Miscanthus-Derived Biochar Enhanced Soil Fertility and Soybean Growth in Upland Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biochar Preparation and Characterization
2.2. Field Experiment
2.3. Chemical Properties of Soil and Enzyme Activity Assays
2.4. 16.S rRNA Gene Sequence Analysis of the Microorganism
2.5. Soybean Growth and Yield Measurement
2.6. Statistical Analysis
3. Results
3.1. Changes in Soil Properties following the Application of Miscanthus Biochar
3.2. Effect of Miscanthus Biochar on the Diversity and Community of Soil Bacteria
3.3. Root Development of Soybean following the Amendment of Miscanthus Biochar
3.4. Growth Characteristics and Yield of Soybean by Amendment of Miscanthus Biochar
4. Discussion
4.1. Characteristics of Miscanthus Biochar
4.2. Comparison of Soil Properties Depending on Biochar Amendment
4.3. Response of Soil Microbial Community Structure and Diversity to Biochar Amendment
4.4. Effects of Miscanthus Biochar on Root Development and Soybean Yield
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, B.P.; Cowie, A.L.; Smernik, R.J. Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environ. Sci. Technol. 2012, 46, 11770–11778. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Chen, C.; Chen, X.; Hopkins, I.; Zhang, X.; Han, Z.; Jiang, F.; Billy, G. The crucial factors of soil fertility and rapeseed yield—A five year field trial with biochar addition in upland red soil, China. Sci. Total Environ. 2019, 649, 1467–1480. [Google Scholar] [CrossRef] [PubMed]
- Laird, D.; Fleming, P.; Wang, B.; Horton, R.; Karlen, D. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 2010, 158, 436–442. [Google Scholar] [CrossRef]
- Yan, P.; Shen, C.; Zou, Z.; Fu, J.; Li, X.; Zhang, L.; Zhang, L.; Han, W.; Fan, L. Biochar stimulates tea growth by improving nutrients in acidic soil. Sci. Hortic. 2021, 283, 110078. [Google Scholar] [CrossRef]
- Adebajo, S.O.; Oluwatobi, F.; Akintokun, P.O.; Ojo, A.E.; Akintokun, A.K.; Gbodope, I.S. Impacts of rice-husk biochar on soil microbial biomass and agronomic performances of tomato (Solanum lycopersicum L.). Sci. Rep. 2022, 12, 1787. [Google Scholar] [CrossRef]
- Demisie, W.; Liu, Z.; Zhang, M. Effect of biochar on carbon fractions and enzyme activity of red soil. Catena 2014, 121, 214–221. [Google Scholar] [CrossRef]
- Wang, X.; Song, D.; Liang, G.; Zhang, Q.; Ai, C.; Zhou, W. Maize biochar addition rate influences soil enzyme activity and microbial community composition in a fluvo-aquic soil. Appl. Soil Ecol. 2015, 96, 265–272. [Google Scholar] [CrossRef]
- Jing, Y.; Zhang, Y.; Han, I.; Wang, P.; Mei, Q.; Huang, Y. Effects of different straw biochars on soil organic carbon, nitrogen, available phosphorus, and enzyme activity in paddy soil. Sci. Rep. 2020, 10, 8837. [Google Scholar] [CrossRef]
- Li, Z.; Song, Z.; Singh, B.P.; Wang, H. The impacts of crop residue biochars on silicon and nutrient cycles in croplands. Sci. Total Environ. 2019, 659, 673–680. [Google Scholar] [CrossRef]
