Water Availability in Pumice, Coir, and Perlite Substrates Regulates Grapevine Growth and Grape Physicochemical Characteristics in Soilless Cultivation of Sugraone and Prime Cultivars (Vitis vinifera L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Plant Nutrition
2.3. Substrate Moisture
2.4. Physical and Chemical Characteristics of Grapes and Must
2.5. Leaf Tissue Analyses
2.6. Phenological Stages
2.7. Vegetation Characteristics and Physiological Parameters
2.8. Statistical Analysis
3. Results and Discussion
3.1. Substrate Moisture
3.2. Physical and Chemical Characteristics of Grapes and Must
3.3. Macro- and Micro-Elements Nutrient Status of Grapevine Leaves
3.4. Phenological Stages
3.5. Vegetation Characteristics and Physiological Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Van Leeuwen, C.; Seguin, G. The concept of terroir in viticulture. J. Wine Res. 2006, 17, 1–10. [Google Scholar] [CrossRef]
- Alston, J.M.; Sambucci, O. Grapes in the World Economy. In The Grape Genome; Cantu, D., Walker, M.A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–24. [Google Scholar]
- Perria, R.; Ciofini, A.; Petrucci, W.A.; D’Arcangelo, M.E.M.; Valentini, P.; Storchi, P.; Carella, G.; Pacetti, A.; Mugnai, L. A Study on the Efficiency of Sustainable Wine Grape Vineyard Management Strategies. Agronomy 2022, 12, 392. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J. Five decades of soil erosion research in “terroir”. The State-of-the-Art. Earth-Sci. Rev. 2018, 179, 436–447. [Google Scholar] [CrossRef]
- Ingle, S.; Srivastava, J.; Shete, R. Diseases of Grapevine (Vitis vinifera L.) and Their Management. In Diseases of Horticultural Crops; Apple Academic Press: Palm Bay, FL, USA, 2022; pp. 201–216. [Google Scholar]
- Savvas, D.; Gruda, N. Application of soilless culture technologies in the modern greenhouse industry—A review. Eur. J. Hortic. Sci 2018, 83, 280–293. [Google Scholar] [CrossRef]
- Pisciotta, A.; Barone, E.; Di Lorenzo, R. Table-Grape Cultivation in Soil-Less Systems: A Review. Horticulturae 2022, 8, 553. [Google Scholar] [CrossRef]
- Jiang, W.; Qu, D.; Mu, D.; Wang, L. Protected cultivation of horticultural crops in China. Hortic. Rev 2003, 30, 115–162. [Google Scholar] [CrossRef]
- Martínez-Gómez, P.; Rahimi Devin, S.; Salazar, J.A.; López-Alcolea, J.; Rubio, M.; Martínez-García, P.J. Principles and Prospects of Prunus Cultivation in Greenhouse. Agronomy 2021, 11, 474. [Google Scholar] [CrossRef]
- Gunes, E.; Gübbük, H. Growth, yield and fruit quality of three papaya cultivars grown under protected cultivation. Fruits 2012, 67, 23–29. [Google Scholar] [CrossRef]
- Sánchez, M.; Velásquez, Y.; González, M.; Cuevas, J. Hoverfly pollination enhances yield and fruit quality in mango under protected cultivation. Sci. Hortic. 2022, 304, 111320. [Google Scholar] [CrossRef]
- Papadimitriou, D.M.; Daliakopoulos, I.N.; Kontaxakis, E.; Sabathianakis, M.; Manios, T.; Savvas, D. Effect of moderate salinity on Golden Thistle (Scolymus hispanicus L.) grown in a soilless cropping system. Sci. Hortic. 2022, 303, 111182. [Google Scholar] [CrossRef]
- Gruda, N.; Bisbis, M.; Tanny, J. Influence of climate change on protected cultivation: Impacts and sustainable adaptation strategies—A review. J. Clean. Prod. 2019, 225, 481–495. [Google Scholar] [CrossRef]
- Montesano, F.F.; Van Iersel, M.W.; Boari, F.; Cantore, V.; D’Amato, G.; Parente, A. Sensor-based irrigation management of soilless basil using a new smart irrigation system: Effects of set-point on plant physiological responses and crop performance. Agric. Water Manag. 2018, 203, 20–29. [Google Scholar] [CrossRef]
