Study on the Effect of pH on Rhizosphere Soil Fertility and the Aroma Quality of Tea Trees and Their Interactions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Tea Plantation and Sample Collection
2.2. Soil Chemical Index Determination and Fertility Evaluation
2.3. Extraction, Enrichment and GC-MS Analysis of the Volatile Compounds in Tea
2.4. Odor Activity Value (OAV) Calculation and Odor Characteristic Analysis of Compounds
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effect of Soil pH on Soil Fertility
3.2. Effect of Soil pH on Volatile Compounds in Tea Leaves
3.3. Effect of Soil pH on Odor Activity Value (OAV) of Key Compounds in Tea Leaves
3.4. Principal Component and Interaction Network Analysis of Different Indexes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mehra, A.; Baker, C.L. Leaching and bioavailability of aluminium, copper and manganese from tea (Camellia sinensis). Food Chem. 2017, 100, 1456–1463. [Google Scholar] [CrossRef]
- Mohammad, N.; Samar, M.; Alireza, I. Levels of Cu, Zn, Pb and Cd in the leaves of the tea plant (Camellia sinensis) and in the soil of Gilan and Mazandaran farms of Iran. Food Meas. 2014, 8, 277–282. [Google Scholar] [CrossRef]
- Lin, S.-X.; Liu, Z.-J.; Wang, Y.-C.; Li, J.Y.; Wang, G.-G.; Zhang, W.; Wang, H.-B.; He, H.-B. Soil acidification associated with changes in inorganic forms of N reduces the yield of tea (Camellia sinensis). Arch. Agron. Soil Sci. 2023, 69, 1660–1673. [Google Scholar] [CrossRef]
- Wang, H.-B.; Chen, X.-T.; Ding, L.; Ye, J.-H.; Jia, X.-L.; Kong, X.-H.; He, H.-B. Effect of soil acidification on yield and quality of tea tree in tea plantations from Anxi county, Fujian Province. J. Appl. Environ. Biol. 2018, 24, 1398–1403. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Hong, L.; Wang, Y.-C.; Yang, Y.-W.; Lin, L.-W.; Ye, J.-H.; Jia, X.-L.; Wang, H.-B. Effects of soil nitrogen and pH in tea plantation soil on yield and quality of tea leaves. Allelopathy J. 2022, 55, 51–60. [Google Scholar] [CrossRef]
- Bhargava, A.; Bansal, A.; Goyal, V.; Bansal, P. A review on tea quality and safety using emerging parameters. J. Food Meas. Charact. 2022, 16, 1291–1311. [Google Scholar] [CrossRef]
- Hazra, A.; Dasgupta, N.; Sengupta, C.; Das, S. Next generation crop improvement program: Progress and prospect in tea (Camellia sinensis (L.) O. Kuntze). Ann. Agrarian Sci. 2018, 16, 128–135. [Google Scholar] [CrossRef]
- Hu, Y.; Kang, Z. The rapid non-destructive detection of adulteration and its degree of Tieguanyin by fluorescence hyperspectral technology. Molecules 2022, 27, 1196. [Google Scholar] [CrossRef]
- Wang, H.-B.; Lin, L.-W.; Wang, Y.-H. Technical Specification for Tea Production, Processing and Safety Inspection; Xiamen University Press: Xiamen, China, 2020. [Google Scholar]
- Xiong, Y.; Zhang, P.; Johnson, S.; Luo, J.; Fang, Z. Comparison of the phenolic contents, antioxidant activity and volatile compounds of different sorghum varieties during tea processing. J. Sci. Food Agric. 2020, 100, 978–985. [Google Scholar] [CrossRef]
