C. Biopesticide Consumption in India: Insights into the Current Trends. Agriculture 2023, 13, 557. [Google Scholar] [CrossRef]
- Zheng, X.X.; Guo, J.W.; Jia, F.; Zhang, S.Y. Cooperative Game Theory Approach to Develop an Incentive Mechanism for Biopesticide Adoption through Farmer Producer Organizations. J. Environ. Manag. 2022, 319, 115696. [Google Scholar] [CrossRef]
- Mishra, J.; Dutta, V.; Arora, N.K. Biopesticides in India: Technology and Sustainability Linkages. 3 Biotech 2020, 10, 210. [Google Scholar] [CrossRef]
- Wang, X.J.; Chi, Y.; Li, F. Exploring China Stepping into the Dawn of Chemical Pesticide-Free Agriculture in 2050. Front. Plant Sci. 2022, 13, 942117. [Google Scholar] [CrossRef]
- Huang, Y.; Luo, X.; Li, Z. Substitution or Complementarity: Why Do Rice Farmers Use a Mix of Biopesticides and Chemical Pesticides in China? Pest. Manag. Sci. 2022, 78, 1630–1639. [Google Scholar] [CrossRef]
- Cheze, B.; David, M.; Martinet, V. Understanding Farmers’ Reluctance to Reduce Pesticide Use: A Choice Experiment. Ecol. Econ. 2020, 167, 106349. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, X. Short Supply Chain Participation, and Agrochemicals’ Use Intensity and Efficiency: Evidence from Vegetable Farms in China. China Agric. Econ. Rev. 2021, 13, 721–735. [Google Scholar] [CrossRef]
- Yang, M.; Zhao, X.; Meng, T. What Are the Driving Factors of Pesticide Overuse in Vegetable Production? Evidence from Chinese Farmers. China Agric. Econ. Rev. 2019, 11, 672–687. [Google Scholar] [CrossRef]
- Wang, C.; Liu, W. Farmers’ Attitudes Vs. Government Supervision: Which One Has a More Significant Impact on Farmers’ Pesticide Use in China? Int. J. Agric. Sustain. 2021, 19, 213–226. [Google Scholar] [CrossRef]
- Huang, Y.; Luo, X.; Liu, D.; Du, S.; Yan, A.; Tang, L. Pest Control Ability, Technical Guidance, and Pesticide Overuse: Evidence from Rice Farmers in Rural China. Environ. Sci. Pollut. Res. 2021, 28, 39587–39597. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Shi, R.L.; Peng, Y.T.; Wang, W.; Fu, X.H. Impacts of Technology Training Provided by Agricultural Cooperatives on Farmers’ Adoption of Biopesticides in China. Agriculture 2022, 12, 326. [Google Scholar] [CrossRef]
- Chowdhury, A.; Odame, H.H.; Thompson, S.; Hauser, M. Enhancing Farmers’ Capacity for Botanical Pesticide Innovation through Video-Mediated Learning in Bangladesh. Int. J. Agric. Sustain. 2015, 13, 326–349. [Google Scholar] [CrossRef]
- Muriithi, B.W.; Gathogo, N.; Rwomushana, I.; Diiro, G.; Mohamed Faris, S.; Khamis, F.; Tanga, C.; Ekesi, S. Farmers’ Knowledge and Perceptions on Fruit Flies and Willingness to Pay for a Fruit Fly Integrated Pest Management Strategy in Gamo Gofa Zone, Ethiopia. Int. J. Agric. Sustain. 2021, 19, 199–212. [Google Scholar] [CrossRef]
- Wuepper, D.; Roleff, N.; Finger, R. Does It Matter Who Advises Farmers? Pest Management Choices with Public and Private Extension. Food Policy 2021, 99, 101995. [Google Scholar] [CrossRef]
- Shishir, A.; Bhowmik, A.A.; Akanda, N.R.; Al Mamun, A.; Khan, S.N.; Hoq, M.M. Efficacy of Indigenous Bacillus Thuringiensis Strains for Controlling Major Vegetable Pests in Bangladesh. Egypt. J. Biol. Pest Control. 2015, 25, 729–734. Available online: https://www.proquest.com/scholarly-journals/efficacy-indigenous-bacillus-thuringiensis/docview/181868825/se-2 (accessed on 10 July 2023).
