Estimation of Irrigation Water Use by Using Irrigation Signals from SMAP Soil Moisture Data
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets
2.2.1. SMAP L3 Passive Soil Moisture Product
2.2.2. Daily Precipitation Dataset
2.2.3. Statistical Data for Irrigation Water Use
2.2.4. Auxiliary Datasets
3. Methods
3.1. Identification of Irrigation Signals
3.2. Estimation of Irrigation Water Use
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. AQUASTAT Online Database. Food and Agriculture Organization of the United Nations (FAO). 2006. Available online: http://www.fao.org/ag/agl/aglw/aquastat/main/index.stm (accessed on 1 January 2018).
- Tang, Q.; Rosenberg, E.A.; Lettenmaier, D.P. Use of satellite data to assess the impacts of irrigation withdrawals on Upper Klamath Lake, Oregon. Hydrol. Earth Syst. Sci. 2009, 13, 617–627. [Google Scholar] [CrossRef]
- Douglas, E.M.; Niyogi, D.; Frolking, S.; Yeluripati, J.B.; Pielke, R.A., Sr.; Niyogi, N.; Vörösmarty, C.J.; Mohanty, U.C. Changes in moisture and energy fluxes due to agricultural land use and irrigation in the Indian Monsoon Belt. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Zhang, C.M.; Zuo, X.A.; Huang, Y.X.; Luo, Y.Y.; Wang, S.K.; Qu, H. Challenges to the restoration of desertified land in Horqin Sandy land. Chin. J. Appl. Ecol. 2009, 20, 1559–1564. (In Chinese) [Google Scholar]
- Wen, B.P.; Yu, Z.S.; Li, Z.H.; Yang, H.L.; He, L.; Jiang, S.; Zhang, J.L. Analysis of subsidence trend of Heifang Platform under irrigation in Yongjing, Gansu Province. J. Geol. Hazard. Control. Chin. 2013, 24, 108–114. (In Chinese) [Google Scholar]
- Han, W.H.; Wang, Z.L. Effects of different irrigation modes on soil moisture and salt distribution and cotton yield. Chin. Rural Water Hydropower. 2018, 11, 26–29, 34. (In Chinese) [Google Scholar]
- Zhang, Y.; Lei, G.P.; Zhang, H.Q.; Lin, J. Microscale analysis of spatial-temporal dynamics of land use and water resources matching in Naoli River Basin. Trans. CSAE 2019, 35, 185–194. (In Chinese) [Google Scholar]
- Lobell, D.; Bala, G.; Mirin, A.; Phillips, T.; Maxwell, R.; Rotman, D. Regional Differences in the Influence of Irrigation on Climate. J. Clim. 2009, 22, 2248–2255. [Google Scholar] [CrossRef]
- Kang, S.; Eltahir, A.B. North China Plain threatened by deadly heatwaves due to climate change and irrigation. Nat. Commun. 2018, 9, 2894. [Google Scholar] [CrossRef]
- Jalilvand, E.; Tajrishy, M.; Hashemi, S.; Brocca, L. Quantification of irrigation water using remote sensing of soil moisture in a semi-arid region. Remote Sens. Environ. 2019, 231, 111226. [Google Scholar] [CrossRef]
- Doll, P.; Siebert, S. A digital global map of irrigated areas. ICID J. 2000, 49, 55–66. [Google Scholar]
- Siebert, S.; Doll, P.; Hoogeveen, J.; Faures, J.M.; Frenken, K.; Feick, S. Development and validation of the global map of irrigation areas. Hydrol. Earth Syst. Sci. 2005, 9, 535–547. [Google Scholar] [CrossRef]
- Sacks, W.J.; Cook, B.I.; Buenning, N.; Levis, S.; Helkowski, J.H. Effects of global irrigation on the near-surface climate. Clim. Dyn. 2009, 33, 159–175. [Google Scholar] [CrossRef]
- Wisser, D.; Frolking, S.; Douglas, E.M.; Fekete, B.M.; Vörösmarty, C.J.; Schumann, A.H. Global irrigation water demand: Variability and uncertainties arising from agricultural and climate data sets. Geophys. Res. Lett. 2008, 35, L24408. [Google Scholar] [CrossRef]
- Ozdogan, M.; Rodell, M.; Beaudoing, H.K. Simulating the Effects of Irrigation over the United States in a Land Surface Model Based on Satellite-Derived Agricultural Data. J. Hydrometeorol. 2010, 11, 171–184. [Google Scholar] [CrossRef]
- Hu, X.; Shi, L.; Zeng, J.; Yang, J.; Zha, Y.; Yao, Y.; Cao, G. Estimation of actual irrigation amount and its impact on groundwater depletion: A case study in the Hebei Plain, China. J. Hydrol. 2016, 543, 433–449. [Google Scholar] [CrossRef]
- Zou, M.; Kang, S.; Niu, J.; Lu, H. A new technique to estimate regional irrigation water demand and driving factor effects using an improved SWAT model with LMDI factor decomposition in an arid basin. J. Clean. Prod. 2018, 185, 814–828. [Google Scholar] [CrossRef]