- Zhai, X.; Zhang, L.; Granvogl, M.; Ho, C.-T.; Wan, X. Flavor of tea (Camellia sinensis): A review on odorants and analytical techniques. Compr. Rev. Food Sci. Food Saf. 2022, 21, 3867–3909. [Google Scholar] [CrossRef]
- Guo, X.-Y.; Schwab, W.; Ho, C.-T.; Song, C.-K.; Wan, X.-C. Characterization of the aroma profiles of oolong tea made from three tea cultivars by both GC-MS and GC-IMS. Food Chem. 2022, 376, 131933. [Google Scholar] [CrossRef]
- Hu, W.-W.; Wang, G.-G.; Lin, S.-X.; Liu, Z.-J.; Wang, P.; Li, J.-Y.; Zhang, Q.; He, H.-B. Digital evaluation of aroma intensity and odor characteristics of tea with different types—Based on OAV-splitting method. Foods 2022, 11, 2204. [Google Scholar] [CrossRef]
- Wang, M.-Q.; Ma, W.-J.; Shi, J.; Zhu, Y.; Lin, Z.; Lv, H.-P. Characterization of the key aroma compounds in Longjing tea using stir bar sorptive extraction (SBSE) combined with gas chromatography-mass spectrometry (GC–MS), gas chromatography-olfactometry (GC-O), odor activity value (OAV), and aroma recombination. Food Res. Int. 2020, 130, 108908. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Liu, Z.; Yu, H.-Y.; Lou, X.-M.; Huang, J.; Yuan, H.-B.; Wang, B.; Xu, Z.-Y.; Tian, H.-X. Characterization of six lactones in cheddar cheese and their sensory interactions studied by odor activity values and feller’s additive mode. J. Agric. Food Chem. 2022, 70, 301–308. [Google Scholar] [CrossRef]
- Gholoubi, A.; Emami, H.; Alizadeh, A. Soil quality change 50 years after forestland conversion to tea farming. Soil Res. 2018, 56, 509–517. [Google Scholar] [CrossRef]
- Lin, W.; Lin, M.; Zhou, H.; Wu, H.; Li, Z.; Lin, W. The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PLoS ONE 2019, 14, e0217018. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Li, C.; Wang, S.; Zhou, B.; Mao, Y.; Rensing, C.; Xing, S. Influence of biochar and biochar-based fertilizer on yield, quality of tea and microbial community in an acid tea orchard soil. Appl. Soil Ecol. 2021, 166, 104005. [Google Scholar] [CrossRef]
- Oladele, S.O.; Adeyemo, A.J.; Awodun, M.A. Influence of rice husk biochar and inorganic fertilizer on soil nutrients availability and rain-fed rice yield in two contrasting soils. Geoderma 2019, 336, 1–11. [Google Scholar] [CrossRef]
- Ye, J.; Wang, Y.; Wang, Y.; Hong, L.; Kang, J.; Jia, Y.; Li, M.; Chen, Y.; Wu, Z.; Wang, H. Improvement of Soil Acidification and Ammonium Nitrogen Content in Tea Plantation by Long-term Use of Organic Fertilizer. Plant Biol. 2023, 1–15. [Google Scholar] [CrossRef]
- Ding, L.; Hong, L.; Wang, Y.; Wang, Y.; Lin, S.; Li, M.; Yang, J.; Ye, J.; Jia, X.; Wang, H. Allelopathic effects of soil pH on nitrogen uptake, its utilization efficiency and soil enzymes in tea bush soil. Allelopathy J. 2022, 56, 181–192. [Google Scholar] [CrossRef]
- NY/T 853-2004; Environmental Requirement for Growing Area of Tea. China Standards Press: Beijing, China, 2015; pp. 1–7.