- Smider, B.; Singh, B. Agronomic performance of a high ash biochar in two contrasting soils. Agric. Ecosyst. Environ. 2014, 191, 99–107. [Google Scholar] [CrossRef]
- Clifton-Brown, J.; Hastings, A.; Mos, M.; Mccalmont, J.P.; Ashman, C.; Awty-Carroll, D.; Cerazy, J.; Chiang, Y.C.; Cosentino, S.; Cracroft-Eley, W.; et al. Progress in upscailing Miscanthus biomass production for the European bio-economy with seed-based hybrids. GCB Bioenergy 2017, 9, 6–17. [Google Scholar] [CrossRef]
- El Hage, R.; Khalaf, Y.; Lacoste, C.; Nakhl, M.; Lacroix, P.; Bergeret, A. A flame retarded chitosan binder for insulating miscanthus/recycled textile fibers reinforced biocomposites. J. Appl. Polym. Sci. 2019, 136, 47306. [Google Scholar] [CrossRef]
- Eschenhagen, A.; Raj, M.; Rodrigo, N.; Zamora, A.; Labonne, L.; Evon, P.; Welemane, H. Investigation of Miscanthus and Sunflower stalk fiber-reinforced composites for insulation applications. Adv. Civ. Eng. 2019, 2019, 9328087. [Google Scholar] [CrossRef]
- Van Weyenberg, S.; Ulens, T.; De Reu, K.; Zwertvaegher, I.; Demeyer, P.; Pluym, L. Feasibility of Miscanthus as alternative bedding for dairy cows. Vet. Med. 2015, 60, 121–132. [Google Scholar] [CrossRef]
- Lee, Y.; Eum, P.-R.-B.; Rye, C.; Park, Y.-K.; Jung, J.-H.; Hyun, S. Characteristics of biochar produced from slow pyrolysis of Geodae-Uksae 1. Bioresour. Technol. 2013, 130, 345–350. [Google Scholar] [CrossRef]
- Mimmo, T.; Panzacchi, P.; Baratieri, M.; Davies, C.A.; Tonon, G. Effect of pyrolysis temperature on miscanthus (Miscahthus × giganteus) biochar physical, chemical and functional properties. Biomass Bioenergy 2014, 62, 149–157. [Google Scholar] [CrossRef]
- Rasse, D.P.; Budai, A.; O’Toole, A.; Ma, X.; Rumpel, C.; Abiven, S. Persistence in soil of Miscanthus biochar in laboratory and field conditions. PLoS ONE 2017, 12, e0184383. [Google Scholar] [CrossRef]
- Khan, W.-D.; Ramzani, P.M.A.; Anjum, S.; Abbas, F.; Iqbal, M.; Yasar, A.; Ihsan, M.Z.; Anwar, M.N.; Baqar, M.; Tauqeer, H.M.; et al. Potential of miscanthus biochar to improve sandy soil health, in situ nickel immobilization in soil and nutritional quality of spinach. Chemosphere 2017, 185, 1144–1156. [Google Scholar] [CrossRef]
- Deak, E.A.; Martin, T.N.; Fipke, G.M.; Stecca, J.D.L.; Tabaldi, L.A.; Nunes, U.R.; Winck, J.E.M.; Grando, L.F.T. Effects of soil temperature and moisture on biological nitrogen fixation in soybean crop. Aust. J. Crop Sci. 2019, 13, 1327–1334. [Google Scholar] [CrossRef]
- McCoy, J.M.; Kaur, G.; Golden, B.R.; Orlowski, J.M.; Cook, D.R.; Bond, J.A.; Cox, M.S. Nitrogen fertilization of soybean affects root growth and nodulation on two soil types in Mississippi. Commun. Soil Sci. Plant Anal. 2018, 49, 181–187. [Google Scholar] [CrossRef]
- Mwamlima, L.H.; Ouma, J.P.; Cheruiyot, E.K. Soybean (Glycine max (L) Merroll) root growth and nodulation response to different soil moisture regimes. J. Crop Sci. Biotech. 2019, 22, 153–159. [Google Scholar] [CrossRef]
