Experimental Field Tests of the Suitability of a New Seeder for the Soils of Northern Kazakhstan
Abstract
:1. Introduction
2. Materials and Methods
- -
- Based upon theoretical studies of the technological process of the proposed seeding unit, the analytical relationships of seed movement at various stages in the seeding unit were obtained. This analysis facilitated the identification of optimal values of the technological and design parameters of the device. Those values ensured high-quality non-flowing grass seed sowing based on the following: the height of the tedder should be from 6 to 8 mm;
- -
- the angle of the vertical blades from 8 to 10°;
- -
- the angle of the vector radius from 10 to 15°; and
- -
- the helix angle α must not exceed 17° and the radius must be within 0.02 m.
- the lifting height of the coulters was assumed to be equal to the maximum seeding depth plus 6 to 7 cm for adaptation to the field topography; and
- the force on the lever for lifting and moving coulters to the working position must not exceed 196.2 N.
- the disc diameter at 350 mm;
- the angle between the discs at α = 10°;
- the disc vanishing point position at β = 40°;
- the coulter angle at γ = 32°; and
- the packer roller at a diameter of 320 mm and a rim width of 60 mm.
- the experimental seeder sowing capacity was 8 to 30 kg/ha;
- the uneven seeding rate was 4.6% for wheatgrass and 4.8% for awnless bromegrass;
- the total seeding instability was 2.9% for wheatgrass and 2.7% for awnless bromegrass; and
- seed crushing was 0.1%.
3. Results and Discussion
4. Conclusions
- The germinating capacity of Burabay wheat grass seeds on the plot sown by the experimental seeder was 3.56% higher than the germinating capacity of seeds on the control plot. The improvement of grass seed germination was caused by the high quality of the experimental seeding unit and the seeding part of the prototype seeder.
- The experimental seeder outperformed the standard one by 4.95% in sowing wheat grass in terms of uniform seed placement depth.
- The yield increased by 5.361 kg/ha on the test plot sown with a non-drifted grass seed drill compared to the control plot.
- The traction resistance of the experimental seeder was 12.3% lower than that of the series seeder.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smailov, A. In 2023, the State Plans to Withdraw 5 Million Hectares of Unused Agricultural Land. Available online: https://primeminister.kz/ru/news/v-2023-godu-gosudarstvo-planiruet-izyat-5-mln-ga-neispolzuemyh-selhozzemel-1702730 (accessed on 15 June 2023).
- Alexandratos, N.; Bruinsma, J.; Boedeker, G.; Schmidhuber, J.; Broca, S.; Shetty, P.; Ottaviani, M.G. World Agriculture: Towards 2030/2050; FAO: Rome, Italy, 2006; p. 147.
- Alhassan, W.S.; Barnes, P. Problems and Prospects for Forage Production and Utilisation in Ghana. In Proceedings of the XVII International Grassland Congress, Palmerston North, New Zealand, Rockhampton, Australia, 8–21 February 1993. [Google Scholar]
- Armstrong, K.; de Ruiter, J.; Bezar, H. Fodder Oats in New Zealand and Australia—History, Production and Potential. Fodd. Oats World Overv. 2004, 33, 153–177. [Google Scholar]
- Barnes, R.F.; Nelson, C.J.; Moore, K.J.; Collins, M. Forages, The Science of Grassland Agriculture; Blackwell Publishing: Ames, IA, USA; Oxford, UK, 2007; p. 808. [Google Scholar] [CrossRef]
- Franco, W.; Barbera, F.; Bartolucci, L.; Felizia, T.; Focanti, F. Erratum to Developing Intermediate Machines for High-Land Agriculture. Dev. Eng. 2021, 6, 100084. [Google Scholar] [CrossRef]
- Franco, W.; Anastasio, D.; Ferraresi, C.; Gondino, F.; Quaglia, G.; Soprana, L. A New Human Powered Press for Producing Straw Bales for Load Bearing Constructions (Anpilpay 2.0). Agric. Eng. Int. CIGR e-J. 2017, 19, 98–107. [Google Scholar]
- HE, J.; LI, H.; McHugh, A.; WANG, Q.; LI, H.; Rasaily, R.; Sarker, K. Seed Zone Properties and Crop Performance as Affected by Three No-Till Seeders for Permanent Raised Beds in Arid Northwest China. J. Integr. Agric. 2012, 11, 1654–1664. [Google Scholar] [CrossRef]
- Murray, J.R.; Tullberg, J.N.; Basnet, B.B. Planters and Their Components: Types, Attributes, Functional Requirements, Classification and Description; ACIAR Monograph: Canberra, Australia, 2006; p. 178.