- Constantine, K.L.; Kansiime, M.K.; Mugambi, I.; Nunda, W.; Chacha, D.; Rware, H.M.F.; Mulema, J.; Lamontagne-Godwin, J.; Williams, F.; Edgington, S.; et al. Why Don’t Smallholder Farmers in Kenya Use More Biopesticides? Pest Manag. Sci. 2020, 76, 3615–3625. [Google Scholar] [CrossRef]
- Uribe-Gutierrez, L.; Moreno-Velandia, C.A.; Villamizar, L.F. Compatibility of a Biopesticide Based on the Yeast Rhodotorula Mucilaginosa (Lv316) with Chemical Fungicides Used in Blackberry Crops. Biocontrol 2022, 67, 89–100. [Google Scholar] [CrossRef]
- Mehrotra, S.; Kumar, S.; Zahid, M.; Garg, M. Biopesticides, in Principles and Applications of Environmental Biotechnology for a Sustainable Future; Springer: Singapore, 2017; pp. 273–292. [Google Scholar]
- Police, K.; Gautam, V.; Chandakavate, S.; Dwesar, R. Modeling Determinants of Farmers’ Purchase Behavior: A Case of Chemical Pesticides. Environ. Dev. Sustain. 2023. [Google Scholar] [CrossRef]
- Wu, L.; Hou, B. China’s Farmer Perception of Pesticide Residues and the Impact Factors: The Case of Jiangsu Province. China Agric. Econ. Rev. 2012, 4, 84–104. [Google Scholar] [CrossRef]
- Guthman, J. Going Both Ways: More Chemicals, More Organics, and the Significance of Land in Post-Methyl Bromide Fumigation Decisions for California’s Strawberry Industry. J. Rural. Stud. 2016, 47, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Hou, J.; Wang, X.; Xu, Q.; Cao, Y.; Zhang, D.; Zhu, J. Rice-Crayfish Systems Are Not a Panacea for Sustaining Cleaner Food Production. Environ. Sci. Pollut. Res. 2021, 28, 22913–22926. [Google Scholar] [CrossRef]
- Zhang, Z.; Du, L.; Xiao, Z.; Li, C.; Wang, Z.; Zhou, P.; Sun, G.; Ye, Y.; Hu, T.; Wang, H. Rice-Crayfish Farming Increases Soil Organic Carbon. Agric. Ecosyst. Environ. 2022, 329, 107857. [Google Scholar] [CrossRef]
- Si, G.; Yuan, J.; Xu, X.; Zhao, S.; Peng, C.; Wu, J.; Zhou, Z. Effects of an Integrated Rice-Crayfish Farming System on Soil Organic Carbon, Enzyme Activity, and Microbial Diversity in Waterlogged Paddy Soil. Acta Ecol. Sin. 2018, 38, 29–35. [Google Scholar] [CrossRef]
- Yu, J.; Ren, Y.; Xu, T.; Li, W.; Xiong, M.; Zhang, T.; Li, Z.; Liu, J. Physicochemical Water Quality Parameters in Typical Rice-Crayfish Integrated Systems (Rcis) in China. Int. J. Agric. Biol. Eng. 2018, 11, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Guo, Y.; Li, C.; Cao, C.; Yuan, P.; Zou, F.; Wang, J.; Jia, P.; Wang, J. Effects of Straw Returning and Feeding on Greenhouse Gas Emissions from Integrated Rice-Crayfish Farming in Jianghan Plain, China. Environ. Sci. Pollut. Res. 2019, 26, 11710–11718. [Google Scholar] [CrossRef]
- Liu, K.; Qi, D.; Zhu, J. Thinking on Sustainable Development of the Integrated Rice-Crayfish Farming System in China. Curr. Investig. Agric. Curr. Res. 2020, 8, 1100–1103. [Google Scholar] [CrossRef]