- Akhtar, K.; Wang, W.; Ren, G.; Khan, A.; Feng, Y.; Yang, G.; Wang, H. Integrated use of straw mulch with nitrogen fertilizer improves soil functionality and soybean production. Environ. Int. 2019, 132, 105092. [Google Scholar] [CrossRef] [PubMed]
- Jarecki, W.; Buczek, J.; Bobrecka-Jamro, D. Response of soybean (Glycine max (L.) Merr.) to bacterial soil inoculants and foliar fertilization. Plant Soil Environ. 2016, 62, 422–427. [Google Scholar] [CrossRef]
- Xiu, L.; Zhang, W.; Wu, D.; Sun, Y.; Zhang, H.; Gu, W.; Wang, Y.; Meng, J.; Chen, W. Biochar can improve biological nitrogen fixation by altering the root growth strategy of soybean in Albic soil. Sci. Total Environ. 2021, 773, 144564. [Google Scholar] [CrossRef]
- Arabi, Z.; Eghtedaey, H.; Gharehchmaghloo, B.; Faraji, A. Effects of biochar and bio-fertilizer on yield and qualitative properties of soybean and some chemical properties of soil. Arab. J. Geosci. 2018, 11, 672. [Google Scholar] [CrossRef]
- Jabborova, D.; Wirth, S.; Kannepalli, A.; Narimanov, A.; Desouky, S.; Davranov, K.; Sayyed, R.; El Enshasy, H.; Malek, R.A.; Syed, A.; et al. Co-inoculation of rhizobacteria and biochar application improves growth and nutrientsin soybean and enriches soil nutrients and enzymes. Agronomy 2020, 10, 1142. [Google Scholar] [CrossRef]
- Yin, S.; Suo, F.; Kong, Q.; You, X.; Zhang, X.; Yuan, Y.; Yu, X.; Cheng, Y.; Sun, R.; Zheng, H.; et al. Biochar enhanced growth and biological nitrogen fixation of wild soybean (Glycine max subsp. soja Siebold & Zucc.) in a coastal soil of China. Agriculture 2021, 11, 1246. [Google Scholar]
- Wu, D.; Zhang, W.; Xiu, L.; Sun, Y.; Gu, W.; Wang, Y.; Zhang, H.; Chen, W. Soybean yield response of biochar-regulated soil properties and root growth strategy. Agronomy 2022, 12, 1412. [Google Scholar] [CrossRef]
- Spokas, K.A. Review of the stability of biochar in soils: Predictability of O:C molar ratios. Carbon Manag. 2010, 1, 289–303. [Google Scholar] [CrossRef]
- Kang, B.K.; Seo, J.H.; Kim, H.T.; Baek, I.Y.; Choi, M.S.; Park, C.H.; Yun, H.T.; Shin, S.O.; Kim, H.S.; Gwak, D.Y.; et al. Semi-Early Maturing, Shattering Resistant, Large Seed, and High Yield Soybean Cultivar, “Seonyu2ho”, for Double Cropping. Korean J. Breed. Sci. 2022, 54, 411–420. [Google Scholar] [CrossRef]
- National Institute of Agricultural Science and Technology (NIAST). Methods of Soil and Plant Analysis; Rural Development Administration: Suwon, Republic of Korea, 2000; pp. 103–146. [Google Scholar]
- Sukul, P. Enzymatic acitivities and microbial biomass in soil as influenced by metalaxyl residues. Soil Biol. Biochem. 2006, 38, 320–326. [Google Scholar] [CrossRef]
- Kim, K.H.; Kim, J.-Y.; Cho, T.-S.; Choi, J.W. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresour. Technol. 2012, 118, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Yu, S.; Ge, S.; Chen, X.; Ge, X.; Chen, M. Hydrothermal carbonization of medical wastes and lignocellulosic biomass for solid fuel production from lab-scale to pilot-scale. Energy 2017, 118, 312–323. [Google Scholar] [CrossRef]