- Serrano, J.; Peça, J.; Pinheiro, A.; Carvalho, M.; Nunes, M.; Ribeiro, L.; Santos, F. The Effect of Gang Angle of Offset Disc Harrows on Soil Tilth, Work Rate and Fuel Consumption. Biosyst. Eng. 2003, 84, 171–176. [Google Scholar] [CrossRef]
- Vamerali, T.; Bertocco, M.; Sartori, L. Effects of a New Wide-Sweep Opener for No-till Planter on Seed Zone Properties and Root Establishment in Maize (Zea mays, L.): A Comparison with Double-Disk Opener. Soil Tillage Res. 2006, 89, 196–209. [Google Scholar] [CrossRef]
- Zhu, G.; Li, W.; He, J. Design and Experiment on 2BFML5 No-till Planter for Permanent Raised Bed. Trans. Chin. Soc. Agric. Mach. 2008, 39, 51–54. [Google Scholar]
- Sysuev, V.; Demshin, S.; Cheremisinov, D.; Doronin, M. Theoretical Justification of the Main Parameters of the Coulter Group of the Sod Seeder for Strip Sowing. Agric. Sci. Euro-North-East 2020, 21, 321–331. [Google Scholar] [CrossRef]
- Sysuev, V.; Demshin, S.; Doronin, M. Method of Seeding Grass Seeds into Sod and Seeding Machine for Its Implementation. Patent of the Russian Federation 2641073, 15 January 2018. [Google Scholar]
- Zaitsev, A.; Solodun, V.; Gorbunova, M. Comparative Evaluation of Seeding Spring Wheat Methods When Using Different Types of Coulters. IOP Conf. Ser. Earth Environ. Sci. 2020, 421, 062017. [Google Scholar] [CrossRef]
- Tessier, S.; Saxton, K.E.; Papendick, R.I.; Hyde, G.M. Zero-Tillage Furrow Opener Effects on Seed Environment and Wheat Emergence. Soil Tillage Res. 1991, 21, 347–360. [Google Scholar] [CrossRef]
- Arifa, W.; Oleh, H. Production Tests of a Seed Drill CPH 2000 for Direct Sowing. Inmateh-Agric. Eng. 2018, 56, 31–38. [Google Scholar]
- Besharati, B.; Navid, H.; Karimi, H.; Behfar, H.; Eskandari, I. Development of an Infrared Seed-Sensing System to Estimate Flow Rates Based on Physical Properties of Seeds. Comput. Electron. Agric. 2019, 162, 874–881. [Google Scholar] [CrossRef]
- Dhir, D.K.; Rajan, P.; Verma, S. Seed Drill Discharge Rate Variation Due to Varietal Differences Using an Automated Calibration Test Rig. AMA Agric. Mech. Asia Afr. Lat. Am. 2019, 50, 43–47. [Google Scholar]
- Hayes, R.C.; Newell, M.; Pembleton, K.; Peoples, M.; Li, G. Sowing Configuration Affects Competition and Persistence of Lucerne (Medicago Sativa) in Mixed Pasture Swards. Crop Pasture Sci. 2021, 72, 707–722. [Google Scholar] [CrossRef]
- Aduov, M.; Nukusheva, S.; Esenalikaspakov, E.; Kazbekisenov, K.; Volodya, K. Analysing the Results Field Tests of an Experimental Seeder with Separate Introduction of Seeds and Fertilizers. Int. J. Mech. Prod. Eng. Res. Dev. 2019, 9, 589–598. [Google Scholar] [CrossRef]