- Yuan, P.; Wang, J.; Chen, S.; Guo, Y.; Cao, C. Certified Rice–Crayfish as an Alternative Farming Modality in Waterlogged Land in the Jianghan Plain Region of China. Agron. J. 2021, 113, 4568–4580. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, P.; Chen, Y.; Chen, Z. Spatiotemporal Dynamics of Rice–Crayfish Field in Mid-China and Its Socioeconomic Benefits on Rural Revitalisation. Appl. Geogr. 2022, 139, 102636. [Google Scholar] [CrossRef]
- Sun, Q.; Khoshnevisan, B.; Zhu, J.; Wang, W.; Liu, Y.; Pan, J.; Fan, X.; Zhang, D.; Wu, M.; Liu, H. Comprehensive Assessment of Integrated Rice-Crayfish Farming System as a New Paradigm to Air-Water-Food Nexus Sustainability. J. Clean. Prod. 2022, 377, 134247. [Google Scholar] [CrossRef]
- Kumar, J.; Ramlal, A.; Mallick, D.; Mishra, V. An Overview of Some Biopesticides and Their Importance in Plant Protection for Commercial Acceptance. Plants 2021, 10, 1185. [Google Scholar] [CrossRef]
- Arthurs, S.; Dara, S.K. Microbial Biopesticides for Invertebrate Pests and Their Markets in the United States. J. Invertebr. Pathol. 2019, 165, 13–21. [Google Scholar] [CrossRef]
- Subbanna, A.R.N.S.; Stanley, J.; Venkateswarlu, V.; Chinna Babu Naik, V.; Khan, M.S. Toxicological Prospects on Joint Action of Microbial Insecticides and Chemical Pesticides. In Microbes for Sustainable Insect Pest Management: An Eco-Friendly Approach—Volume 1; Khan, M.A., Ahmad, W., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 317–340. [Google Scholar]
- Shankui, Y.; Yiyan, W.; Lihong, S.; Puguo, Z. Current Situation and Prospects of Biological Pesticides Related Standards in China. Chin. J. Biol. Control. 2018, 34, 1–7. [Google Scholar] [CrossRef]
- Cappellari, L.; Jenkins, S.P. Multivariate Probit Regression Using Simulated Maximum Likelihood. Stata J. 2003, 3, 278–294. [Google Scholar] [CrossRef] [Green Version]
- Greene, W.H. Econometric Analysis Fifth Edition Book; Macmillan: New York, NY, USA, 2002; pp. 931–933. [Google Scholar]
- Ehiakpor, D.S.; Danso-Abbeam, G.; Mubashiru, Y. Adoption of Interrelated Sustainable Agricultural Practices among Smallholder Farmers in Ghana. Land Use Policy 2021, 101, 105142. [Google Scholar] [CrossRef]
- Belderbos, R.; Carree, M.; Diederen, B.; Lokshin, B.; Veugelers, R. Heterogeneity in R&D Cooperation Strategies. Int. J. Ind. Organ. 2004, 22, 1237–1263. [Google Scholar] [CrossRef] [Green Version]
- Assaye, A.; Habte, E.; Sakurai, S. Adoption of Improved Rice Technologies in Major Rice Producing Areas of Ethiopia: A Multivariate Probit Approach. Agric. Food Secur. 2023, 12, 1–19. [Google Scholar] [CrossRef]
- Salazar, C.; Rand, J. Pesticide Use, Production Risk and Shocks. The Case of Rice Producers in Vietnam. J. Environ. Manag. 2020, 253, 109705. [Google Scholar] [CrossRef]
- Huang, Y.; Li, Z.; Luo, X.; Liu, D. Biopesticides Extension and Rice Farmers’ Adoption Behavior: A Survey from Rural Hubei Province, China. Environ. Sci. Pollut. Res. Int. 2022, 29, 51744–51757. [Google Scholar] [CrossRef]