- Kaewtrakulchai, N.; Fuji, M.; Eiad-ua, A. Investigation of parametric effects on fuel characteristics of biochar obtained from agricultural wastes pyrolysis. J. Mater. Sci. Appl. Energ. 2018, 7, 333–339. [Google Scholar]
- Venkatesh, G.; Gopinath, K.A.; Reddy, K.S.; Reddy, B.S.; Prabhakar, M.; Srinivasarao, C.; Kumari, V.; Singh, V.K. Characterization of biochar derived from crop residues for soil amendment, carbon sequestration and energy use. Sustainability 2022, 14, 2295. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, J.; Wang, S.; Xing, G. Successive straw biochar application as a strategy to sequester carbon and improve fertility: A pot experiment with two rice/wheat rotations in paddy soil. Plant Soil 2014, 378, 279–294. [Google Scholar] [CrossRef]
- Oguntunde, P.G.; Fosu, M.; Ajayi, A.E.; van de Giesen, N. Effects of charcoal production on maize yield, chemical properties, and texture of soil. Biol. Fertil Soils 2004, 39, 295–299. [Google Scholar] [CrossRef]
- Warnock, D.D.; Mummey, D.L.; McBride, B.; Major, J.; Lehmann, J.; Rilling, M. Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abendances in roots and soils: Results from growth-chamber and field experiments. Appl. Soil Ecol. 2010, 46, 450–456. [Google Scholar] [CrossRef]
- Chintala, R.; Schumacher, T.E.; Kemar, S.; Malo, D.D.; Rice, J.A.; Bleakley, B.; Chilom, G.; Clay, D.E.; Julson, J.L.; Papiernik, S.K.; et al. Molecular characterization of biochars and their influence on microbiological properties of soil. J. Hazard. Mater. 2014, 279, 244–256. [Google Scholar] [CrossRef]
- Cui, H.-J.; Wang, M.K.; Fu, M.-L.; Ci, E. Enhancing phosphorus availability in phosphorus-fertilized zones by reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar. J. Soils Sediments 2011, 11, 1135–1141. [Google Scholar] [CrossRef]
- Schofiled, H.K.; Pettitt, T.R.; Tappin, A.D.; Rollinson, G.K.; Fitzsimons, M.F. Biochar incorporation increased nitrogen and carbon retention in a waste-derived soil. Sci. Total Environ. 2019, 690, 1228–1236. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Bahar, M.M.; Sarkar, B.; Donne, S.W.; Ok, Y.S.; Palansooriya, K.N.; Kirkham, M.B.; Chowdhury, S.; Bolan, N. Biochar and its importance on nutrient dynamics in soil and plant. Biochar 2020, 2, 379–420. [Google Scholar] [CrossRef]
- Liang, B.; Lehmann, J.; Solomon, D.; Kinyangi, J.; Grossman, J.; O’Neill, B.; Skjemstad, J.O.; Thìes, J.; Luizão, F.J.; Petersen, J.; et al. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 2006, 70, 1719–1730. [Google Scholar] [CrossRef]
- Mukherjee, A.; Zimmerman, A.R.; Harris, W. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 2011, 163, 247–255. [Google Scholar] [CrossRef]