- Wen, S.X. Overview of methods for extracting farmland irrigation area based on remote sensing technology. South Agric. Mech. 2022, 53, 27–30. (In Chinese) [Google Scholar]
- Brocca, L.; Tarpanelli, A.; Filippucci, P.; Dorigo, W.; Zaussinger, F.; Gruber, A.; Fernández, P.D. How much water is used for irrigation? A new approach exploiting coarse resolution satellite soil moisture products. Int. J. Appl. Earth. Obs. Geoinf. 2018, 73, 752–766. [Google Scholar]
- Zohaib, M.; Choi, M. Satellite-based global-scale irrigation water use and its contemporary trends. Sci. Total Environ. 2020, 714, 136719. [Google Scholar] [CrossRef]
- Zaussinger, F.; Dorigo, W.; Gruber, A.; Tarpanelli, A.; Filippucci, P.; Brocca, L. Estimating irrigation water use over the contiguous United States by combining satellite and reanalysis soil moisture data. Hydrol. Earth Syst. Sci. 2019, 23, 897–923. [Google Scholar] [CrossRef]
- Foster, T.; Mieno, T.; Brozovic, N. Satellite-Based Monitoring of Irrigation Water Use: Assessing Measurement Errors and Their Implications for Agricultural Water Management Policy. Water Resour. Res. 2020, 55, e2020WR028378. [Google Scholar] [CrossRef]
- O’Neill, P.; Chan, S.; Colliander, A.; Dunbar, S.; Njoku, E.; Bindlish, R.; Chen, F.; Jackson, T.; Burgin, M.; Piepmeier, J.; et al. Evaluation of the validated Soil Moisture product from the SMAP radiometer. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium(IGARSS), Beijing, China, 10–15 July 2016; pp. 125–128. [Google Scholar]
- O’Neill, P.; Chan, S.; Njoku, E.; Jackson, T.; Bindlish, R. Soil Moisture Active Passive (SMAP) Algorithm Theoretical Basis Document Level 2&3 Soil Moisture (Passive) Data Products; Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2014. [Google Scholar]
- Cui, H.; Jiang, L.; Du, J.; Zhao, S.; Wang, G.; Lu, Z.; Wang, J. Evaluation and analysis of AMSR-2, SMOS, and SMAP soil moisture products in the Genhe area of China. J. Geophys. Res. Atmos. 2017, 122, 8650–8666. [Google Scholar] [CrossRef]
- Zhu, L.; Zhu, A.X. Extraction of Irrigation Signals by Using SMAP Soil Moisture Data. Remote Sens. 2021, 13, 2142–2150. [Google Scholar] [CrossRef]
- Pan, Y.; Shen, Y.; Yu, J.J.; Zhao, P. Fusion experiment of hourly precipitation between ground observation and satellite inversion in China based on optimal interpolation method. Acta Meteorol. Sin. 2012, 70, 1381–1389. (In Chinese) [Google Scholar]
- Shen, Y.; Zhao, P.; Pan, Y.; Yu, J. A high spatiotemporal gauge-satellite merged precipitation analysis over China. J. Geophys. Res. Atmos. 2014, 119, 3063–3075. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, J.; Zhu, A.X.; Sheng, M.; Duan, Z. Spatial Distribution of Diurnal Rainfall Variation in Summer over China. J. Hydrometeorol. 2018, 19, 667–678. [Google Scholar] [CrossRef]
- Jin, X.; Wu, T.; Li, L. The quasi-stationary feature of nocturnal precipitation in the Sichuan Basin and the role of the Tibetan Plateau. Clim. Dyn. 2013, 41, 977–994. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, D.L.; Xia, R.; Qian, T. Diurnal Variations of Presummer Rainfall over Southern China. J. Clim. 2017, 30, 755–773. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO IRRIGATION and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Xiao, X.; He, L.; Salas, W.; Li, C.; Moore, B.; Zhao, R.; Frolking, S.; Boles, S. Quantitative relationships between field-measured leaf area index and vegetation index derived from VEGETATION images for paddy rice fields. Int. J. Remote Sens. 2002, 23, 3595–3604. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Menarguez, M.A.; Zhang, G.; Qin, Y.; Thau, D.; Biradar, C.; Moore, B. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sens. Environ. 2016, 185, 142–154. [Google Scholar] [CrossRef]
- Martínez-Fernández, J.; González-Zamora, A.; Sánchez, N.; Gumuzzio, A.; Herrero-Jiménez, C.M. Satellite soil moisture for agricultural drought monitoring: Assessment of the SMOS derived soil moisture Deficit Index. Remote Sens. Environ. 2016, 177, 277–286. [Google Scholar] [CrossRef]