- Savvas, D.; Olympios, C.; Passam, H. Management of nutrition and irrigation in soil-grown and soilless cultivations in mild-winter climates: Problems, constraints and trends in the Mediterranean region. In Proceedings of the International Symposium on Strategies towards Sustainability of Protected Cultivation in Mild Winter Climate, Antalya, Turkey, 7–10 April 2008; pp. 415–426. [Google Scholar]
- Savvas, D.; Manos, G. Automated composition control of nutrient solution in closed soilless culture systems. J. Agric. Eng. Res. 1999, 73, 29–33. [Google Scholar] [CrossRef]
- Sambo, P.; Nicoletto, C.; Giro, A.; Pii, Y.; Valentinuzzi, F.; Mimmo, T.; Lugli, P.; Orzes, G.; Mazzetto, F.; Astolfi, S. Hydroponic solutions for soilless production systems: Issues and opportunities in a smart agriculture perspective. Front. Plant Sci. 2019, 10, 923. [Google Scholar] [CrossRef] [PubMed]
- Fandi, M.; Al-Muhtaseb, J.A.; Hussein, M.A. Yield and fruit quality of tomato as affected by the substrate in an open soilless culture. Jordan J. Agric. Sci. 2008, 4, 65–72. [Google Scholar]
- Michelon, N.; Pennisi, G.; Myint, N.O.; Dall’Olio, G.; Batista, L.P.; Salviano, A.A.C.; Gruda, N.S.; Orsini, F.; Gianquinto, G. Strategies for improved yield and water use efficiency of lettuce (Lactuca sativa L.) through simplified soilless cultivation under semi-arid climate. Agronomy 2020, 10, 1379. [Google Scholar] [CrossRef]
- Rubio-Asensio, J.S.; Parra, M.; Intrigliolo, D.S. Open field hydroponics in fruit crops: Developments and challenges. In Fruit Crops; Elsevier: Amsterdam, The Netherlands, 2020; pp. 419–430. [Google Scholar]
- Melgarejo, P.; Martínez, J.; Hernández, F.; Salazar, D.; Martínez, R. Preliminary results on fig soil-less culture. Sci. Hortic. 2007, 111, 255–259. [Google Scholar] [CrossRef]
- Olle, M.; Ngouajio, M.; Siomos, A. Vegetable quality and productivity as influenced by growing medium: A review. Agriculture 2012, 99, 399–408. [Google Scholar]
- Tangolar, S.; Baştaş, P.C.; Torun, A.A.; Tangolar, S. Effects of substrate and crop load on yield and mineral nutrition of’Early Sweet’grape cultivar grown in soilless culture. Erwerbs-Obstbau 2019, 61, 33–40. [Google Scholar] [CrossRef]
- Chatzigeorgiou, I.; Liantas, G.; Spanos, P.; Gkriniari, V.; Maloupa, E.; Ntinas, G.K. Hydroponic Cultivation of Vine Leaves with Reduced Carbon Footprint in a Mediterranean Greenhouse. Sustainability 2022, 14, 8011. [Google Scholar] [CrossRef]
- Topp, G.C. State of the art of measuring soil water content. Hydrol. Process. 2003, 17, 2993–2996. [Google Scholar] [CrossRef]
- Sutitarnnontr, P.; Hu, E.; Tuller, M.; Jones, S.B. Physical and thermal characteristics of dairy cattle manure. J. Environ. Qual. 2014, 43, 2115–2129. [Google Scholar] [CrossRef]
- Meter Group. GS3 Manual. Available online: https://library.metergroup.com/Manuals/20429_GS3_Web.pdf (accessed on 1 April 2023).
- Starr, J.; Paltineanu, I. Methods for measurement of soil water content: Capacitance devices. In Methods of Soil Analysis: Part 4 Physical Methods; Dane, J.H., Topp, G.C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; pp. 463–474. [Google Scholar]
- Cobos, D.R.; Chambers, C. Calibrating ECH2O Soil Moisture Sensors. Available online: https://www.agrolan.co.il/UploadProductFiles/echo-calibration.pdf (accessed on 1 April 2023).