- Aduov, M.A.; Kapov, S.N.; Matyushkov, M.I.; Nukusheva, S.A.; Kaspakov, E.Z.; Kusainov, R.K.; Volodya, K.; Rakhimzhanov, M.R.; Soroka, A.A. A Sowing Machine. Patent of the Republic of Kazakhstan 30503, 16 November 2015. [Google Scholar]
- Aduov, M.; Nukusheva, S.; Kaspakov, E.; Isenov, K.; Volodya, K.; Tulegenov, T. Seed Drills with Combined Coulters in No-till Technology in Soil and Climate Zone Conditions of Kazakhstan. Acta Agric. Sect. B-Soil Plant Sci. 2020, 70, 525–531. [Google Scholar] [CrossRef]
- Yurchenko, V.A. The Way to Create a Solid Food Base in Kazakhstan. Available online: https://kazakh-zerno.net/112038-put-sozdaniya-prochnoj-kormovoj-bazy-v-kazakhstane/ (accessed on 15 June 2023).
- Hayes, R.C.; Li, G.; Sandral, G.; Swan, T.; Price, A.; Hildebrand, S.; Goward, L.; Fuller, C.; Peoples, M. Enhancing Composition and Persistence of Mixed Pasture Swards in Southern New South Wales through Alternative Spatial Configurations and Improved Legume Performance. Crop Pasture Sci. 2017, 68, 1112–1130. [Google Scholar] [CrossRef]
- Verma, A.K.; Pandey, M.K. Automatic Seed Cum Fertilizer Drill: Modification and Performance Evaluation for Intercropping. AMA Agric. Mech. Asia Afr. Lat. Am. 2019, 50, 44–48. [Google Scholar]
- Cheema, M.J.; Nauman, M.; Ghafoor, A.; Farooque, A.; Haydar, Z.; Ashraf, M.U.; Awais, M. Direct Seeding of Basmati Rice through Improved Drills: Potential and Constraints in Pakistani Farm Settings. Trans. ASABE (Am. Soc. Agric. Biol. Eng.) 2021, 37, 53–63. [Google Scholar] [CrossRef]
- Derevjanko, D.; Holovach, I.; Bulgakov, V.; Ihnatiev, Y.; Nozdrovický, L. Mathematical Model of Uniform Cereal Crops Seeding Using a Double-Disk Coulter. Acta Technol. 2020, 23, 195–200. [Google Scholar] [CrossRef]
- Gumarov, G.; Konovalov, V.; Sarsenov, A.; Kubasheva, Z.; Rakhimov, A. Mathematical Modelling of Traction Resistance of the Improved Opener of Grain Seeder. BIO Web Conf. 2020, 17, 00044. [Google Scholar] [CrossRef]
- Jamil, M.; Hussain, S.S.; Qureshi, M.A.; Mehdi, S.M.; Nawaz, M.; Javed, Q. Rice Yield Improvement through Various Direct Seeding Techniques on Moderately Salt Affected Soil. J. Anim. Plant Sci. 2017, 27, 848–854. [Google Scholar]
- Liu, W.; Zhao, X.; Pan, H.; Lakhiar, I.; Wang, W.; Jianping, H. Development and Experimental Analysis of an Intelligent Sensor for Monitoring Seed Flow Rate Based on a Seed Flow Reconstruction Technique. Comput. Electron. Agric. 2019, 164, 104899. [Google Scholar] [CrossRef]
- Rafiq, M.; Ahmad, R.; Jabbar, A.; Munir, H.; Hussain, M. Influence of Different No-till Techniques at Varying Heights of Standing Rice Stubbles on the Wheat Performance. Int. J. Agric. Biol. 2017, 19, 410–416. [Google Scholar] [CrossRef]
- Singh, S.; Singh, M.; Ekka, U.; Singh, M.K. E-Powered Multi-Purpose Two-Row Seeder for Smallholders. Indian J. Agric. Sci. 2019, 89, 2091–2096. [Google Scholar] [CrossRef]
