The Impact of Cultivation Systems on Weed Suppression and the Canopy Architecture of Spring Barley
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cover Crop Yielding
- In spring, before herbicide treatment, at the stage of tillering of barley (BBCH 23). Quantitative and qualitative methods were used. This was achieved by using a closed frame on sample plots of 0.2 m2, with two repetitions per plot;
- Before harvesting the crop (BBCH 92). This was achieved by the quantitative weight method, with two repetitions per plot, and by using an open frame with an area of 0.5 m2.
2.2. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Çakmakçı, R.; Salık, M.A.; Çakmakçı, S. Assessment and Principles of Environmentally Sustainable Food and Agriculture Systems. Agriculture 2023, 13, 1073. [Google Scholar] [CrossRef]
- Cui, S.; Li, Y.; Jiao, X.; Zhang, D. Hierarchical Linkage between the Basic Characteristics of Smallholders and Technology Awareness Determines Small-Holders’ Willingness to Adopt Green Production Technology. Agriculture 2022, 12, 1275. [Google Scholar] [CrossRef]
- Newton, P.; Civita, N.; Frankel-Goldwater, L.; Bartel, K.; Johns, C. What Is Regenerative Agriculture? A Review of Scholar and Practitioner Definitions Based on Processes and Outcomes. Front. Sustain. Food Syst. 2020, 4, 577723. [Google Scholar] [CrossRef]
- Zakrzewska, A.; Nowak, A. Diversification of Agricultural Output Intensity across the European Union in Light of the Assumptions of Sustainable Development. Agriculture 2022, 12, 1370. [Google Scholar] [CrossRef]
- Bilibio, C.; Uteau, D.; Horvat, M.; Rosskopf, U.; Junge, S.M.; Finckh, M.R.; Peth, S. Impact of Ten Years Conservation Tillage in Organic Farming on Soil Physical Properties in a Loess Soil—Northern Hesse, Germany. Agriculture 2023, 13, 133. [Google Scholar] [CrossRef]
- Małecka, I.; Swędrzyńska, D.; Blecharczyk, A.; Dytman-Hagedorn, M. Impact of tillage systems for pea production on physical, chemical and microbiological soil properties. Fragm. Agron. 2012, 29, 106–116. [Google Scholar]
- Birkás, M. Long-term experiments aimed at improving tillage practices. Acta Agron. Hung. 2010, 58 (Suppl. 1), 75–81. [Google Scholar] [CrossRef]
- Gorzelany, J.; Puchalski, C.; Malach, M. Assessment of costs and energy consumption in the production of maize for the grain maize and silage. Inż. Rol. 2011, 8, 135–141. [Google Scholar]
- Kordas, L. Economic effectiveness of various soil tillage systems in continuous cropping winter wheat. Fragm. Agron. 2009, 26, 42–48. [Google Scholar]
- Kassam, A.; Friedrich, T.; Derpsch, R.; Kienzle, J. Overview of the worldwide spread of conservation agriculture. Field Actions Sci. Rep. J. Field Act. 2015, 8, 1–10. [Google Scholar]
- Lehmar, R. Adoption of conservation agriculture in Europe: Lessons of the KASSA project. Land Use Policy 2010, 27, 4–10. [Google Scholar] [CrossRef]
- Wauters, E.; Bieldars, C.; Poesen, J.; Govers, G.; Mathijas, E. Adoption of soil conservation practices in Belgium: An examination of the theory of planned behaviour in the agri-environmental domain. Land Use Policy 2010, 27, 86–94. [Google Scholar] [CrossRef]