- Rhie, Y.H.; Kim, J. Changes in physical properties of various coir dust and perlite mixes and their capacitance sensor volumetric water content calibrations. HortScience 2017, 52, 162–166. [Google Scholar] [CrossRef]
- Gizas, G.; Tsirogiannis, I.; Bakea, M.; Mantzos, N.; Savvas, D. Impact of Hydraulic Characteristics of Raw or Composted Posidonia Residues, Coir, and Their Mixtures with Pumice on Root Aeration, Water Availability, and Yield in a Lettuce Crop. HortScience Horts 2012, 47, 896–901. [Google Scholar] [CrossRef]
- Shokrana, M.S.B.; Ghane, E. Measurement of soil water characteristic curve using HYPROP2. MethodsX 2020, 7, 100840. [Google Scholar] [CrossRef] [PubMed]
- Londra, P.; Paraskevopoulou, A.; Psychogiou, M. Hydrological behavior of peat-and coir-based substrates and their effect on begonia growth. Water 2018, 10, 722. [Google Scholar] [CrossRef]
- Lydakis, D.; Aked, J. Vapour heat treatment of Sultanina table grapes. II: Effects on postharvest quality. Postharvest Biol. Technol. 2003, 27, 117–126. [Google Scholar] [CrossRef]
- Neocleous, D.; Savvas, D. The effects of phosphorus supply limitation on photosynthesis, biomass production, nutritional quality, and mineral nutrition in lettuce grown in a recirculating nutrient solution. Sci. Hortic. 2019, 252, 379–387. [Google Scholar] [CrossRef]
- AWRI. Grapevine Nutrition. Petiole Analysis. Available online: https://www.awri.com.au/wp-content/uploads/5_nutrition_petiole_analysis.pdf (accessed on 1 April 2023).
- OIV. OIV descriptor list for grape varieties and Vitis species, 2nd ed.; OIV: Paris, France, 2009. [Google Scholar]
- Arunyanark, A.; Jogloy, S.; Akkasaeng, C.; Vorasoot, N.; Kesmala, T.; Nageswara Rao, R.; Wright, G.; Patanothai, A. Chlorophyll stability is an indicator of drought tolerance in peanut. J. Agron. Crop Sci. 2008, 194, 113–125. [Google Scholar] [CrossRef]
- Baker, N.R. Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Annu. Rev. Plant Biol. 2008, 59, 89–113. [Google Scholar] [CrossRef]
- Baker, N.R.; Rosenqvist, E. Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. J. Exp. Bot. 2004, 55, 1607–1621. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Johkan, M.; Hohjo, M.; Tsukagoshi, S.; Maruo, T. A correlation analysis on chlorophyll content and SPAD value in tomato leaves. HortResearch 2017, 71, 37–42. [Google Scholar] [CrossRef]
- Fuentes, S.; Poblete-Echeverría, C.; Ortega-Farias, S.; Tyerman, S.; De Bei, R. Automated estimation of leaf area index from grapevine canopies using cover photography, video and computational analysis methods. Aust. J. Grape Wine Res. 2014, 20, 465–473. [Google Scholar] [CrossRef]
- Schindelin, J.; Rueden, C.T.; Hiner, M.C.; Eliceiri, K.W. The ImageJ ecosystem: An open platform for biomedical image analysis. Mol. Reprod. Dev. 2015, 82, 518–529. [Google Scholar] [CrossRef]
- Gupta, S.D.; Ibaraki, Y. Plant Image Analysis: Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Yin, Y.; Han, B.; Li, M.; Jia, N.; Liu, C.; Sun, Y.; Wang, Y.; Gao, Q.; Guo, Z. Multiplication, Phenological Period and Growth Vigor of Thirty-One Grapevine Rootstocks and the Role of Parentage in Vigor Heredity. Horticulturae 2023, 9, 241. [Google Scholar] [CrossRef]