- Yatskul, A.; Lemiere, J.-P.; Cointault, F. Influence of the Divider Head Functioning Conditions and Geometry on the Seed’s Distribution Accuracy of the Air-Seeder. Biosyst. Eng. 2017, 161, 120–134. [Google Scholar] [CrossRef]
- Kushwaha, H.; Dass, A.; Khura, T.; Sahoo, P.K.; Singh, K.; Mani, I. Design, Development and Performance Evaluation of Manual Planter for System of Wheat Intensification. Indian J. Agric. Sci. 2019, 89, 678–687. [Google Scholar] [CrossRef]
- Shambhu, V. Design and Development of Low Cost Multi-Row Manual Jute Seed Drill. Ama-Agric. Mech. Asia Afr. Lat. Am. 2020, 51, 46–51. [Google Scholar]
- Shambhu, V.; Thakur, A. Laboratory and Field Performance of Manual Seed Drill for Sowing Jute and Tiny Seeds. Indian J. Agric. Sci. 2019, 89, 129–132. [Google Scholar] [CrossRef]
- Jamil, M.; Hussain, S.S.; Qureshi, M.A.; Mehdi, S.M.; Nawaz, M. Impact of Sowing Techniques and Nitrogen Fertilization on Castor Bean Yield in Salt Affected Soils. J. Anim. Plant Sci. 2017, 27, 451–456. [Google Scholar]
- Kuş, E.; Yildirim, Y. Effects of Seed Drop Height and Tillage System on the Emergence Time and Rate in the Single Seed Planters. Alinteri J. Agric. 2020, 35, 69–76. [Google Scholar] [CrossRef]
- Manea, D.; Marin, E.; Mateescu, M.; Dumitraşcu, A. Theoretical and Experimental Research on Sowing Rate Optimization of Grassland Drills. E3S Web Conf. 2019, 112, 03003. [Google Scholar] [CrossRef]
- Riegler-Nurscher, P.; Karner, J.; Huber, J.; Moitzi, G.; Wagentristl, H.; Hofinger, M.; Prankl, H. A System for Online Control of a Rotary Harrow Using Soil Nurscher, Roughness Detection Based on Stereo Vision. AgEng 2017, 1, 559–566. [Google Scholar]
- Wang, B.; Luo, X.; Wang, Z.; Zheng, L.; Zhang, M.; Dai, Y.; Xing, H. Design and Field Evaluation of Hill-Drop Pneumatic Central Cylinder Direct-Seeding Machine for Hybrid Rice. Int. J. Agric. Biol. Eng. 2018, 11, 33–40. [Google Scholar] [CrossRef]
- Aduov, M.A.; Nukusheva, S.A.; Kaspakov, E.Z.; Volodya, K.; Tulegenov, T.K.; Isenov, K.G. Grass Seeder. Patent of the Republic of Kazakhstan 35326, 22 October 2021. [Google Scholar]
- The Development of Animal Husbandry in Kazakhstan Is Hindered by Insufficient Feed Supply. Available online: https://dairynews.today/kz/news/razvitie-zhivotnovodstva-v-kazakhstane-tormozit-ne.html (accessed on 15 June 2023).
- On Approval of the State Program for the Development of the Agro-Industrial Complex of the Republic of Kazakhstan for 2017–2021. Available online: https://adilet.zan.kz/rus/docs/U1700000420 (accessed on 15 June 2023).
- Kurach, A.A.; Amantayev, M.A. To Set up a Seeder—To Get a Harvest. Available online: https://agroinfo.kz/naladit-seyalku-poluchit-urozhaj/ (accessed on 15 June 2023).