- Wang, Y.; Wang, Y.; Hong, L.; Wang, Y.; Huang, Y.; Chen, Y.; Li, M.; Jia, Y.; Wu, Z.; Wang, H. Digital evaluation of tea aroma intensity and odor characteristics changes during processing. JSFA Rep. 2023, 3, 60–71. [Google Scholar] [CrossRef]
- Lin, X.-Y. Perfumery, 3rd ed.; Chemical Industry Press: Beijing, China, 2018. [Google Scholar]
- Van, G.L.J. Compilations of Flavor Threshold Values in Water and Other Media; Boelens Aroma Chemical Information Services: Houten, The Netherlands, 2003. [Google Scholar]
- Van, G.L.J. Compilations of Odour Threshold Values in Air, Water and Other Media, 2nd enlarged and revised ed.; Boelens Aroma Chemical Information Services: Houten, The Netherlands, 2011. [Google Scholar]
- Bedolla-Rivera, H.I.; Xochilt Negrete-Rodríguez, M.D.L.L.; Medina-Herrera, M.D.R.; Gámez-Vázquez, F.P.; Álvarez-Bernal, D.; Samaniego-Hernández, M.; Gámez-Vázquez, A.J.; Conde-Barajas, E. Development of a soil quality index for soils under different agricultural management conditions in the central lowlands of Mexico: Physicochemical, biological and ecophysiological indicators. Sustainability 2020, 12, 9754. [Google Scholar] [CrossRef]
- Kars, N.; Ekberli, İ. The relation between yield indices of maize plant and soil physicochemical characteristics. Eurasian J. Soil Sci. 2020, 9, 52–59. [Google Scholar] [CrossRef]
- Mhlanga, B.; Pellegrino, E.; Thierfelder, C.; Ercoli, L. Conservation agriculture practices drive maize yield by regulating soil nutrient availability, arbuscular mycorrhizas, and plant nutrient uptake. Field Crop. Res. 2022, 277, 108403. [Google Scholar] [CrossRef]
- Ye, J.; Wang, Y.; Kang, J.; Chen, Y.; Hong, L.; Li, M.; Jia, Y.; Wang, Y.; Jia, X.; Wu, Z.; et al. Effects of long-term use of organic fertilizer with different dosages on soil improvement, nitrogen transformation, tea yield and quality in acidified tea plantations. Plants 2022, 12, 122. [Google Scholar] [CrossRef]
- Ye, J.; Wang, Y.; Lin, S.; Wang, Y.; Chen, P.; Hong, L.; Jia, X.; Kang, J.; Wu, Z.; Wang, H. Metabolomics analysis of the effect of acidification on rhizosphere soil microecosystem of tea tree. Front. Plant Sci. 2023, 14, 1137465. [Google Scholar] [CrossRef]
- Shao, C.-Y.; Zhang, C.-Y.; Lv, Z.-D.; Shen, C.-W. Pre- and post-harvest exposure to stress influence quality-related metabolites in fresh tea leaves (Camellia sinensis). Sci. Hortic. 2021, 281, 109984. [Google Scholar] [CrossRef]
- Valifard, M.; Mohsenzadeh, S.; Kholdebarin, B.; Rowshan, V. Effects of salt stress on volatile compounds, total phenolic content and antioxidant activities of Salvia mirzayanii. S. Afr. J. Bot. 2014, 93, 92–97. [Google Scholar] [CrossRef]
- Caser, M.; Chitarra, W.; D’Angiolillo, F.; Perrone, I.; Demasi, S.; Lovisolo, C.; Pistelli, L.; Pistelli, L.; Scariot, V. Drought stress adaptation modulates plant secondary metabolite production in Salvia dolomitica Codd. Ind. Crop. Prod. 2019, 129, 85–96. [Google Scholar] [CrossRef]
- Huang, W.; Lin, M.; Liao, J.; Li, A.; Tsewang, W.; Chen, X.; Sun, B.; Liu, S.; Zheng, P. Effects of potassium deficiency on the growth of tea (Camelia sinensis) and strategies for optimizing potassium levels in soil: A critical review. Horticulturae 2022, 8, 660. [Google Scholar] [CrossRef]
- Das, S.; Goswami, M.; Yadav, R.N.S.; Bandyopadhyay, T. Quantitative estimation of terpenoid content in some tea cultivars of north east India and their in vitro cell cultures using an optimized spectrophotometric method. J. Adv. Sci. Res. 2022, 13, 112–117. [Google Scholar] [CrossRef]