- De Boodt, M.; Verdonck, O. The physical properties of the substrates in horticulture. In III Symposium on Peat in Horticulture 26; ISHS: Leuven, Belgium, 1971; pp. 37–44. [Google Scholar]
- Al Naddaf, O.; Livieratos, I.; Stamatakis, A.; Tsirogiannis, I.; Gizas, G.; Savvas, D. Hydraulic characteristics of composted pig manure, perlite, and mixtures of them, and their impact on cucumber grown on bags. Sci. Hortic. 2011, 129, 135–141. [Google Scholar] [CrossRef]
- Fields, J.S.; Owen, J.S.; Zhang, L.; Fonteno, W.C. Use of the evaporative method for determination of soilless substrate moisture characteristic curves. Sci. Hortic. 2016, 211, 102–109. [Google Scholar] [CrossRef]
- Altland, J.E.; Owen, J.S.; Fonteno, W.C. Developing Moisture Characteristic Curves and Their Descriptive Functions at Low Tensions for Soilless Substrates. J. Am. Soc. Hortic. Sci. J. Amer. Soc. Hort. Sci. 2010, 135, 563–567. [Google Scholar] [CrossRef]
- Brückner, U. Physical properties of different potting media and substrate mixtures—Especially air- and water capacity. In International Symposium Growing Media and Plant Nutrition in Horticulture 450; ISHS: Leuven, Belgium, 1997; pp. 263–270. [Google Scholar]
- Keller, M. The Science of Grapevines; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Chatzigianni, M.; Alkhaled, B.a.; Livieratos, I.; Stamatakis, A.; Ntatsi, G.; Savvas, D. Impact of nitrogen source and supply level on growth, yield and nutritional value of two contrasting ecotypes of Cichorium spinosum L. grown hydroponically. J. Sci. Food Agric. 2018, 98, 1615–1624. [Google Scholar] [CrossRef]
- Charlotte, C.; Bernard, D. Changes in Polygalacturonase Activity and Calcium Content during Ripening of Grape Berries. Am. J. Enol. Vitic. 2001, 52, 331. [Google Scholar] [CrossRef]
- Gerendás, J.; Führs, H. The significance of magnesium for crop quality. Plant Soil 2013, 368, 101–128. [Google Scholar] [CrossRef]
- Mark, A.M.; Michael, M.A. Fruit Ripening in Vitis vinifera L.: Responses to Seasonal Water Deficits. Am. J. Enol. Vitic. 1988, 39, 313. [Google Scholar] [CrossRef]
- VanderWeide, J.; Gottschalk, C.; Schultze, S.R.; Nasrollahiazar, E.; Poni, S.; Sabbatini, P. Impacts of Pre-bloom Leaf Removal on Wine Grape Production and Quality Parameters: A Systematic Review and Meta-Analysis. Front. Plant Sci. 2021, 11, 621585. [Google Scholar] [CrossRef] [PubMed]
- Tassinari, A.; Stefanello, L.O.; Schwalbert, R.A.; Vitto, B.B.; Kulmann, M.S.d.S.; Santos, J.P.J.; Arruda, W.S.; Schwalbert, R.; Tiecher, T.L.; Ceretta, C.A.; et al. Nitrogen Critical Level in Leaves in ‘Chardonnay’ and ‘Pinot Noir’ Grapevines to Adequate Yield and Quality Must. Agronomy 2022, 12, 1132. [Google Scholar] [CrossRef]
- Keller, M.; Arnink, K.J.; Hrazdina, G. Interaction of nitrogen availability during bloom and light intensity during veraison. I. Effects on grapevine growth, fruit development, and ripening. Am. J. Enol. Vitic. 1998, 49, 333–340. [Google Scholar] [CrossRef]