- Latyshev, N. Soybeans in Northern Kazakhstan. Available online: https://agrosektor.kz/assets/files/archive/40_06_19.pdf (accessed on 15 June 2023).
- Semenikhina, Y.A. Improving the Quality of Sowing Seeds of Fodder Grasses with a Vibro Discrete Seeding System. 2013. Available online: https://www.dissercat.com/content/povyshenie-kachestva-vyseva-semyan-kormovykh-trav-vibrodiskretnoi-vysevayushchei-sistemoi (accessed on 18 August 2023).
- Arslanov, M.A. Design Parameters of the Sowing Part of the Seeder for Sowing Non-Loose and Slightly Loose Grass Seeds in a Wide-Row Way. 2007. Available online: https://tekhnosfera.com/konstruktivnye-parametry-vysevayuschey-chasti-seyalki-dlya-poseva-nesypuchih-i-slabosypuchih-semyan-trav-shirokoryadnym-s (accessed on 18 August 2023).
Type of Seeder | The Type of the Crop | Number of Plants, pcs/m2 | Field Germination, % |
---|---|---|---|
Tractor HS1204 + seeder for sowing non-flowing grass seeds | wheatgrass variety “Burabay” | 295 | 90 |
awnless brome “Akmola emerald” | 331 | 89 | |
Tractor HS1204 + SZ-3.6 (Astra) | wheatgrass variety “Burabay” | 283.3 | 86.44 |
awnless brome “Akmola emerald” | 320.4 | 86.15 |
Name of Indicators | Experimental Seeder Sample | SZ-3.6 (Astra) | Experimental Seeder Sample | SZ-3.6 (Astra) |
---|---|---|---|---|
Culture | Wheatgrass Burabay | Wheatgrass Burabay | Awnless bromegrass Akmola emerald | Awnless bromegrass Akmola emerald |
Speed, km/h | 7.0 | 7.0 | 7.0 | 7.0 |
Seeding rate, kg/ha actual | 8.61 | 8.81 | 13.72 | 14 |
Sowing depth, cm | 4 | 4 | 4 | 4 |
Sowing depth: | ||||
(a) medium, cm | 4.11 | 4.07 | 4.08 | 4.04 |
(b) standard deviation, ±cm | 0.2 | 0.39 | 0.25 | 0.44 |
(c) variation coefficient, % | 4.81 | 9.76 | 6.06 | 10.95 |
(d) seeds sown in the average actual layer depth and two adjacent layers, % | 91 | 86 | 90 | 84.3 |
Seeds not sown into the soil, pieces/m2 | No. | No. | No. | No. |
Distributed plants: | ||||
(a) quantity of plants in a 5 cm section, pieces | 4.9 | 4.8 | 5.5 | 5.6 |
(b) standard deviation, ±pcs | 3.04 | 3.07 | 3.52 | 3.56 |
(c) variation coefficient, % | 62.0 | 68.6 | 64 | 69.2 |
Sprouted Plants, units/m2 | The Height of the Plant, cm | Green Matter Yield, kg/ha | |
---|---|---|---|
Seeder for non-flowing grass seed sowing | 293 | 85 | 52.989 |
295 | 81 | 50.840 | |
315 | 83 | 55.628 | |
319 | 86 | 58.370 | |
320 | 79 | 53.787 | |
308.4 | 82.8 | 54.323 | |
Seed drill SZ-3.6 (Astra) | 280 | 82 | 48.851 |
317 | 83 | 55.981 | |
316 | 77 | 51.770 | |
295 | 79 | 49.585 | |
308 | 76 | 49.804 | |
303.2 | 79.4 | 51.198 |
Sprouted Plants, pcs/m2 | The Height of the Plant, cm | Green Matter Yield, kg/ha | |
---|---|---|---|