- Yin, Z.; Kang, S.-Y.; Yan, H.; Lv, H.-P.; Zhang, Y.; Lin, Z. Enantiomeric distributions of volatile lactones and terpenoids in white teas stored for different durations. Food Chem. 2020, 320, 126632. [Google Scholar] [CrossRef]
- Deng, H.-L.; Chen, S.-S.; Zhou, Z.-W.; Li, X.-L.; Chen, S.; Hu, J.; Lai, Z.-X.; Sun, Y. Transcriptome analysis reveals the effect of short-term sunlight on aroma metabolism in postharvest leaves of oolong tea (Camellia sinensis). Food Res. Int. 2020, 137, 109347. [Google Scholar] [CrossRef] [PubMed]
- Di, T.; Zhao, L.; Chen, H.; Qian, W.; Wang, P.; Zhang, X.; Xia, T. Transcriptomic and metabolic insights into the distinctive effects of exogenous melatonin and gibberellin on terpenoid synthesis and plant hormone signal transduction pathway in Camellia sinensis. J. Agric. Food Chem. 2019, 67, 4689–4699. [Google Scholar] [CrossRef]
- Yin, X.; Huang, J.-A.; Huang, J.-A.; Wu, W.-L.; Tong, T.; Liu, S.-J.; Zhou, L.-Y.; Liu, Z.-H.; Zhang, S. Identification of volatile and odor-active compounds in Hunan black tea by SPME/GC-MS and multivariate analysis. LWT 2022, 164, 113656. [Google Scholar] [CrossRef]
- Wang, H.; Chen, X.; Wang, Y.; Ye, J.; Jia, X.; Zhang, Q.; He, H. Effects of tea garden soil on aroma components and related gene expression in tea leaves. J. Appl. Bot. Food Qual. 2020, 93, 105–111. [Google Scholar] [CrossRef]
- Patton, S.; Josephson, D.V. A method for determining significance of volatile flavor compounds in foods. J. Food Sci. 1957, 22, 316–318. [Google Scholar] [CrossRef]
- Ye, Y.-T.; Wang, L.-X.; Zhan, P.; Tian, H.-L.; Liu, J.-S. Characterization of the aroma compounds of millet huangjiu at different fermentation stage. Food Chem. 2022, 366, 130691. [Google Scholar] [CrossRef]
- Li, Z.-W.; Wang, J.-H. Identification and similarity analysis of aroma substances in main types of Fenghuang Dancong tea. PLoS ONE 2020, 15, e0244224. [Google Scholar] [CrossRef]
- Zhou, L.-J.; Yu, C.; Cheng, B.-X.; Wan, H.-H.; Luo, L.; Pan, H.-T.; Zhang, Q.-X. Volatile compound analysis and aroma evaluation of tea-scented roses in China. Ind. Crops Prod. 2020, 155, 112735. [Google Scholar] [CrossRef]
- Xiao, M.; Zheng, F.; Xiao, M.; Qi, A.; Wang, H.; Dai, Q. Contribution of aroma-active compounds to the aroma of Lu’an Guapian tea. Flavour Frag. J. 2022, 37, 83–95. [Google Scholar] [CrossRef]
- Huang, W.-J.; Fang, S.-M.; Wang, J.; Zhuo, C.; Luo, Y.-H.; Yu, Y.-L.; Li, L.-Q.; Wang, Y.-J.; Deng, W.-W.; Ning, J.-M. Sensomics analysis of the effect of the withering method on the aroma components of Keemun black tea. Food Chem. 2022, 395, 133549. [Google Scholar] [CrossRef]
- Niu, Y.; Ma, Y.; Xiao, Z.; Zhu, J.; Xiong, W.; Chen, F. Characterization of the key aroma compounds of three kinds of chinese representative black tea and elucidation of the perceptual interactions of methyl salicylate and floral odorants. Molecules 2022, 27, 1631. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.-X.; Wu, Q.-Y.; Zhou, Z.-E.; Yang, Y.; Hu, Q.-C.; Deng, H.-L.; Zheng, Y.-C.; Bi, W.-J.; Liu, Z.-Z.; Sun, Y. Effects of turning over intensity on fatty acid metabolites in postharvest leaves of Tieguanyin oolong tea (Camellia sinensis). PeerJ 2022, 10, e13453. [Google Scholar] [CrossRef] [PubMed]
- Qi, D.; Miao, A.; Chen, W.; Wang, W.; He, X.; Ma, C. Characterization of the volatile compounds profile of the innovative broken oolong-black tea in comparison with broken oolong and broken black tea. Food Control 2021, 129, 108197. [Google Scholar] [CrossRef]