- Dzienia, S.; Zimny, L.; Weber, R. The newest trends in soil tillage and techniques of sowing. Fragm. Agron. 2006, 23, 227–241. [Google Scholar]
- Stankowski, S.; Jaroszewska, A.; Osińska, B.; Tomaszewicz, T.; Gibczyńska, M. Analysis of Long-Term Effect of Tillage Systems and Pre-Crop on Physicochemical Properties and Chemical Composition of Soil. Agronomy 2022, 12, 2072. [Google Scholar] [CrossRef]
- Pabin, J. Progress in cultivation and pre-sowing soil preparation. Pam. Puł. 2002, 130, 531–539. [Google Scholar]
- Santín-Montanyá, M.I.; Martín-Lammerding, D.; Zambranab, E.; Tenorio, J.L. Management of weed emergence and weed seed bank in response to different tillage, cropping systems and selected soil properties. Soil Till. Res. 2016, 161, 38–46. [Google Scholar] [CrossRef]
- Woźniak, A.; Haliniarz, M. The after-effect of long-term reduced tillage systems on the biodiversity of weeds in spring crops. Acta Agrobot. 2012, 65, 141–148. [Google Scholar] [CrossRef]
- Hofmeijer, M.A.J.; Krauss, M.; Berner, A.; Peigné, J.; Mäder, P.; Armengot, L. Effects of Reduced Tillage on Weed Pressure, Nitrogen Availability and Winter Wheat Yields under Organic Management. Agronomy 2019, 9, 180. [Google Scholar] [CrossRef]
- Stankiewicz-Kosyl, M.; Haliniarz, M.; Wrochna, M.; Synowiec, A.; Wenda-Piesik, A.; Tendziagolska, E.; Sobolewska, M.; Domaradzki, K.; Skrzypczak, G.; Łykowski, W. Herbicide Resistance of Centaurea cyanus L. in Poland in the Context of Its Management. Agronomy 2021, 11, 1954. [Google Scholar] [CrossRef]
- Feledyn-Szewczyk, B.; Smagacz, J.; Kwiatkowski, C.A.; Harasim, E.; Woźniak, A. Weed Flora and Soil Seed Bank Composition as Affected by Tillage System in Three-Year Crop Rotation. Agriculture 2020, 10, 186. [Google Scholar] [CrossRef]
- Andruszczak, S. The influence of tillage and chemical plant protection on weed infestation of winter spelt wheat cultivars (Triticum aestivum ssp. spelta) growing in continuous crop. Agron. Sci. 2017, 72, 77–87. [Google Scholar] [CrossRef]
- Wacławowicz, R. Soil and Productive Results of Field Management of Sugar Beet Tops; Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Monografie: Wrocław, Poland, 2013; Volume 165, pp. 1–134. [Google Scholar]
- Parylak, D.; Pytlarz, E. Weed infestation of winter wheat continuous cropping after implementation of catch crop and biostimulant Nano-Gro. Prog. Plant Prot. 2016, 56, 343–347. [Google Scholar] [CrossRef]
- Sans, F.X.; Berner, A.; Armengot, L.; Mäder, P. Tillage effects on weed communities in an organic winter wheat–sunflower–spelt cropping sequence. Weed Res. 2011, 51, 413–421. [Google Scholar] [CrossRef]
- Ghosheh, H.; Al-Hajaj, N. Impact of soil tillage and crop rotation on barley (Hordeum vulgare) and weeds in a semi-arid envinronment. J. Agron. Crop Sci. 2004, 190, 374–380. [Google Scholar] [CrossRef]
- Majchrzak, L.; Piechota, T. Influence of cultivation technology on spring wheat weed infestation. Fragm. Agron. 2014, 31, 94–101. [Google Scholar]
- Giemza-Mikoda, M.; Zimny, L.; Wacławowicz, R. The influence of cultivation systems on weed infestation in spring barley. Prog. Plant Prot. 2012, 52, 283–286. [Google Scholar]