Seeder for non-flowing grass seed sowing | 310 | 105 | 70.761 |
326 | 102 | 72.287 | |
290 | 103 | 64.935 | |
315 | 110 | 75.326 | |
324 | 108 | 76.070 | |
313.0 | 105.6 | 71.876 | |
Seed drill SZ-3.6 (Astra) | 270 | 95 | 55.761 |
305 | 102 | 67.630 | |
279 | 108 | 65.504 | |
290 | 102 | 64.304 | |
326 | 112 | 79.374 | |
294.0 | 103.8 | 66.515 |
Composition of the Unit | Sowing Depth, cm | Machine Speed, km/h | Theoretical Traction Resistance, kN | Traction Resistance, kN | Average Fuel Consumption, kg/hour | Average Slipping Ratio, % |
---|---|---|---|---|---|---|
HS1204 tractor with the experimental seeder | 2 | 5 | 3.11 | 3.1 | 13.88 | 19.37 |
7 | 3.13 | 3.15 | 13.75 | 22.12 | ||
9 | 3.26 | 3.4 | 13.67 | 24.78 | ||
3 | 5 | 3.39 | 3.5 | 13.96 | 19.96 | |
7 | 3.4 | 3.6 | 13.94 | 22.56 | ||
9 | 3.69 | 4.2 | 13.69 | 25.45 | ||
4 | 5 | 3.66 | 3.7 | 14.05 | 20.54 | |
7 | 3.68 | 4 | 14.04 | 23.13 | ||
9 | 4.15 | 4.6 | 14.35 | 25.31 | ||
5 | 5 | 4.2 | 4.52 | 14.25 | 21.67 | |
7 | 4.3 | 4.84 | 14.27 | 22.22 | ||
9 | 5.1 | 5.89 | 14.58 | 26.40 | ||
HS1204 tractor with the series seeder | 2 | 5 | 3.48 | 3.53 | 15.4 | 21.40 |
7 | 3.49 | 3.59 | 15.26 | 24.47 | ||
9 | 3.5 | 3.87 | 15.20 | 27.45 | ||
3 | 5 | 3.75 | 3.99 | 15.53 | 22.00 | |
7 | 3.77 | 4.1 | 15.53 | 24.90 | ||
9 | 3.79 | 4.78 | 15.25 | 28.16 | ||
4 | 5 | 4.02 | 4.22 | 15.66 | 22.61 | |
7 | 4.04 | 4.56 | 15.68 | 25.48 | ||
9 | 4.07 | 5.24 | 16.09 | 27.83 | ||
5 | 5 | 4.57 | 5.15 | 15.96 | 23.76 | |
7 | 4.59 | 5.52 | 16.01 | 26.60 | ||
9 | 4.67 | 6.71 | 16.43 | 28.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aduov, M.; Nukusheva, S.; Tulegenov, T.; Volodya, K.; Uteulov, K.; Karwat, B.; Bembenek, M. Experimental Field Tests of the Suitability of a New Seeder for the Soils of Northern Kazakhstan. Agriculture 2023, 13, 1687. https://doi.org/10.3390/agriculture13091687
Aduov M, Nukusheva S, Tulegenov T, Volodya K, Uteulov K, Karwat B, Bembenek M. Experimental Field Tests of the Suitability of a New Seeder for the Soils of Northern Kazakhstan. Agriculture. 2023; 13(9):1687. https://doi.org/10.3390/agriculture13091687
Chicago/Turabian StyleAduov, Mubarak, Saule Nukusheva, Talgat Tulegenov, Kadirbek Volodya, Kanat Uteulov, Bolesław Karwat, and Michał Bembenek. 2023. "Experimental Field Tests of the Suitability of a New Seeder for the Soils of Northern Kazakhstan" Agriculture 13, no. 9: 1687. https://doi.org/10.3390/agriculture13091687
APA StyleAduov, M., Nukusheva, S., Tulegenov, T., Volodya, K., Uteulov, K., Karwat, B., & Bembenek, M. (2023). Experimental Field Tests of the Suitability of a New Seeder for the Soils of Northern Kazakhstan. Agriculture, 13(9), 1687. https://doi.org/10.3390/agriculture13091687