- Zheng, Y.-C.; Hu, Q.-C.; Wu, Z.-J.; Bi, W.-J.; Chen, B.; Hao, Z.-L.; Wu, L.-Y.; Ye, N.-X.; Sun, Y. Volatile metabolomics and coexpression network analyses provide insight into the formation of the characteristic cultivar aroma of oolong tea (Camellia sinensis). LWT 2022, 164, 113666. [Google Scholar] [CrossRef]
- Ramos, F.T.; Dores, E.F.D.C.; Weber, O.L.D.S.; Beber, D.C.; Campelo, J.H., Jr.; Maia, J.C.D.S. Soil organic matter doubles the cation exchange capacity of tropical soil under no-till farming in Brazil. J. Sci. Food Agric. 2018, 98, 3595–3602. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, Y.-P.; Yu, M.-X.; Cao, N.-N.; Yan, J.-H. Soil organic matter is important for acid buffering and reducing aluminum leaching from acidic forest soils. Chem. Geol. 2018, 501, 86–94. [Google Scholar] [CrossRef]
- Jain, A.; Taylor, R.W. Determination of cation exchange capacity of calcareous soils: Comparison of summation method and direct replacement method. Commun. Soil Sci. Plan. Anal. 2023, 54, 743–748. [Google Scholar] [CrossRef]
Index | Measured Values of Different Indexes | Fertility Levels of Different Indexes | ||||||
---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | P1 | P2 | P3 | P4 | |
pH value | 3.29 ± 0.13d | 4.13 ± 0.17c | 4.74 ± 0.12b | 5.32 ± 0.09a | III | III | II | I |
Organic matter (g/kg) | 8.32 ± 0.24d | 9.57 ± 0.18c | 12.08 ± 0.26b | 17.96 ± 0.53a | III | III | II | I |
Cation exchange capacity (cmoL/kg) | 7.26 ± 1.16d | 13.52 ± 0.89c | 17.13 ± 1.21b | 22.48 ± 1.25a | III | III | II | I |
Total nitrogen (g/kg) | 2.46 ± 0.12a | 2.48 ± 0.13a | 2.53 ± 0.09a | 2.49 ± 0.14a | I | I | I | I |
Total phosphorus (g/kg) | 1.24 ± 0.13a | 1.09 ± 0.11a | 1.15 ± 0.08a | 1.13 ± 0.09a | I | I | I | I |
Total potassium (g/kg) | 6.84 ± 0.39a | 6.95 ± 0.54a | 7.42 ± 0.43a | 7.38 ± 0.65a | II | II | II | II |
Available nitrogen (mg/kg) | 35.23 ± 1.87d | 46.12 ± 2.46c | 84.95 ± 1.74b | 91.38 ± 2.86a | III | III | II | II |
Available phosphorus (mg/kg) | 3.13 ± 0.22d | 4.06 ± 0.23c | 10.41 ± 0.46b | 15.12 ± 0.77a | III | III | I | I |
Available potassium (mg/kg) | 49.25 ± 2.13d | 66.18 ± 2.45c | 113.24 ± 2.94b | 127.95 ± 2.75a | III | III | II | I |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhang, Q.; Li, J.; Lin, S.; Jia, X.; Zhang, Q.; Ye, J.; Wang, H.; Wu, Z. Study on the Effect of pH on Rhizosphere Soil Fertility and the Aroma Quality of Tea Trees and Their Interactions. Agriculture 2023, 13, 1739. https://doi.org/10.3390/agriculture13091739
Wang Y, Zhang Q, Li J, Lin S, Jia X, Zhang Q, Ye J, Wang H, Wu Z. Study on the Effect of pH on Rhizosphere Soil Fertility and the Aroma Quality of Tea Trees and Their Interactions. Agriculture. 2023; 13(9):1739. https://doi.org/10.3390/agriculture13091739
Chicago/Turabian StyleWang, Yuhua, Qi Zhang, Jianjuan Li, Shaoxiong Lin, Xiaoli Jia, Qingxu Zhang, Jianghua Ye, Haibin Wang, and Zeyan Wu. 2023. "Study on the Effect of pH on Rhizosphere Soil Fertility and the Aroma Quality of Tea Trees and Their Interactions" Agriculture 13, no. 9: 1739. https://doi.org/10.3390/agriculture13091739
APA StyleWang, Y., Zhang, Q., Li, J., Lin, S., Jia, X., Zhang, Q., Ye, J., Wang, H., & Wu, Z. (2023). Study on the Effect of pH on Rhizosphere Soil Fertility and the Aroma Quality of Tea Trees and Their Interactions. Agriculture, 13(9), 1739. https://doi.org/10.3390/agriculture13091739