- Ben Yahmed, J.; Ben Mimoun, M. Effects of foliar application and fertigation of potassium on yield and fruit quality of ‘Superior Seedless’ grapevine. In XXX International Horticultural Congress IHC2018: International Symposium on Water and Nutrient Relations and Management of 1253; ISHS: Leuven, Belgium, 2019; pp. 367–372. [Google Scholar] [CrossRef]
- Dhillon, W.S.; Gill, P.P.S.; Singh, N.P. Effect of nitrogen, phosphorus and potassium fertilization on growth, yield and quality of pomegranate ‘kandhari’. Acta Hortic. 2011, 890, 327–332. [Google Scholar] [CrossRef]
- Chen, R.; Chang, H.; Wang, Z.; Lin, H. Determining organic-inorganic fertilizer application threshold to maximize the yield and quality of drip-irrigated grapes in an extremely arid area of Xinjiang, China. Agric. Water Manag. 2023, 276, 108070. [Google Scholar] [CrossRef]
- Porro, D.; Ramponi, M.; Tomasi, T.; Rolle, L.; Poni, S. Nutritional implications of water stress in grapevine and modifications of mechanical properties of berries. In Proceedings of the VI International Symposium on Mineral Nutrition of Fruit Crops 868; ISHS: Faro, Portugal, 2008; pp. 73–80. [Google Scholar] [CrossRef]
- Zsófi, Z.; Villangó, S.; Pálfi, Z.; Tóth, E.; Bálo, B. Texture characteristics of the grape berry skin and seed (Vitis vinifera L. cv. Kékfrankos) under postveraison water deficit. Sci. Hortic. 2014, 172, 176–182. [Google Scholar] [CrossRef]
- Martins, V.; Garcia, A.; Alhinho, A.T.; Costa, P.; Lanceros-Méndez, S.; Costa, M.M.R.; Gerós, H. Vineyard calcium sprays induce changes in grape berry skin, firmness, cell wall composition and expression of cell wall-related genes. Plant Physiol. Biochem. 2020, 150, 49–55. [Google Scholar] [CrossRef]
- Choi, H.-M.; Son, I.-C.; Kim, D.-I. Effects of calcium concentrations of coating bag on pericarp structure and berry cracking in’Kyoho’grape (Vitis sp.). Hortic. Sci. Technol. 2010, 28, 561–566. [Google Scholar]
- Sarig, P.; Zutkhi, Y.; Lisker, N.; Shkelerman, Y.; Ben-Arie, R. Natural and induced resistance of table grapes to bunch rots. In Proceedings of the International Postharvest Science Conference Postharvest 96; ISHS: Taupo, New Zealand, 1996; pp. 65–70. [Google Scholar] [CrossRef]
- Filimon, R.V.; Damian, D.; Filimon, R.; Rotaru, L. Assessment of Consumer Preferences on Table Grapes of New Vitis vinifera L. Cultivars. Cercet. agron. Mold. 2016, 49, 97–110. [Google Scholar] [CrossRef]
- Lo’ay, A. Biological indicators to minimize berry shatter during handling of ‘Thompson seedless’ grapevines. World Appl. Sci. J. 2011, 12, 1107–1113. [Google Scholar]
- Grape Evolution. Agricultural Research Organization, The Volcani Center, Catalogue 2020. Available online: https://www.grapeevolution.com/_files/ugd/a8a683_ec1e007d2cb94c0590136e12e36a703f.pdf (accessed on 1 April 2023).
- Sonneveld, C.; Voogt, W. Substrates: Chemical Characteristics and Preparation. In Plant Nutrition of Greenhouse Crops; Springer: Dordrecht, The Netherlands, 2009; pp. 227–256. [Google Scholar]
- Heller, C.R.; Nunez, G.H. Preplant Fertilization Increases Substrate Microbial Respiration But Does Not Affect Southern Highbush Blueberry Establishment in a Coconut Coir-based Substrate. HortScience 2022, 57, 17–21. [Google Scholar] [CrossRef]
