Effects of Compound Salt Concentration on Growth, Physiological and Nutritional Value of Hydroponic Forage Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Hydroponic Wheat Seedling Production
2.3. Determination of Plant Growth Parameters
2.4. Determination of Physiological Indicators
2.5. Nutritional Compositions of Hydroponic Wheat Seedlings
2.6. In Vitro Fermentation and Gas Parameters
- GPt: samples in t time of gas production (mL·g−1 DM);
- Pt: Volume read in time period t (mL);
- Pt0: Volume of blank sample read in time period t (mL);
- W: weight of sample used in fermentation.
2.7. Statistical Analysis
3. Results
3.1. Plant Growth
3.2. Physiological Indexes
3.3. Nutrition Characteristics
3.4. In Vitro Gas Production and Kinetic Parameters of Hydroponic Herbage
4. Discussion
4.1. Germination
4.2. Physiological Indexes at Seedling Stage
4.3. Nutritional Characteristics
4.4. Gas Production and Gas Production Parameters In Vitro Rumen Fermentation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cremilleux, M.; Coppa, M.; Bouchon, M.; Delaby, L.; Beaure, G.; Constant, I.; Natalello, A.; Martin, B.; Michaud, A. Effects of forage quantity and access-time restriction on feeding behaviour, feed effificiency, nutritional status, and dairy performance of dairy cows fed indoors. Animal 2022, 9, 100608. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, L.; Chaudhry, A.S.; Khanaki, H.; Abbasi, I.H.R.; Ma, Y.; Abbasi, F.; Guo, X.; Zhang, S. Silage Mixtures of alfalfa with sweet sorghum alter blood and rumen physiological status and rumen microbiota of Karakul lambs. Animals 2022, 12, 2591. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.J.; Chaudhry, A.S.; Ramdani, D.; Osman, A.; Guo, X.F.; Edwards, G.R.; Cheng, L. Chemical composition and in vitro fermentation characteristics of high sugar forage sorghum as an alternative to forage maize for silage making in Tarim Basin, China. J. Integr. Agric. 2016, 15, 175–182. [Google Scholar] [CrossRef]
- Chen, Y.N.; Zilliacus, H.; Li, W.H.; Zhang, H.F.; Chen, Y.P. Ground-water level affects plant species diversity along the lower reaches of the Tarim river, Western China. J. Arid. Environ. 2006, 66, 231–246. [Google Scholar] [CrossRef]
- Zhang, W.T.; Wu, H.Q.; Gu, H.B.; Feng, G.L.; Wang, Z.; Sheng, J.D. Variability of soil salinity at multiple spatio-temporal scales and the related driving factors in the oasis areas of Xinjiang, China. Pedosphere 2014, 24, 753–762. [Google Scholar] [CrossRef]
- Nel, C.L.; Cloete, S.W.P.; Kruger, A.C.M.; Dzama, K. Long term genetic selection for reproductive success affects neonatal lamb vitality across cold stress conditions. J. Therm. Biol. 2021, 98, 102908. [Google Scholar] [CrossRef] [PubMed]
- Jesse, M.F.; Gary, A.A.; Kathleen, G.C.; Grace, C.H.; Erin, B.P. The effects of hydroponic wheat Fodder on fecal metabolites in equines. J. Equine Vet. Sci. 2018, 70, 84–90. [Google Scholar]
- Fazaeli, H.; Golmohammadi, H.A.; Tabatabayee, S.N.; Asghari-Tabrizi, M. Productivity and nutritive value of barley green fodder yield in hydroponic system. World Appl. Sci. J. 2012, 16, 531–539. [Google Scholar]
- Agius, A.; Pastorelli, G.; Attard, E. Cows fed hydroponic fodder and conventional diet: Effects on milk quality. Arch. Anim. Breed. 2019, 62, 517–525. [Google Scholar] [CrossRef]
- Ren, P.; Deng, M.; Feng, J.; Li, R.; Ma, X.; Liu, J.; Wang, D. Partial replacement of oat hay with whole-plant hydroponic barley seedlings modulates ruminal microbiota and affects growth performance of Holstein heifers. Microorganisms 2022, 10, 2000. [Google Scholar] [CrossRef]