- Ciesielska, A.; Rzeźnicki, B. Effect of direct sowing on the yield and changes in weed infestation in spring wheat. Fragm. Agron. 2007, 24, 25–32. [Google Scholar]
- Gangwar, K.S.; Singh, K.K.; Sharma, S.K.; Tomar, O.K. Alternative tillage and crop residue management in wheat after rice and sandy loam soils of Indo-Gangetic plains. Soil Till. Res. 2006, 88, 242–252. [Google Scholar] [CrossRef]
- Wacławowicz, R. The effect of simplified tillage methods and nitrogen fertilization on changes in weed infestation of spring weed. Prog. Plant Prot. 2009, 49, 1402–1406. [Google Scholar]
- Shrestha, A.; Knezevic, S.Z.; Roy, R.C.; Ball-Coelho, B.R.; Swanton, C.J. Effect of tillage, cover crop and crop rotation on the composition of weed flora in a sandy soil. Weed Res. 2002, 42, 76–87. [Google Scholar] [CrossRef]
- Tuesca, D.; Puricelli, E.; Papa, J.C. A long-term study of weed flora shifts in different tillage systems. Weed Res. 2001, 41, 369–382. [Google Scholar] [CrossRef]
- Wesołowski, M.; Buła, M.; Grotkowska, Z.; Klusek, I. The influence of pre-sowing cultivation method on winter wheat infestation with weeds. Prog. Plant Prot. 2010, 50, 457–460. [Google Scholar]
- Faltyn, U.; Kordas, L. Effect of tillage and field regeneration factors on weed infestation of spring wheat. Fragm. Agron. 2009, 26, 19–24. [Google Scholar]
- Morris, N.L.; Miller, P.C.H.; Orson, J.H.; Froud-Williams, R.J. The adoption of non-inversion tillage systems in the United Kingdom and the agronomic impact on soil, crops and environment—A review. Soil Till. Res. 2010, 108, 1–15. [Google Scholar] [CrossRef]
- Woźniak, A. Content of weed seed in rendzina soil under spring triticale. Ann. UMCS Sect. E Agric. 2007, 62, 250–256. [Google Scholar]
- Mohler, C.; Frisch, J.; McCulloch, C. Vertical Movement of Weed Seed Surrogates by Tillage Implements and Natural Processes. Soil Till. Res. 2006, 86, 110–122. [Google Scholar] [CrossRef]
- Tørresen, K.; Skuterud, R. Plant protection in spring cereal production with reduced tillage. IV. Changes in the weed flora and weed seedbank. Crop Prot. 2002, 21, 179–193. [Google Scholar] [CrossRef]
- Kordas, L. The effect of the multiannual application of zero tillage in crop rotation on weed infestation. Prog. Plant Prot. 2004, 44, 841–844. [Google Scholar]
- Hernández Plaza, E.; Navarrete, L.; González-Andújar, J.L. Intensity of soil disturbance shapes response trait diversity of weed communities: The long-term effects of different tillage systems. Agric. Ecosyst. Environ. 2015, 207, 101–108. [Google Scholar] [CrossRef]
- Wozniak, A.; Rachon, L. Spring barley response to tillage systems and crop residues. Agron. Sci. 2022, 77, 27–43. [Google Scholar] [CrossRef]
- Wrzaszcz, W. The common agricultural policy greening effects on the example of fadn farms. Rocz. Nauk. SERiA 2017, 19, 231–237. [Google Scholar] [CrossRef]
- Hart, K. Green Direct Payments: Implementation Choices of Nine Member States and Their Environmental Implications; IEEP: London, UK, 2015; pp. 1–85. [Google Scholar]
- Jaskulska, I.; Gałęzewski, L. Role of catch crops in plant production and in the environment. Fragm. Agron. 2009, 26, 48–57. [Google Scholar]