- Alkorta, I.; Aizpurua, A.; Riga, P.; Albizu, I.; Amézaga, I.; Garbisu, C. Soil enzyme activities as biological indicators of soil health. Rev. Environ. Health 2003, 18, 65–73. [Google Scholar] [CrossRef]
- Das, S.K.; Varma, A. Role of enzymes in maintaining soil health. In Soil Enzymology; Shukla, G., Varma, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 25–42. [Google Scholar]
- Gascó, G.; Paz-Ferreiro, J.; Cely, P.; Plaza, C.; Méndez, A. Influence of pig manure and its biochar on soil CO2 emissions and soil enzymes. Ecol. Eng. 2016, 95, 19–24. [Google Scholar] [CrossRef]
- Vithanage, M.; Bandara, T.; Al-Wabel, M.I.; Abduljabbar, A.; Usman, A.R.A.; Ahmad, M.; Ok, Y.S. Soil enzyme activities in waste biochar amended multi-metal contaminated soil; effect of different pyrolysis temperature and application rates. Commun. Soil Sci. Plant Anal. 2018, 49, 635–643. [Google Scholar] [CrossRef]
- Futa, B.; Oleszczuk, P.; Andruszczak, S.; Kwiecińska-Poppe, E.; Kraska, P. Effect of natural aging of biochar on soil enzymatic activity and physicochemical properties in long-term field experiment. Agronomy 2020, 10, 449. [Google Scholar] [CrossRef]
- Fontaine, S.; Mariotti, A.; Abbadie, L. The priming effect of organic matter: A question of microbial competiton? Soil Biol. Biochem. 2003, 35, 837–843. [Google Scholar] [CrossRef]
- Moeskops, B.; Buchan, D.; Sleutel, S.; Herawaty, L.; Husen, E.; Saraswati, R.; Setyorini, D.; De Neve, S. Soil microbial communities and activities under intensive organic and conventional vegetable farming in West Java, Indonesia. Appl. Soil Ecol. 2010, 45, 112–120. [Google Scholar] [CrossRef]
- Yuan, B.-C.; Yue, D.-X. Soil microbial and enzymatic activities across a chronosequence of Chinese pine plantation development on the loess plateau of China. Pedosphere 2012, 22, 1–12. [Google Scholar] [CrossRef]
- Kirchman, D.L. Processes in Microbial Ecology; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Dai, Z.; Barberán, A.; Li, Y.; Brookes, P.C.; Xu, J. Bacterial community composition associated with pyrogenic organic matter (biochar) varies with pyrolysis temperature and colonization environment. mSphere 2017, 2, e00085-17. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Zhang, J.; Gao, L.; Wang, R.; Gao, J.; Dai, Y.; Li, W.; Shen, G.; Kong, F.; Zhang, J. Effect of straw biochar amendment on tobacco growth, soil properties, and rhizosphere bacterial communities. Sci. Rep. 2021, 11, 20727. [Google Scholar] [CrossRef]
- Hu, T.; Wei, J.; Du, L.; Chen, J.; Zhang, J. The effect of biochar on nitrogen availability and bacterial community in farmland. Ann. Microbiol. 2023, 73, 4. [Google Scholar] [CrossRef]
- Xu, H.-J.; Wang, X.-H.; Li, H.; Yao, H.-Y.; Su, J.-Q.; Zhu, Y.-G. Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape. Environ. Sci. Technol. 2014, 48, 9391–9399. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Gu, J.-D. Alteration of extracellular enzyme activity and microbial abundance by biochar addition: Implication for carbon sequestration in subtropical mangrove sediment. J. Environ. Manag. 2016, 182, 29–36. [Google Scholar] [CrossRef]