- Brake, A.C.; Goetsch, A.L.; Forster, L.A.; Landis, K.M. Feed intake, digestion and digesta characteristics of cattle fed Bermudagrass or orchardgrass alone or with ground barley or corn. J. Anim. Sci. 1989, 67, 3425–3436. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Yang, S.; Wei, Y.; Shi, Q.; Ding, J. Characterizing soil salinity at multiple depth using electromagnetic induction and remote sensing data with random forests: A case study in Tarim River Basin of southern Xinjiang, China. Sci. Total Environ. 2021, 754, 142030. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Meng, Y.; Li, B.; Ma, X.; Lai, Y.; Si, E.; Yang, K.; Xu, X.; Shang, X.; Wang, H.; et al. Physiological and proteomic analyses of salt stress response in the halophyte Halogeton glomeratus. Plant Cell Environ. 2015, 38, 655–669. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Song, S.; Yang, Y.; Amee, M.; Chen, L.; Xie, Y. Comparative physiological and metabolic analyzes of two Italian ryegrass (Lolium multiflorum) cultivars with contrasting salinity tolerance. Physiol. Plant. 2021, 172, 1688–1699. [Google Scholar] [CrossRef]
- Jang, S.N.; Kang, M.J.; Kim, Y.N.; Jeong, E.J.; Cho, K.M.; Yun, J.G.; Son, K.H. Physiological and biochemical responses of Limonium tetragonum to NaCl concentrations in hydroponic solution. Front. Plant Sci. 2023, 14, 1159625. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, C.; Zheng, J.; Zhu, J.; Gui, Z.; Yu, Z. Evolution of soil salinity and the critical ratio of drainage to irrigation (CRDI) in the Weigan Oasis in the Tarim Basin. Catena 2021, 201, 105210. [Google Scholar] [CrossRef]
- Wang, X.; Xia, T.; Zhang, L.; Ding, Z.; He, S.; Peng, Y. Effect of soil microstructure on the small-strain shear modulus of saline soil. Arab. J. Geosci. 2021, 14, 3–10. [Google Scholar] [CrossRef]
- Shen, C.; Hu, Y.; Du, X.; Li, T.; Tang, H.; Wu, J. Salicylic acid induces physiological and biochemical changes in Torreya grandis cv. Merrillii seedlings under drought stress. Trees 2014, 28, 961–970. [Google Scholar] [CrossRef]
- Mohammadi Alagoz, S.; Hadi, H.; Toorchi, M.; Pawłowski, T.A.; Asgari Lajayer, B.; Price, G.W.; Farooq, M.; Astatkie, T. Morpho-physiological responses and growth indices of triticale to drought and salt stresses. Sci. Rep. 2023, 13, 8896. [Google Scholar] [CrossRef]
- Shuyskaya, E.; Rakhmankulova, Z.; Prokofieva, M.; Kazantseva, V.; Lunkova, N. Impact of Salinity, Elevated temperature, and their interaction with the photosynthetic efficiency of halophyte crop chenopodium quinoa willd. Agriculture 2023, 13, 1198. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Horwitz, W., Latimer, G.W., Eds.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Menke, K.H.; Raab, L.; Salewski, A.; Steingass, H.; Fritz, D.; Schneider, W. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 1979, 93, 217–222. [Google Scholar] [CrossRef]
- Chaney, A.L.; Marbach, E.P. Modified reagents for determination of urea and ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.J.; Chaudhry, A.S.; Osman, A.; Shi, C.Q.; Edwards, G.R.; Dewhurst, R.J.; Cheng, L. Associative effects of ensiling mixtures of sweet sorghum and alfalfa on nutritive value, fermentation and methane characteristics. Anim. Feed Sci. Tech. 2015, 206, 29–38. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, W.; Cheng, J.; Guo, W.; Li, Y.; Li, C. Physiological and proteomic analysis of seed germination under salt stress in mulberry. Front. Biosci.-Landmark 2023, 28, 49. [Google Scholar] [CrossRef]
- Nefissi Ouertani, R.; Abid, G.; Karmous, C.; Ben Chikha, M.; Boudaya, O.; Mahmoudi, H.; Mejri, S.; Jansen, R.K.; Ghorbel, A. Evaluating the contribution of osmotic and oxidative stress components on barley growth under salt stress. AoB Plants 2021, 13, 034. [Google Scholar] [CrossRef]
- Nefissi Ouertani, R.; Arasappan, D.; Ruhlman, T.A.; Ben Chikha, M.; Abid, G.; Mejri, S.; Ghorbel, A.; Jansen, R.K. Effects of salt stress on transcriptional and physiological responses in barley leaves with contrasting salt tolerance. Int. J. Mol. Sci. 2022, 23, 5006. [Google Scholar] [CrossRef]
- Lin, J.; Hua, X.; Peng, X.; Dong, B.; Yan, X. Germination responses of ryegrass (Annual vs. Perennial) seed to the interactive effect of temperature and salt-alkali stress. Front. Plant Sci. 2018, 9, 1458. [Google Scholar] [CrossRef]