- Cherr, C.M.; Scholberg, J.M.S.; McSorley, R. Green manure approaches to crop production: A synthesis. Agron. J. 2006, 98, 302–319. [Google Scholar] [CrossRef]
- Thomas, F.; Archambeaud, M. Catch Crops in Practice; OIKOS: Warszawa, Poland, 2019; pp. 1–343. ISBN 978-83-64843-21-1. [Google Scholar]
- Yang, C.; Geng, Y.; Fu, X.Z.; Coulter, J.A.; Chai, Q. The Effects of Wind Erosion Depending on Cropping System and Tillage Method in a Semi-Arid Region. Agronomy 2020, 10, 732. [Google Scholar] [CrossRef]
- Kemper, R.; Bublitz, T.A.; Müller, P.; Kautz, T.; Döring, T.F.; Athmann, M. Vertical Root Distribution of Different Cover Crops Determined with the Profile Wall Method. Agriculture 2020, 10, 503. [Google Scholar] [CrossRef]
- Adamczewska-Sowińska, K.; Wojciechowski, W.; Krygier, M.; Sowiński, J. Effect of Soil Regenerative Practice on Selected Soil Physical Properties and Eggplant (Solanum melongena L.) Yield. Agronomy 2022, 12, 1686. [Google Scholar] [CrossRef]
- Chichongue, O.; van Tol, J.; Ceronio, G.; Du Preez, C. Effects of Tillage Systems and Cropping Patterns on Soil Physical Properties in Mozambique. Agriculture 2020, 10, 448. [Google Scholar] [CrossRef]
- Kogut, Z. Technical and energy aspects of soil surface mulching cultivation. Post. Nauk Rol. 2011, 3, 75–89. [Google Scholar]
- Orzech, K.; Marks, M.; Dragańska, E.; Stępień, A. Yielding of spring barley in relation to weather conditions and different methods of cultivation of average soil. Acta Agrophys. 2009, 14, 167–175. [Google Scholar]
- Kęsik, T.; Konopiński, M.; Błażewicz-Woźniak, M. Effect of pre-winter soil tillage and cover crop mulches on water retention, compaction and differential porosity of soil after winter time. Acta Agrophys. 2006, 7, 915–926. [Google Scholar]
- Holland, J. The environment al consequences of adopting conservation tillage in Europe: Reviewing the evidence. Agric. Ecos. Environ. 2004, 103, 1–25. [Google Scholar] [CrossRef]
- Kwiatkowski, C.; Harasim, E.; Staniak, M. Effect of catch crops and tillage systems on some chemical properties of loess soil in a short-term monoculture of spring wheat. J. Elem. 2020, 25, 34–43. [Google Scholar] [CrossRef]
- Wojciechowski, W. The Importance of Catch Crops for Optimizing Nitrogen Fertilization of Quality Spring Wheat; Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Monografie: Wrocław, Poland, 2009; Volume 76, pp. 1–122. [Google Scholar]
- Allende-Montalbán, R.; Martín-Lammerding, D.; del Mar Delgado, M.; Porcel, M.A.; Gabriel, J.L. Nitrate Leaching in Maize (Zea mays L.) and Wheat (Triticum aestivum L.) Irrigated Cropping Systems under Nitrification Inhibitor and/or Intercropping Effects. Agriculture 2022, 12, 478. [Google Scholar] [CrossRef]
- Herrera, J.; Liedgens, M. Leaching and utilization of nitrogen during a spring wheat catch crop succession. J. Environ. Qual. 2009, 38, 1410–1419. [Google Scholar] [CrossRef]
- Manoj, K.N.; Shekara, B.G.; Sridhara, S.; Mudalagiriyappa; Chikkarugi, N.M.; Gopakkali, P.; Jha, P.K.; Vara Prasad, P.V. Carbon Footprint Assessment and Energy Budgeting of Different Annual and Perennial Forage Cropping Systems: A Study from the Semi-Arid Region of Karnataka, India. Agronomy 2022, 12, 1783. [Google Scholar] [CrossRef]