- Quilliam, R.S.; Glanville, H.C.; Wade, S.C.; Jones, D.L. Life in the ‘Charosphere’—Does biochar in agricultural soil provide a siginificant habitat for microorganisms? Soil Biol. Biochem. 2013, 65, 287–293. [Google Scholar] [CrossRef]
- Gomez, J.D.; Denef, K.; Stewart, C.E.; Zheng, J.; Cotrufo, M.F. Biochar addition rate influences soil microbial abundance and activity in temperate soils. Eur. J. Soil Sci. 2014, 65, 28–39. [Google Scholar] [CrossRef]
- Ward, N.L.; Challacombe, J.F.; Janssen, P.H.; Henrissat, B.; Coutinho, P.M.; Wu, M.; Xie, G.; Haft, D.H.; Sait, M.; Badger, J.; et al. Three genome from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl. Environ. Micobiol. 2009, 75, 2046–2056. [Google Scholar] [CrossRef]
- Hug, L.A.; Castelle, C.J.; Wrighton, J.C.; Thomas, B.C.; Sharon, I.; Frischkorn, K.R.; Willians, K.H.; Tringe, S.G.; Banfield, J.F. Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome 2013, 1, 22. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, S.; Liu, D.; Li, H.; Han, S.; Li, M. Study on influence mechanism of biochar on soil nitrogen conversion. Environ. Pollut. Bioavailab. 2022, 34, 419–432. [Google Scholar] [CrossRef]
- Wang, C.; Chen, D.; Shen, J.; Yuan, Q.; Fan, F.; Wei, W.; Li, Y.; Wu, J. Biochar alters soil microbial communities and potential functions 3–4 years after amendment in a double rice cropping system. Agric. Ecosyst. Envion. 2021, 311, 107291. [Google Scholar] [CrossRef]
- Yu, Z.; Chen, L.; Pan, S.; Li, Y.; Kuzyakov, Y.; Xu, J.; Brookes, P.C.; Luo, W. Feedstock determines biochar-induced soil priming effects by stimulating the activity of specific microorganisms. Eur. J. Soil Sci. 2018, 69, 521–534. [Google Scholar] [CrossRef]
- Slattery, J.F.; Coventry, D.R.; Slattery, W.J. Rhizobial ecology as affected by the soil environment. Aust. J. Exp. Agric. 2001, 41, 289–298. [Google Scholar] [CrossRef]
- Quilliam, R.S.; DeLuca, T.H.; Jones, D.L. Biochar application reduces nodulation but increases nitrogenase activity in clover. Plant Soil 2013, 366, 83–92. [Google Scholar] [CrossRef]
- Zhao, W.; Zhou, Q.; Tian, Z.; Cui, Y.; Liang, Y.; Wang, H. Apply biochar to ameliorate soda saline-alkali land, improve soil function and increase corn nutrient availability in the Songnen Plain. Sci. Total Environ. 2020, 722, 137428. [Google Scholar] [CrossRef]
- Mete, F.Z.; Mia, S.; Dijkstra, F.A.; Abuyusuf, M.; Hossain, A.S.M.I. Synergistic effects of biochar and NPK fertilizer on soybean yield in an alkaline soil. Pedosphere 2015, 25, 713–719. [Google Scholar] [CrossRef]
Soil Texture | pH | EC | OM | Avail. P2O5 | Ex. Ca | Ex. K | Ex. Mg |
---|---|---|---|---|---|---|---|
(1:5) | (dS/m) | (g/kg) | (mg/kg) | (cmolc/kg) | |||
Sandy loam | 7.7 ± 0.1 | 1.1 ± 0.1 | 13.3 ± 1.0 | 298.3 ± 33.9 | 7.6 ± 0.2 | 1.7 ± 0.0 | 2.5 ± 0.1 |
pH | EC | C | N | O | H | Atomic Ratio | |