- de Kreij, C.; van Elderen, C.W.; Meinken, E.; Fischer, P. Extraction methods for chemical quality control of mineral substrates. In International Symposium on Growing Media & Plant Nutrition in Horticulture 401; ISHS: Leuven, Belgium, 1995; pp. 61–70. [Google Scholar]
- Giuffrida, F.; Graziani, G.; Fogliano, V.; Scuderi, D.; Romano, D.; Leonardi, C. Effects of Nutrient and NaCl Salinity on Growth, Yield, Quality and Composition of Pepper Grown in Soilless Closed System. J. Plant Nutr. 2014, 37, 1455–1474. [Google Scholar] [CrossRef]
- Rai, S.; Singh, P.K.; Mankotia, S.; Swain, J.; Satbhai, S.B. Iron homeostasis in plants and its crosstalk with copper, zinc, and manganese. Plant Stress 2021, 1, 100008. [Google Scholar] [CrossRef]
- Serpil, T.; Semih, T.; Metin, T.; Mikail, A.; Melike, A. The Effects of Different Substrates with Chemical and Organic Fertilizer Applications on Vitamins, Mineral, and Amino Acid Content of Grape Berries from Soilless Culture. In Recent Research and Advances in Soilless Culture; Metin, T., Sanem, A., Ertan, Y., Adem, G., Eds.; IntechOpen: Rijeka, Croatia, 2022; p. Ch. 1. [Google Scholar]
- Delrot, S.; Medrano, H.; Or, E.; Bavaresco, L.; Grando, S. Methodologies and Results in Grapevine Research; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Smart, R.; Coombe, B. Water relations of grapevines. In Water Deficits and Plant Growth; Kozlowski, T.T., Ed.; Academic Press: Cambridge, MA, USA, 1983; Volume VII, pp. 137–196. [Google Scholar]
- Andreini, L.; Viti, R.; Scalabrelli, G. Study on the morphological evolution of bud break in Vitis vinifera L. Vitis 2009, 48, 153–158. [Google Scholar]
- Dinu, D.G.; Ricciardi, V.; Demarco, C.; Zingarofalo, G.; De Lorenzis, G.; Buccolieri, R.; Cola, G.; Rustioni, L. Climate change impacts on plant phenology: Grapevine (Vitis vinifera) bud break in wintertime in Southern Italy. Foods 2021, 10, 2769. [Google Scholar] [CrossRef]
- Duchêne, E.; Huard, F.; Dumas, V.; Schneider, C.; Merdinoglu, D. The challenge of adapting grapevine varieties to climate change. Clim. Res. 2010, 41, 193–204. [Google Scholar] [CrossRef]
- Shah, S.H.; Houborg, R.; McCabe, M.F. Response of Chlorophyll, Carotenoid and SPAD-502 Measurement to Salinity and Nutrient Stress in Wheat (Triticum aestivum L.). Agronomy 2017, 7, 61. [Google Scholar] [CrossRef]
- Moschou, C.E.; Papadimitriou, D.M.; Galliou, F.; Markakis, N.; Papastefanakis, N.; Daskalakis, G.; Sabathianakis, M.; Stathopoulou, E.; Bouki, C.; Daliakopoulos, I.N.; et al. Grocery Waste Compost as an Alternative Hydroponic Growing Medium. Agronomy 2022, 12, 789. [Google Scholar] [CrossRef]
Treatment | Mixing Ratios |
---|---|
perlite | 100% perlite |
pumice | 100% pumice |
coir | 100% coir dust |
perlite:coir | 50% perlite:50% coir dust |
Macronutrients | Concentration [mmol L−1] | Trace Elements | Concentration [mmol L−1] |
---|---|---|---|
NH4+-N | 1.00 | Fe | 0.045 |
K+ | 6.00 | Mn | 0.010 |
Ca2+ | 3.00 | Zn | 0.001 |
Mg2+ | 2.00 | Cu | 0.001 |
NO3−-N | 14.00 | B | 0.045 |
SO42−-S | 1.17 | Mo | 0.001 |
H2PO4−-P | 1.30 |
Substrate | Cultivar | Interaction | |||||||
---|---|---|---|---|---|---|---|---|---|
Perlite | Pumice | Coir | Perlite:Coir | Sig. | Sugraone | Prime | Sig. | Sig. | |