- Raza, S.T.; Zhu, B.; Yao, Z.; Wu, J.; Chen, Z.; Ali, Z.; Tang, J.L. Impacts of vermicompost application on crop yield, ammonia volatilization and greenhouse gases emission on upland in Southwest China. Sci. Total Environ. 2023, 860, 160479. [Google Scholar] [CrossRef]
- Lai, H.; Gao, F.; Su, H.; Zheng, P.; Li, Y.; Yao, H. Nitrogen Distribution and Soil Microbial Community Characteristics in a Legume–Cereal Intercropping System: A Review. Agronomy 2022, 12, 1900. [Google Scholar] [CrossRef]
- Kwiatkowski, C. The canopy structure and plant health of spring barley cultivated in monoculture depending on intercrops influence. Fragm. Agron. 2008, 25, 199–209. [Google Scholar]
- Grabiński, J.; Sułek, A. Effect of winter rye catch crop on weed infestation and yielding of buckwheat. Prog. Plant Prot. 2011, 51, 1816–1821. [Google Scholar]
- Didon, U.M.E.; Kolseth, A.K.; Widmark, D.; Persson, P. Cover crop residue–effects on germination and early growth of annual weeds. Weed Sci. 2014, 62, 294–302. [Google Scholar] [CrossRef]
- Locke, M.A.; Reddy, K.N.; Zablotowicz, R.M. Weed Management in Conservation Crop Production Systems. Weed Biol. Manag. 2002, 2, 123–132. [Google Scholar] [CrossRef]
- Agenbag, G.A.; De Villiers, O.T. The effect of nitrogen fertilizers on the germination and seedling emergence of wild oat (A. fatua L.) seed in different soil types. Weed Res. 1989, 29, 239–245. [Google Scholar] [CrossRef]
- Jäck, O.; Ajal, J.; Weih, M. Altered Nitrogen Availability in Pea–Barley Sole- and Intercrops Changes Dominance of Two Nitrophilic Weed Species. Agronomy 2021, 11, 679. [Google Scholar] [CrossRef]
- Blackshaw, R.E.; Molnar, L.J.; Janzen, H.H. Nitrogen fertilizer timing and application method affect weed growth and competition with spring wheat. Weed Sci. 2004, 52, 614–622. [Google Scholar] [CrossRef]
- Pytlarz, E.; Gala-Czekaj, D. Seed Meals from Allelopathic Crops as a Potential Bio-Based Herbicide on Herbicide-Susceptible and -Resistant Biotypes of Wild Oat (Avena fatua L.). Agronomy 2022, 12, 3083. [Google Scholar] [CrossRef]
- Schappert, A.; Messelhäuser, M.H.; Saile, M.; Peteinatos, G.G.; Gerhards, R. Weed Suppressive Ability of Cover Crop Mixtures Compared to Repeated Stubble Tillage and Glyphosate Treatments. Agriculture 2018, 8, 144. [Google Scholar] [CrossRef]
- Praczyk, T.; Skrzypczak, G. The current state and directions of weed science development. Prog. Plant Prot. 2011, 51, 354–363. [Google Scholar]
- Orzech, K.; Rychcik, B.; Stępień, A. The influence of tillage systems on weed infestation and yield of spring barley. Fragm. Agron. 2011, 28, 63–70. [Google Scholar]
- Woźniak, A.; Soroka, M. Effect of crop rotation and tillage system on the weed infestation and yield of spring wheat and on soil properties. Appl. Ecol. Environ. Res. 2018, 16, 3087–3096. [Google Scholar] [CrossRef]
- Woźniak, A. Effect of various systems of tillage on winter barley yield, weed infestation and soil properties. Appl. Ecol. Environ. Res. 2020, 18, 3483–3496. [Google Scholar] [CrossRef]