- Lin, Y.; Hu, R.; Zhang, C.; Chen, K. Effect of Agricultural Extension Services in the Post-Reform Era since the Mid-2000s on Pesticide Use in China: Evidence from Rice Production. Int. J. Agric. Sustain. 2022, 20, 955–966. [Google Scholar] [CrossRef]
- Goeb, J.; Lupi, F. Showing Pesticides’ True Colors: The Effects of a Farmer-to-Farmer Training Program on Pesticide Knowledge. J. Environ. Manag. 2021, 279, 111821. [Google Scholar] [CrossRef]
- Bagheri, A.; Emami, N.; Damalas, C.A.; Allahyari, M.S. Farmers’ Knowledge, Attitudes, and Perceptions of Pesticide Use in Apple Farms of Northern Iran: Impact on Safety Behavior. Environ. Sci. Pollut. Res. 2019, 26, 9343–9351. [Google Scholar] [CrossRef]
- Schreinemachers, P.; Grovermann, C.; Praneetvatakul, S.; Heng, P.; Nguyen, T.T.L.; Buntong, B.; Le, N.T.; Pinn, T. How Much Is Too Much? Quantifying Pesticide Overuse in Vegetable Production in Southeast Asia. J. Clean. Prod. 2020, 244, 118738. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Yu, J.; Yao, X. Toward Cleaner Production: What Drives Farmers to Adopt Eco-Friendly Agricultural Production? J. Clean. Prod. 2018, 184, 550–558. [Google Scholar] [CrossRef]
- Gao, J.; Gai, Q.; Liu, B.; Shi, Q. Farm Size and Pesticide Use: Evidence from Agricultural Production in China. China Agric. Econ. Rev. 2021, 13, 912–929. [Google Scholar] [CrossRef]
- Yang, X.; Wyckhuys, K.A.G.; Jia, X.; Nie, F.; Wu, K. Fall Armyworm Invasion Heightens Pesticide Expenditure among Chinese Smallholder Farmers. J. Environ. Manag. 2021, 282, 111949. [Google Scholar] [CrossRef]
- World Development Report 2008: Agriculture for Development; World Development Report; The World Bank: Washington, DC, USA, 2007; p. 155.
- Li, H.; Kadzamira, M.A.T.J.; Ogunmodede, A.; Finch, E.; Zhu, J.; Romney, D.; Luke, B. Lessons Learned and Challenges of Biopesticide Usage for Locust Management—The Case of China. Sustainability 2023, 15, 6193. [Google Scholar] [CrossRef]
- Wang, W.Y.; Jin, J.J.; He, R.; Gong, H.Z. Gender Differences in Pesticide Use Knowledge, Risk Awareness and Practices in Chinese Farmers. Sci. Total Environ. 2017, 590, 22–28. [Google Scholar] [CrossRef]
- Liu, R.X.; Hou, B.; Sun, P.; Li, H.; Wang, J.H. Vegetable Farmers’ Use Intention Towards Biopesticides and Its Influencing Factors: Based on the Survey in Jiangsu Province, China. Carpathian J. Food Sci. Technol. 2016, 8, 14–22. [Google Scholar]
- Cavados, C.; Tadei, W.; Roque, R.; Regis, L.; Oliveira, C.; Gil, H.; Araujo-Coutinho, C. Bacillus Entomopathogenic Based Biopesticides in Vector Control Programs in Brazil. In Bacillus Entomopathogenic Based Biopesticides in Vector Control Programs in Brazil; Springer International Publishing: Cham, Switzerland, 2017; pp. 185–190. [Google Scholar] [CrossRef]