Bunch Length (cm) | 27.55 a | 27.54 a | 30.11 a | 28.89 a | ns | 26.59 b | 30.46 a | ** | ns |
Bunch Width (cm) | 16.67 b | 18.64 ab | 21.50 a | 18.71 ab | * | 18.32 a | 19.44 a | ns | ns |
Bunch Weight (g) | 597.79 a | 414.50 b | 578.85 a | 591.05 a | * | 589.33 a | 501.77 a | ns | ns |
Rachis Length (cm) | 25.87 a | 25.26 a | 26.75 a | 25.85 a | ns | 23.87 b | 27.97 a | *** | * |
Rachis Weight (g) | 11.14 a | 5.80 b | 10.66 a | 9.16 a | *** | 9.29 a | 9.09 a | ns | ns |
Berries Amount | 141.20 a | 109.25 a | 135.75 a | 137.10 a | ns | 111.35 b | 150.30 a | ** | ns |
Small Berries Amount | 9.17 a | 8.00 a | 8.50 a | 3.00 b | * | 2.67 b | 11.67 a | *** | * |
Bunch Density | 5.37 a | 4.29 b | 5.05 ab | 5.24 a | ns | 4.66 b | 5.31 a | * | ** |
Berry Shatter (%) | 0.92 b | 2.16 a | 1.08 b | 1.21 b | * | 0.41 b | 2.28 a | *** | ** |
Berry Weight (g) | 4.43 a | 4.02 a | 4.32 a | 4.33 a | ns | 5.27 a | 3.28 b | *** | ** |
Berry Length (mm) | 24.49 a | 20.76 b | 25.15 a | 24.67 a | *** | 25.82 a | 21.72 b | *** | ** |
Berry Width (mm) | 19.30 a | 16.97 c | 18.47 b | 18.76 ab | *** | 19.57 a | 17.18 b | *** | *** |
Skin Thickness (mm) | 0.27 ab | 0.31 a | 0.22 bc | 0.19 c | *** | 0.28 a | 0.21 b | *** | ns |
TSS (°Bx) | 17.62 a | 11.26 c | 12.89 b | 12.91 b | *** | 12.77 b | 14.57 a | *** | *** |
TA (g H2Ta/L) | 6.19 a | 6.39 a | 6.43 a | 5.82 a | ns | 6.89 a | 5.53 b | *** | ns |
Maturity Index | 29.03 a | 17.98 c | 20.71 bc | 22.80 b | *** | 18.69 b | 26.57 a | *** | * |
pH | 3.86 a | 3.65 b | 3.82 a | 3.75 ab | * | 3.63 b | 3.91 a | *** | * |
Time | Substrate | Cultivar | Interaction | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Perlite | Pumice | Coir | Perlite:Coir | Sig. | Sugraone | Prime | Sig. | Sig. | ||
N (g/kg) | Bloom | 43.8 a | 42.30 b | 41.80 b | 43.80 a | ** | 45.20 a | 40.70 b | *** | *** |
Veraison | 38.00 a | 36.90 b | 36.70 b | 38.40 a | ** | 38.20 a | 36.70 b | *** | *** | |
P (g/kg) | Bloom | 1.56 b | 1.32 c | 2.20 a | 2.08 a | *** | 1.49 b | 2.09 a | *** | *** |
Veraison | 2.40 b | 2.62 b | 3.37 a | 3.37 a | *** | 2.80 b | 3.09 a | * | *** | |
K (g/kg) | Bloom | 12.80 c | 12.10 c | 16.40 a | 12.10 c | *** | 15.50 a | 12.60 b | *** | * |
Veraison | 9.90 c | 9.00 d | 14.80 a | 13.10 b | *** | 12.60 a | 10.80 b | *** | *** | |
Ca (g/kg) | Bloom | 8.70 a | 8.30 a | 8.50 a | 8.30 a | ns | 8.40 a | 8.50 b | ns | ns |
Veraison | 4.80 b | 6.00 a | 3.60 c | 5.00 b | *** | 4.80 a | 4.90 a | ns | *** | |
Mg (g/kg) | Bloom | 2.20 c | 2.40 c | 2.80 b | 3.10 a | *** | 2.60 a | 2.70 a | ns | *** |
Veraison | 2.60 c | 3.10 b | 3.10 b | 3.30 a | *** | 3.20 a | 2.90 b | *** | *** | |
Νa (g/kg) | Bloom | 2.80 c | 2.60 c | 4.00 a | 3.60 b | *** | 3.70 a | 2.80 b | *** | ** |
Veraison | 2.40 c | 2.20 c | 3.80 a | 3.40 b | *** | 3.30 a | 2.60 b | *** | *** | |
Fe (mg/kg) | Bloom | 111.20 b | 117.55 b | 151.95 a | 143.58 a | *** | 146.83 a | 115.32 b | *** | *** |
Veraison | 123.15 a | 105.30 b | 117.03 ab | 109.30 ab | * | 133.93 a | 93.46 b | *** | * | |
Mn (mg/kg) | Bloom | 176.15 a | 128.28 b | 175.53 a | 152.68 a | ** | 149.45 b | 166.86 a | * | *** |