- Woźniak, A.; Soroka, M. Effects of long-term reduced tillage on weed infestation of durum wheat (Triticum durum desf.). Fragm. Agron. 2014, 31, 113–120. [Google Scholar]
- Kraska, P.; Pałys, E. Weed infestation in canopy of spring barley in condition of different tillage systems and fertilization and plant protection levels. Acta Agrobot. 2006, 59, 323–333. [Google Scholar] [CrossRef]
- Velykis, A.; Satkus, A. Effect of reduced clay loam tillage on weed infestation and spring barley yield. Žemės Ūkio Moksl. 2012, 19, 236–248. [Google Scholar]
- Woźniak, A. Importance of underplant cropand organic fertilization on the yield and weed infestation in a monoculture of spring wheat. Annales UMCS Sec. E 2005, 60, 33–40. [Google Scholar]
- Kadziene, G.; Suproniene, S.; Auskalniene, O.; Pranaitiene, S.; Svegzda, P.; Versuliene, A.; Ceseviciene, J.; Janusauskaite, D.; Feiza, V. Tillage and cover crop influence on weed pressure and Fusarium infection in spring cereals. Crop Prot. 2020, 127, 104966. [Google Scholar] [CrossRef]
- Małecka, I.; Blecharczyk, A. Effect of tillage systems, mulches and nitrogen fertilization on spring barley (Hordeum vulgare). Agron. Res. 2008, 6, 517–529. [Google Scholar]
- Kwiatkowski, C. The effect of intercrops on yields and weed infestation of spring barley cultivated in monoculture. Ann. UMCS Sec. E 2004, 59, 810–815. [Google Scholar]
- Gawęda, D.; Wesołowski, M.; Kwiatkowski, C.A. Weed infestation of spring barley (Hordeum vulgare L.) depending on the cover crop and weed control method. Acta Agrobot. 2014, 67, 77–84. [Google Scholar] [CrossRef]
- Hruszka, M.; Brzozowska, I. Effectiveness of proecological and chemical methods of regulating weed infestation in crop rotation. Acta Agroph. 2008, 12, 347–355. [Google Scholar]
- Kuc, P. The effect of tillage systems and organic fertilization on weed infestation of sugar beet. Prog. Plant Prot. 2008, 48, 1444–1447. [Google Scholar]
- Suwara, I.; Masionek, M.; Wysmułek, A.; Ciesielska, A.; Gozdowski, D. The weed infestation of spring triticale in crop rotation and monoculture depending on long-term mineral fertilization. Fragm. Agron. 2019, 36, 67–77. [Google Scholar] [CrossRef]
- Harasim, E.; Wesołowski, M. Effect of nitrogen fertilization on weed infestation in winter wheat canopy. Fragm. Agron. 2013, 30, 36–44. [Google Scholar]
- Brzozowska, I.; Brzozowski, J. Effectiveness of winter wheat weed control in dependence on methods of crop cultivation and nitrogen fertilization. Acta Agrophs. 2008, 11, 345–356. [Google Scholar]
- Kakabouki, I.; Mavroeidis, A.; Kouneli, V.; Karydogianni, S.; Folina, A.; Triantafyllidis, V.; Efthimiadou, A.; Roussis, I.; Zotos, A.; Kosma, C.; et al. Effects of Nitrogen Fertilization on Weed Flora and Productivity of Soybean [Glycine max (L.) Merr.] Crop. Nitrogen 2022, 3, 284–297. [Google Scholar] [CrossRef]
- Blackshaw, R.E.; Brandt, R.N. Nitrogen fertilizer rate effects on weed competitiveness is species dependent. Weed Sci. 2008, 56, 743–747. [Google Scholar] [CrossRef]