- Lacey, L.A. Chapter 1—Entomopathogens Used as Microbial Control Agents, in Microbial Control of Insect and Mite Pests; Lacey, L.A., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 3–12. [Google Scholar]
- Hu, Z.; Rahman, S. Beyond a Bottle of Liquid: Pesticide Dependence in Transitional Rural China. Local Environ. 2016, 21, 919–938. [Google Scholar] [CrossRef] [Green Version]
- Bagheri, A.; Emami, N.; Damalas, C.A. Farmers’ Behavior in Reading and Using Risk Information Displayed on Pesticide Labels: A Test with the Theory of Planned Behavior. Pest. Manag. Sci. 2021, 77, 2903–2913. [Google Scholar] [CrossRef]
- Srinivasan, R.; Sevgan, S.; Ekesi, S.; Tamò, M. Biopesticide Based Sustainable Pest Management for Safer Production of Vegetable Legumes and Brassicas in Asia and Africa. Pest. Manag. Sci. 2019, 75, 2446–2454. [Google Scholar] [CrossRef]
- Dunn, L.; Latty, T.; Van Ogtrop, F.F.; Tan, D.K. Cambodian Rice Farmers’ Knowledge, Attitudes, and Practices (Kaps) Regarding Insect Pest Management and Pesticide Use. Int. J. Agric. Sustain. 2023, 21, 2178804. [Google Scholar] [CrossRef]
- Kansiime, M.K.; Rwomushana, I.; Mugambi, I.; Makale, F.; Lamontagne-Godwin, J.; Chacha, D.; Kibwage, P.; Oluyali, J.; Day, R. Crop Losses and Economic Impact Associated with Papaya Mealybug (Paracoccus marginatus) Infestation in Kenya. Int. J. Pest Manag. 2020, 69, 150–163. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, X.; Tian, X.; Geng, X.; Zhou, Y. Farm Size, Inefficiency, and Rice Production Cost in China. J. Product. Anal. 2019, 52, 57–68. [Google Scholar] [CrossRef]
- Owusu, V.; Abdulai, A. Examining the Economic Impacts of Integrated Pest Management among Vegetable Farmers in Southern Ghana. J. Environ. Plann. Manag. 2019, 62, 1886–1907. [Google Scholar] [CrossRef]
- Thapa, S.; Piras, G.; Thapa, S.; Goswami, A.; Bhandari, P.; Dahal, B. Study on Farmers’ Pest Management Strategy, Knowledge on Pesticide Safety and Practice of Pesticide Use at Bhaktapur District, Nepal. Cogent Food Agric. 2021, 7, 1916168. [Google Scholar] [CrossRef]
- Abdollahdokht, D.; Gao, Y.; Faramarz, S.; Poustforoosh, A.; Abbasi, M.; Asadikaram, G.; Nematollahi, M.H. Conventional Agrochemicals Towards Nano-Biopesticides: An Overview on Recent Advances. Chem. Biol. Technol. Agric. 2022, 9, 13. [Google Scholar] [CrossRef]
- Bell, A.; Zhang, W.; Nou, K. Pesticide Use and Cooperative Management of Natural Enemy Habitat in a Framed Field Experiment. Agric. Syst. 2016, 143, 1–13. [Google Scholar] [CrossRef]
- Petrescu-Mag, R.M.; Banatean-Dunea, I.; Vesa, S.C.; Copacinschi, S.; Petrescu, D.C. What Do Romanian Farmers Think About the Effects of Pesticides? Perceptions and Willingness to Pay for Bio-Pesticides. Sustainability 2019, 11, 3628. [Google Scholar] [CrossRef] [Green Version]
- Paudel, S.; Sah, L.P.; Devkota, M.; Poudyal, V.; Prasad, P.V.; Reyes, M.R. Conservation Agriculture and Integrated Pest Management Practices Improve Yield and Income While Reducing Labor, Pests, Diseases and Chemical Pesticide Use in Smallholder Vegetable Farms in Nepal. Sustainability 2020, 12, 6418. [Google Scholar] [CrossRef]