Veraison | 281.86 a | 133.20 c | 222.12 b | 206.13 b | *** | 201.08 a | 220.57 a | ns | *** | |
Cu (mg/kg) | Bloom | 1.23 bc | 0.35 c | 3.03 a | 1.88 ab | ** | 3.19 a | 0.05 b | *** | ** |
Veraison | 0.00 c | 1.21 b | 0.00 c | 2.53 a | *** | 0.60 b | 1.27 a | * | *** | |
Zn (mg/kg) | Bloom | 14.87 c | 18.00 ab | 19.76 a | 17.81 b | *** | 18.08 a | 17.14 a | ns | ** |
Veraison | 16.02 a | 15.79 a | 16.98 a | 16.93 a | ns | 14.96 b | 17.90 a | *** | ** |
Substrate | Cultivar | Interaction | |||||||
---|---|---|---|---|---|---|---|---|---|
Perlite | Pumice | Coir | Perlite:Coir | Sig. | Sugraone | Prime | Sig. | Sig. | |
Bud Break | 74.92 a | 67.46 b | 77.04 a | 73.00 a | ** | 79.85 a | 66.35 b | *** | ns |
Bloom | 129.13 a | 123.13 b | 130.13 a | 128.17 a | * | 126.85 a | 128.42 a | ns | ns |
Veraison | 169.79 a | 166.88 b | 170.58 a | 170.42 a | ** | 169.29 a | 169.54 a | ns | ns |
Substrate | Cultivar | Interaction | |||||||
---|---|---|---|---|---|---|---|---|---|
Perlite | Pumice | Coir | Perlite:Coir | Sig. | Sugraone | Prime | Sig. | Sig. | |
Quantum Yield Efficiency (Fv/Fm) | 0.81 a | 0.79 a | 0.80 a | 0.80 a | ns | 0.81 a | 0.79 b | ** | ns |
Chlorophyll Relative Content (SPAD) | 36.20 a | 40.20 a | 38.21 a | 36.10 a | ns | 39.38 a | 35.98 b | * | ns |
Leaf Area Index (LAI) | 3.20 a | 2.47 b | 2.25 b | 3.23 a | ** | 2.71 a | 2.87 a | ns | *** |
Leaf Moisture (%) | 82.85 b | 83.30 b | 85.52 a | 84.31 ab | ** | 0.85 a | 0.83 b | *** | ns |
Internodes Diameter (mm) | 8.33 a | 7.95 b | 8.43 a | 8.02 b | *** | 9.02 a | 7.35 b | *** | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kontaxakis, E.; Papadimitriou, D.; Daliakopoulos, I.; Sabathianakis, I.; Stavropoulou, A.; Manios, T. Water Availability in Pumice, Coir, and Perlite Substrates Regulates Grapevine Growth and Grape Physicochemical Characteristics in Soilless Cultivation of Sugraone and Prime Cultivars (Vitis vinifera L.). Agriculture 2023, 13, 1690. https://doi.org/10.3390/agriculture13091690
Kontaxakis E, Papadimitriou D, Daliakopoulos I, Sabathianakis I, Stavropoulou A, Manios T. Water Availability in Pumice, Coir, and Perlite Substrates Regulates Grapevine Growth and Grape Physicochemical Characteristics in Soilless Cultivation of Sugraone and Prime Cultivars (Vitis vinifera L.). Agriculture. 2023; 13(9):1690. https://doi.org/10.3390/agriculture13091690
Chicago/Turabian StyleKontaxakis, Emmanouil, Dimitrios Papadimitriou, Ioannis Daliakopoulos, Ioannis Sabathianakis, Andriana Stavropoulou, and Thrassyvoulos Manios. 2023. "Water Availability in Pumice, Coir, and Perlite Substrates Regulates Grapevine Growth and Grape Physicochemical Characteristics in Soilless Cultivation of Sugraone and Prime Cultivars (Vitis vinifera L.)" Agriculture 13, no. 9: 1690. https://doi.org/10.3390/agriculture13091690
APA StyleKontaxakis, E., Papadimitriou, D., Daliakopoulos, I., Sabathianakis, I., Stavropoulou, A., & Manios, T. (2023). Water Availability in Pumice, Coir, and Perlite Substrates Regulates Grapevine Growth and Grape Physicochemical Characteristics in Soilless Cultivation of Sugraone and Prime Cultivars (Vitis vinifera L.). Agriculture, 13(9), 1690. https://doi.org/10.3390/agriculture13091690