- Blackshaw, R.E. Application method of nitrogen fertilizer affects weed growth and competition with winter wheat. Weed Biol. Manag. 2004, 4, 103–113. [Google Scholar] [CrossRef]
- Fodor, L.; Palmai, O. The influence of nitrogen fertilization and sowing time on the weediness of winter wheat. Cereal Res. Commun. 2008, 36, 1159–1162. [Google Scholar]
- Szafrański, W.; Kulig, B. Yield of spring wheat cultivated after a catch crop depending on nitrogen fertilization. Fragm. Agron. 2005, 22, 574–584. [Google Scholar]
- Kulig, B.; Lepiarczyk, A.; Oleksy, A.; Kołodziejczyk, M. The effect of tillage system and forecrop on the yield and values of LAI and SPAD indices of spring wheat. Eur. J. Agron. 2010, 33, 43–51. [Google Scholar] [CrossRef]
- Agenbag, G.A.; Maree, P.C.J. Effect of tillage on some soil properties, plant development and yield of spring wheat (Triticum aestivum L.) in stony soil. Soil Tillage Res. 1991, 21, 97–112. [Google Scholar] [CrossRef]
- Salvagiotti, F.; Miralles, D.J. Radiation interception, biomass production and grain yield as affected by the interaction of nitrogen and sulfur fertilization in wheat. Eur. J. Agron. 2008, 28, 282–290. [Google Scholar] [CrossRef]
- Biskupski, A.; Kaus, A.; Pabin, J.; Wlodek, S. The influence of differentiated fertilization with nitrogen on leaf area index (LAI), mean tip angle (MTA) and yield of crop in selected cultivars of spring wheat. Ann. Univ. Mariae Curie-Skłodowska Sec. E Agricultura 2004, 59, 649–654. [Google Scholar]
Year | Month | ||||||||
---|---|---|---|---|---|---|---|---|---|
III | IV | V | VI | VII | VIII | IX | X | XI | |
Temperature (°C) | |||||||||
2009 | 4.6 | 12.0 | 14.2 | 15.8 | 19.5 | 19.3 | 14.8 | 7.9 | 6.6 |
2010 | 4.2 | 9.3 | 12.7 | 17.9 | 21.4 | 18.9 | 12.6 | 7.0 | 6.5 |
2011 | 4.3 | 11.9 | 14.7 | 19.1 | 18.3 | 19.3 | 15.5 | 9.4 | 3.8 |
2012 | 6.1 | 9.8 | 15.8 | 17.2 | 20.0 | 19.3 | 14.6 | 8.6 | 5.9 |
Means 1968–2012 | 3.5 | 8.6 | 13.9 | 16.9 | 18.7 | 18.2 | 13.7 | 9.0 | 4.2 |
Precipitation (mm) | |||||||||
2009 | 49.5 | 30.9 | 67.5 | 162.0 | 134.2 | 53.5 | 12.0 | 76.0 | 32.5 |
2010 | 44.9 | 45.4 | 140.7 | 32.9 | 78.6 | 109.1 | 134.1 | 5.7 | 66.4 |
2011 | 45.2 | 27.0 | 49.4 | 95.7 | 170.9 | 64.8 | 30.3 | 42.6 | 0.0 |
2012 | 13.7 | 27.6 | 63.7 | 94.7 | 108.0 | 73.2 | 52.6 | 35.4 | 31.8 |
Means 1968–2012 | 32.2 | 37.1 | 55.4 | 71.8 | 87.4 | 72.3 | 47.2 | 39.0 | 41.3 |
Factors | Weed Density in Spring [pcs.∙m−2] | Weed Density in Summer [pcs.∙m−2] | Weed Biomass [g] |
---|---|---|---|
CT # | 70.2 a | 10.1 b | 7.0 b |
CTc | 70.7 a | 15.3 b | 9.7 b |
RTc | 51.9 b | 18.3 ab | 21.7 ab |
NTc | 38.7 c | 25.6 a | 36.3 a |
40 N | – | 20.3 a | 18.7 |
80 N | – | 16.7 ab | 19.1 |
120 N | – | 14.8 b | 18.3 |
2010 | 69.2 a | 17.7 | 24.4 |
2011 | 54.9 b | 16.1 | 12.3 |
2012 | 49.4 b | 18.2 | 19.4 |
2010 | |||
CT | 94.7 a | 8.0 c | 4.8 c |
CTc | 98.6 a | 13.3 bc | 8.5 c |
RTc | 66.9 b | 10.7 c | 11.8 bc |
NTc | 16.7 d | 36.7 a | 72.5 a |
2011 | |||
CT | 53.6 bc | 12.4 bc | 10.1 c |
CTc | 58.1 bc | 13.8 bc | 10.1 c |
RTc | 34.7 cd | 13.7 bc | 8.4 c |
NTc | 73.3 ab | 24.4 abc | 20.5 bc |
2012 | |||
CT | 62.2 b | 9.8 c | 6.2 c |
CTc | 55.6 bc | 18.7 bc | 10.6 bc |
RTc | 53.9 bc | 30.6 ab | 44.9 ab |