---|---|---|---|---|---|---|---|
(1:20) | (dS/m) | wt (%) | O/C | H/C | |||
9.8 ± 0.0 | 7.5 ± 0.1 | 61.9 ± 0.2 | 0.5 ± 0.0 | 6.7 ± 0.4 | 1.8 ± 0.4 | 0.08 | 0.35 |
OM | Avail. P2O5 | Ex. Ca | Ex. K | Ex. Mg | |
---|---|---|---|---|---|
(g/kg) | (mg/kg) | (cmolc/kg) | |||
CON | 15.9 ± 0.8 c | 346.3 ± 48.7 c | 7.1 ± 0.0 c | 1.6 ± 0.1 c | 1.4 ± 0.1 b |
BC3 | 18.7 ± 0.8 b | 567.7 ± 1.2 b | 8.2 ± 0.1 b | 2.5 ± 0.1 a | 1.6 ± 0.0 a |
BC10 | 25.7 ± 0.6 a | 690.5 ± 6.2 a | 9.4 ± 0.2 a | 2.3 ± 0.0 b | 1.7 ± 0.0 a |
Richness Index | Diversity Index | |||||
---|---|---|---|---|---|---|
ACE | Chao 1 | Jackknife | OTUs | NPShannon | Shannon | |
CON | 4362.9 ± 795.2 n.s. | 4101.2 ± 766.4 n.s. | 4502.0 ± 881.0 n.s. | 3485.0 ± 800.6 n.s. | 6.8 ± 0.3 b | 6.6 ± 0.3 b |
BC3 | 4426.7 ± 374.8 | 4166.9 ± 369.9 | 4601.1 ± 457.5 | 3649.0 ± 525.7 | 7.2 ± 0.1 a | 7.0 ± 0.1 a |
BC10 | 4697.4 ± 447.6 | 4437.3 ± 461.3 | 4914.3 ± 529.0 | 3961.0 ± 570.4 | 7.2 ± 0.1 a | 7.1 ± 0.1 a |
Plant Height | Stem Diameter | No. of Nods | No. of Branches | No. of Seeds per Pod | |
---|---|---|---|---|---|
(cm) | (mm) | ||||
CON | 35.0 ± 1.9 a | 9.2 ± 1.1 b | 12.5 ± 0.7 n.s. | 5.1 ± 1.0 n.s. | 1.6 ± 0.1 n.s. |
BC3 | 31.9 ± 2.8 b | 9.4 ± 1.3 b | 12.4 ± 0.8 | 5.3 ± 1.0 | 1.5 ± 0.2 |
BC10 | 34.3 ± 2.6 a | 10.2 ± 1.1 a | 12.5 ± 1.1 | 5.7 ± 0.8 | 1.6 ± 0.0 |
Shoot Weight | No. of Pods per Plant | Weight of Pods per Plant | No. of Seeds per Plant | Weight of Seeds per Plant | Yield | |
---|---|---|---|---|---|---|
(g) | (g) | (g) | (kg/10a) | |||
CON | 7.0 ± 1.7 b | 53.9 ± 20.1 b | 34.1 ± 12.6 b | 84.4 ± 40.2 b | 19.9 ± 9.0 b | 189.744.1 b |
BC3 | 6.8 ± 1.4 b | 52.2 ± 17.1 b | 30.8 ± 9.7 b | 82.9 ± 31.3 b | 18.8 ± 6.6 b | 179.4 ± 14.5 b |
BC10 | 9.1 ± 2.3 a | 71.2 ± 14.5 a | 44.7 ± 11.0 a | 119.7 ± 23.0 a | 29.0 ± 7.1 a | 275.8 ± 17.2 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, D.-H.; Chang, D.-C.; Kim, K.-S.; Lee, J.-E.; Cha, Y.-L.; Jeong, J.-H.; Choi, J.-B.; Kim, S.-Y. Miscanthus-Derived Biochar Enhanced Soil Fertility and Soybean Growth in Upland Soil. Agriculture 2023, 13, 1738. https://doi.org/10.3390/agriculture13091738
An D-H, Chang D-C, Kim K-S, Lee J-E, Cha Y-L, Jeong J-H, Choi J-B, Kim S-Y. Miscanthus-Derived Biochar Enhanced Soil Fertility and Soybean Growth in Upland Soil. Agriculture. 2023; 13(9):1738. https://doi.org/10.3390/agriculture13091738
Chicago/Turabian StyleAn, Da-Hee, Dong-Chil Chang, Kwang-Soo Kim, Ji-Eun Lee, Young-Lok Cha, Jae-Hee Jeong, Ji-Bong Choi, and Soo-Yeon Kim. 2023. "Miscanthus-Derived Biochar Enhanced Soil Fertility and Soybean Growth in Upland Soil" Agriculture 13, no. 9: 1738. https://doi.org/10.3390/agriculture13091738
APA StyleAn, D. -H., Chang, D. -C., Kim, K. -S., Lee, J. -E., Cha, Y. -L., Jeong, J. -H., Choi, J. -B., & Kim, S. -Y. (2023). Miscanthus-Derived Biochar Enhanced Soil Fertility and Soybean Growth in Upland Soil. Agriculture, 13(9), 1738. https://doi.org/10.3390/agriculture13091738