Attributes | Chemical Pesticides | Biopesticides |
---|---|---|
Broader spectrum | ☑ | ☐ |
Faster efficacy | ☑ | ☐ |
More convenient to implement | ☑ | ☐ |
High chance to cause pest resistance | ☑ | ☐ |
More environmentally friendly | ☐ | ☑ |
Lower costs for producing | ☑ | ☐ |
Less toxic to the human body | ☐ | ☑ |
Variable | Description | Mean | Std Dev. |
---|---|---|---|
Biopesticides use | Whether use biopesticides: 0 = no, 1 = yes | 0.248 | 0.432 |
Chemical pesticides use | Whether use chemical pesticides: 0 = no, 1 = yes | 0.826 | 0.379 |
Age | Age of household head (year) | 54.83 | 8.896 |
Education | Education level of household head (year) | 7.999 | 2.700 |
Risk preference | Attitude toward risk, range [0, 1] | 0.369 | 0.382 |
Experience | Years of engagement in rice–crayfish integrated system | 4.420 | 2.360 |
Agricultural extension | Participation in agricultural extension trainings (times) | 1.956 | 2.191 |
Food safety perception | Concern for food safety: Likert 1–5 points, 1 = very unimportant, 5 = very important | 3.135 | 0.894 |
Environmental perception | Aware about environmental protection: Likert 1–5 points, 1 = very unimportant, 5 = very important | 3.735 | 0.835 |
Farm size | Household’s total farmland (hectare) | 2.356 | 2.695 |
Agricultural income | Proportion of agricultural income to the total family income (%) | 0.538 | 0.307 |
Financial status | Proportion of owned finance to the total investment in 2020 (%) | 93.15 | 18.91 |
Agricultural labor | Household agricultural labor (person) | 1.937 | 0.592 |
Cooperative membership | Whether join any agricultural cooperation: 0 = no, 1 = yes | 0.226 | 0.419 |
Pest outbreak | Whether experienced pest outbreak in 2020: 0 = no, 1 = yes | 0.283 | 0.451 |
Land contiguous condition | Farmland operation in continues area: 0 = no, 1 = yes | 0.413 | 0.493 |
Jingzhou city | The sample RCIS farmer in Jingzhou city: 0 = no, 1 = yes | 0.655 | 0.476 |
Model (1) | Model (2) | Model (3) | Model (4) | ||||
---|---|---|---|---|---|---|---|
Bio | Chemical | Bio | Chemical | Bio | Chemical | Both Type | |
Coeff (S.E) | Coeff (S.E) | Coeff (S.E) | Coeff (S.E) | Coeff (S.E) | Coeff (S.E) | Coeff (S.E) | |
Farm size | −0.091 *** (0.032) | 0.088 *** (0.033) | −0.069 ** (0.033) | ||||
Age | −0.006 (0.007) | 0.006 (0.007) | −0.009 (0.009) | 0.007 (0.008) | 0.002 (0.012) | 0.019 (0.013) | −0.007 (0.007) |
Education | 0.039 * (0.022) | 0.009 (0.023) | 0.058 ** (0.026) | 0.021 (0.027) | 0.006 (0.041) | −0.013 (0.039) | 0.004 (0.023) |
Risk preference | −0.031 (0.158) | 0.109 (0.162) | −0.112 (0.197) | 0.101 (0.184) | −0.071 (0.272) | 0.353 (0.298) | −0.028 (0.172) |
Experience | 0.029 (0.023) | −0.042 * (0.023) | 0.000 (0.034) | −0.028 (0.031) | 0.021 (0.033) | −0.039 (0.035) | 0.035 (0.022) |