NTc | 26.1 d | 13.6 bc | 15.8 bc |
Tillage | *** | *** | *** |
Fertilization | – | ** | NS |
Year | *** | NS | NS |
Tillage × fertilization | – | NS | NS |
Tillage × year | *** | *** | *** |
Fertilization × year | – | NS | NS |
Factors | LAI | Barley Tillers | Barley Density [no∙m−2] | Barley Length [cm] |
---|---|---|---|---|
CT # | 1.44 a | 2.64 b | 297 a | 54.0 a |
CTc | 1.37 a | 2.59 b | 291 a | 52.4 ab |
RTc | 1.30 ab | 2.92 a | 234 b | 50.5 b |
NTc | 1.05 b | 2.65 b | 229 b | 39.3 c |
40 N | 1.11 b | 2.54 b | 243 b | 47.6 b |
80 N | 1.35 a | 2.74 a | 264 ab | 49.2 ab |
120 N | 1.42 a | 2.82 a | 281 a | 50.4 a |
2010 | 1.00 b | 2.91 a | 216 b | 46.2 b |
2011 | 1.53 a | 2.23 b | 281 a | 41.4 b |
2012 | 1.34 a | 2.95 a | 292 a | 59.5 a |
2010 | ||||
CT | 0.89 cd | 3.00 abc | 261 bcd | 50.7 bc |
CTc | 1.16 bcd | 2.95 abc | 232 cde | 48.6 cd |
RTc | 1.24 bcd | 3.15 ab | 198 de | 54.7 b |
NTc | 0.71 d | 2.55 cd | 172 e | 30.8 f |
2011 | ||||
CT | 1.95 a | 2.21 d | 279 abcd | 42.5 e |
CTc | 1.43 abc | 2.18 d | 307 abc | 41.8 e |
RTc | 1.41 abc | 2.36 d | 267 bcd | 43.5 de |
NTc | 1.31 bcd | 2.18 d | 272 abcd | 37.9 e |
2012 | ||||
CT | 1.49 abc | 2.70 bcd | 351 a | 68.6 a |
CTc | 1.53 ab | 2.64 bcd | 335 ab | 67.0 a |
RTc | 1.25 bcd | 3.24 a | 239 cde | 53.3 bc |
NTc | 1.11 bcd | 3.24 a | 243 cde | 49.1 bcd |
Tillage | ** | ** | *** | *** |
Fertilization | *** | *** | *** | ** |
Year | ** | *** | *** | *** |
Tillage × fertilization | NS | NS | NS | NS |
Tillage × year | * | ** | * | *** |
Fertilization × year | ** | * | NS | NS |
Characteristic | Cluster 1 (RTcN1, RTcN2, RTcN3, NTcN1, NTcN2, NTcN3) | Cluster 2 (CTN1, CTN2, CTN3, CTcN1, CTcN2, CTcN3,) | p | ||
---|---|---|---|---|---|
Mean | se | Mean | se | ||
Barley density | 294.1 | 7.19 | 231.7 | 8.81 | <0.001 |
Barley length | 53.2 | 1.63 | 44.9 | 2.55 | 0.02 |
LAI | 1.41 | 0.08 | 1.17 | 0.08 | 0.05 |
Weed density in spring | 70.5 | 2.62 | 45.3 | 3.18 | <0.001 |
Barley tillers | 2.61 | 0.03 | 2.79 | 0.09 | 0.10 |
Weed density in summer | 12.7 | 1.34 | 21.9 | 2.27 | 0.006 |
Weed biomass | 8.38 | 0.74 | 28.99 | 3.68 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wacławowicz, R.; Giemza, M.; Pytlarz, E.; Wenda-Piesik, A. The Impact of Cultivation Systems on Weed Suppression and the Canopy Architecture of Spring Barley. Agriculture 2023, 13, 1747. https://doi.org/10.3390/agriculture13091747
Wacławowicz R, Giemza M, Pytlarz E, Wenda-Piesik A. The Impact of Cultivation Systems on Weed Suppression and the Canopy Architecture of Spring Barley. Agriculture. 2023; 13(9):1747. https://doi.org/10.3390/agriculture13091747
Chicago/Turabian StyleWacławowicz, Roman, Magdalena Giemza, Elżbieta Pytlarz, and Anna Wenda-Piesik. 2023. "The Impact of Cultivation Systems on Weed Suppression and the Canopy Architecture of Spring Barley" Agriculture 13, no. 9: 1747. https://doi.org/10.3390/agriculture13091747
APA StyleWacławowicz, R., Giemza, M., Pytlarz, E., & Wenda-Piesik, A. (2023). The Impact of Cultivation Systems on Weed Suppression and the Canopy Architecture of Spring Barley. Agriculture, 13(9), 1747. https://doi.org/10.3390/agriculture13091747