- Brocca, L.; Pellarin, T.; Crow, W.T.; Ciabatta, L.; Massari, C.; Ryu, D.; Su, C.H.; Rüdiger, C.; Kerr, Y. Rainfall estimation by inverting SMOS soil moisture estimates: A comparison of different methods over Australia. J. Geophys. Res. Atmos. 2016, 121, 12062–12079. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Zhu, A.X. A personal construct-based knowledge acquisition process for natural resource mapping. Int. J. Geogr. Inf. Syst. 1999, 13, 119–141. [Google Scholar] [CrossRef]
- Zhu, A.X.; Hudson, B.; Burt, J.; Lubich, K.; Simonson, D. Soil mapping using GIS, expert knowledge, and fuzzy logic. Soil Sci. Soc. Am. J. 2001, 65, 1463–1472. [Google Scholar] [CrossRef]
- Porporato, A.; Daly, E.; Rodriguez-Iturbe, I. Soil moisture balance and ecosystem response to climate change. Am. Nat. 2004, 164, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Brocca, L.; Ciabatta, L.; Massari, C.; Moramarco, T.; Hahn, S.; Hasenauer, S.; Kidd, R.; Dorigo, W.; Wagner, W.; Levizzani, V. Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. J. Geophys. Res. Atmos. 2014, 119, 5128–5141. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Wood, E.F. Multiscale modeling of spatially variable water and energy balance processes. Water. Resour. Res. 1994, 30, 3061–3078. [Google Scholar] [CrossRef]
- Dari, J.; Brocca, L.; Quintana-Segui, P.; Escorihuela, M.J.; Stefan, V.; Morbidelli, R. Exploiting High-Resolution Remote Sensing Soil Moisture to Estimate Irrigation Water Amounts over a Mediterranean Region. Remote Sens. 2020, 12, 2593. [Google Scholar] [CrossRef]
- Zhu, L.; Si, R.; Shen, X.; Walker, J.P. An advanced change detection method for time-series soil moisture retrieval from Sentinel-1. Remote Sens. Environ. 2022, 279, 113137. [Google Scholar] [CrossRef]
- Zhu, L.; Yuan, S.; Liu, Y.; Chen, C.; Walker, J.P. Time series soil moisture retrieval from SAR data: Multi-temporal constraints and a global validation. Remote Sens. Environ. 2023, 287, 113466. [Google Scholar] [CrossRef]
- Zhu, L.; Gu, Z.; Tian, G.; Zhang, J. A New Method for Estimating Irrigation Water Use via Soil Moisture. Agriculture 2023, 13, 757. [Google Scholar] [CrossRef]
Region | Area (Ten Thousand km2) | 2016 (A Hundred Million m3) | 2017 (A Hundred Million m3) |
---|---|---|---|
Sanmenxia | 1.03 | 1.547 | 1.444 |
Xinyang | 1.89 | 10.7 | 10.05 |
Nanyang | 2.66 | 13.106 | 13.15 |
Zhoukou | 1.20 | 13.021 | 11.34 |
Shangqiu | 1.07 | 10.426 | 9.16 |
Anyang | 0.56 | 7.905 | 8.79 |
Pingdingshan | 0.79 | 3.444 | 3.07 |
Kaifeng | 0.63 | 9.08 | 9.12 |
Xinxiang | 0.82 | 12.052 | 14.52 |
Iuoyang | 1.52 | 4.925 | 4.92 |
Iuohe | 0.26 | 1.643 | 1.49 |
Puyang | 0.42 | 9.66 | 9.84 |
Jiaozuo | 0.41 | 8.588 | 8.59 |
Xuchang | 0.50 | 4.023 | 3.56 |
Zhengzhou | 0.74 | 5.498 | 5.44 |
Zhumadian | 1.51 | 6.041 | 4.59 |
Hebi | 0.23 | 3.043 | 2.81 |
Year | Statistical Value (Billion m3) | This Method (Billion m3) | Relative Deviation (%) | Comparison Method (Billion m3) | Relative Deviation (%) |
---|---|---|---|---|---|
2016 | 10.01 | 5.18 | −48% | 17.2 | 72% |
2017 | 9.85 | 6.35 | −35% | 18.25 | 85% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Wu, H.; Li, M.; Dou, C.; Zhu, A.-X. Estimation of Irrigation Water Use by Using Irrigation Signals from SMAP Soil Moisture Data. Agriculture 2023, 13, 1709. https://doi.org/10.3390/agriculture13091709
Zhu L, Wu H, Li M, Dou C, Zhu A-X. Estimation of Irrigation Water Use by Using Irrigation Signals from SMAP Soil Moisture Data. Agriculture. 2023; 13(9):1709. https://doi.org/10.3390/agriculture13091709
Chicago/Turabian StyleZhu, Liming, Huifeng Wu, Min Li, Chaoyin Dou, and A-Xing Zhu. 2023. "Estimation of Irrigation Water Use by Using Irrigation Signals from SMAP Soil Moisture Data" Agriculture 13, no. 9: 1709. https://doi.org/10.3390/agriculture13091709
APA StyleZhu, L., Wu, H., Li, M., Dou, C., & Zhu, A.-X. (2023). Estimation of Irrigation Water Use by Using Irrigation Signals from SMAP Soil Moisture Data. Agriculture, 13(9), 1709. https://doi.org/10.3390/agriculture13091709