Agricultural extension | 0.059 ** (0.026) | −0.011 (0.027) | 0.096 *** (0.034) | −0.018 (0.034) | 0.009 (0.040) | −0.016 (0.042) | 0.032 (0.026) |
Environmental perception | −0.001 (0.076) | −0.030 (0.082) | −0.124 (0.105) | 0.095 (0.096) | 0.154 (0.119) | −0.266 ** (0.127) | 0.042 (0.082) |
Food safety perception | 0.187 *** (0.069) | −0.004 (0.071) | 0.205 ** (0.089) | −0.016 (0.078) | 0.130 (0.127) | 0.040 (0.153) | 0.078 (0.073) |
Agricultural income | 0.047 (0.195) | 0.254 (0.218) | −0.121 (0.235) | 0.238 (0.236) | 0.355 (0.396) | 0.899 ** (0.443) | −0.273 (0.220) |
Financial status | −0.003 (0.003) | 0.002 (0.003) | −0.006 (0.004) | 0.001 (0.004) | 0.001 (0.005) | 0.002 (0.005) | −0.005 (0.003) |
Agricultural labor | −0.080 (0.090) | 0.115 (0.097) | −0.067 (0.108) | 0.092 (0.103) | −0.102 (0.166) | 0.526 *** (0.201) | −0.047 (0.096) |
Cooperative membership | −0.370 ** (0.153) | 0.135 (0.149) | −0.202 (0.199) | 0.080 (0.190) | −0.467 ** (0.234) | 0.306 (0.256) | −0.078 (0.153) |
Pest outbreak | 0.236 * (0.131) | −0.153 (0.132) | 0.309 * (0.162) | −0.122 (0.149) | 0.072 (0.234) | −0.201 (0.277) | 0.195 (0.137) |
Land condition | 0.021 (0.119) | 0.250 ** (0.124) | −0.060 (0.143) | 0.314 ** (0.147) | 0.058 (0.214) | 0.094 (0.218) | −0.103 (0.129) |
Jingzhou city | −1.488 *** (0.124) | 0.760 *** (0.124) | −1.744 *** (0.155) | 0.760 *** (0.151) | −1.015 *** (0.203) | 0.711 *** (0.229) | −0.772 *** (0.123) |
Constant | −0.098 (0.658) | −0.400 (0.750) | 0.821 (0.829) | −0.829 (0.837) | −1.638 (1.116) | −1.080 (1.336) | −0.102 (0.688) |
Log pseudolikelihood | −532.828 | −365.458 | −146.229 | −272.844 | |||
Wald test | 201.459 | 174.449 | 54.080 | 50.417 | |||
−0.822 (0.041) | −0.801 (0.052) | −0.905 (0.034) | |||||
N | 736 | 499 | 237 | 736 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Qi, Z.; Tan, L.; Yang, C.; Hu, C. Mixed Use of Chemical Pesticides and Biopesticides among Rice–Crayfish Integrated System Farmers in China: A Multivariate Probit Approach. Agriculture 2023, 13, 1590. https://doi.org/10.3390/agriculture13081590
Liu K, Qi Z, Tan L, Yang C, Hu C. Mixed Use of Chemical Pesticides and Biopesticides among Rice–Crayfish Integrated System Farmers in China: A Multivariate Probit Approach. Agriculture. 2023; 13(8):1590. https://doi.org/10.3390/agriculture13081590
Chicago/Turabian StyleLiu, Ke, Zhenhong Qi, Li Tan, Caiyan Yang, and Canwei Hu. 2023. "Mixed Use of Chemical Pesticides and Biopesticides among Rice–Crayfish Integrated System Farmers in China: A Multivariate Probit Approach" Agriculture 13, no. 8: 1590. https://doi.org/10.3390/agriculture13081590
APA StyleLiu, K., Qi, Z., Tan, L., Yang, C., & Hu, C. (2023). Mixed Use of Chemical Pesticides and Biopesticides among Rice–Crayfish Integrated System Farmers in China: A Multivariate Probit Approach. Agriculture, 13(8), 1590. https://doi.org/10.3390/agriculture13081590