- Qian, R.; Ma, X.; Zhang, X.; Hu, Q.; Liu, H.; Zheng, J. Effect of exogenous spermidine on osmotic adjustment, antioxidant enzymes activity, and gene expression of Gladiolus gandavensis seedlings under salt stress. J. Plant Growth Regul. 2020, 40, 1353–1367. [Google Scholar] [CrossRef]
- Sun, J.; He, L.; Li, T. Response of seedling growth and physiology of Sorghum bicolor (L.) moench to saline-alkali stress. PLoS ONE 2019, 14, e0220340. [Google Scholar] [CrossRef]
- Weng, H.; Wu, M.; Li, X.; Wu, L.; Li, J.; Atoba, T.O.; Zhao, J.; Wu, R.; Ye, D. High-throughput phenotyping salt tolerance in JUNCAOs by combining prompt chlorophyll a fluorescence with hyperspectral spectroscopy. Plant Sci. 2023, 330, 111660. [Google Scholar] [CrossRef] [PubMed]
- Tavangar, M.; Ehsanzadeh, P.; Eshghizadeh, H. Interplay of an array of salt-responding mechanisms in Iranian borage: Evidence from physiological, biochemical, and histochemical examinations. Plant Physiol. Biochem. 2022, 192, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zheng, J.; Zhang, X.; Hu, Q.; Qian, R. Salicylic acid alleviates the adverse effects of salt stress on dianthus superbus (Caryophyllaceae) by activating photosynthesis, protecting morphological structure, and enhancing the antioxidant system. Front. Plant Sci. 2017, 8, 600. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhang, J.; Wang, C.; Han, K.; Hu, L.; Niu, T.; Yang, Y.; Chang, Y.; Xie, J. Exogenous proline enhances systemic defense against salt stress in celery by regulating photosystem, phenolic compounds, and antioxidant system. Plants 2023, 12, 928. [Google Scholar] [CrossRef]
- Fang, S.; Hou, X.; Liang, X. Response mechanisms of plants under saline-alkali stress. Front. Plant Sci. 2021, 12, 667458. [Google Scholar] [CrossRef]
- Babakhani, B.; Khavari-Nejad, R.A.; Fahimi, H.; Saadatmand, S. Biochemical responses of Alfalfa (Medicago sativa L.) cultivars subjected to NaCl salinity stress. Afr. J. Biotechnol. 2011, 10, 11433–11441. [Google Scholar]
- Derouiche, M.; Mzabri, I.; Ouahhoud, S.; Dehmani, I.; Benabess, R.; Addi, M.; Hano, C.; Boukroute, A.; Berrichi, A.; Kouddane, N. The effect of salt stress on the growth and development of three Aloe species in eastern Morocco. Plant Stress. 2023, 9, 100187. [Google Scholar] [CrossRef]
- Wang, L.; Du, C.; Li, L.; Lai, M.; Liu, X.; Fan, H.; Si, Y. Mitigation impacts of localized salt replacement on the salinity damage of cucumber: The relationship between cucumber growth and salt level in the root region. Sci. Hortic. 2023, 312, 111870. [Google Scholar] [CrossRef]
- Birhanie, Z.M.; Yang, D.; Luan, M.; Xiao, A.; Liu, L.; Zhang, C.; Biswas, A.; Dey, S.; Deng, Y.; Li, D. Salt stress induces changes in physiological characteristics, bioactive constituents, and antioxidants in kenaf (Hibiscus cannabinus L.). Antioxidants 2022, 11, 2005. [Google Scholar] [CrossRef]
- Dal Prà, A.; Davolio, R.; Immovilli, A.; Burato, A.; Ronga, D. Plant composition and feed value of first cut permanent meadows. Agronomy 2023, 13, 681. [Google Scholar] [CrossRef]
- Lu, Q.; Ge, G.; Sa, D.; Wang, Z.; Hou, M.; Jia, Y.S. Effects of salt stress levels on nutritional quality and microorganisms of alfalfa-influenced soil. Peer J. 2021, 9, e11729. [Google Scholar] [CrossRef] [PubMed]
- Zerbini, E.; Krishan, C.T.; Victor, X.V.A.; Sharma, A. Composition and in vitro gas production of whole stems and cell walls of different genotypes of pearl millet and sorghum. Anim. Feed Sci. Technol. 2002, 98, 73–85. [Google Scholar] [CrossRef]
- Sebata, A.; Ndlovu, L.R.; Dube, J.S. Chemical composition, in vitro dry matter digestibility and in vitro gas production of fifive woody species browsed by Matebele goats (Capra hircus L.) in a semi-arid Savanna, Zimbabwe. Anim. Feed Sci. Technol. 2011, 170, 122–125. [Google Scholar] [CrossRef]
- Marie, K.K.; Oetzel, G.R. Understanding and Momordica charantia polysaccharide on in vitro ruminal fermentation and celluloytic bacteria. Ital. J. Anim. Sci. 2006, 16, 226–233. [Google Scholar]
- Thao, N.T.; Wanapat, M.; Cherdthong, A.; Kang, S. Effects of eucalyptus crude oils supplementation on rumen fermentation, microorganism and nutrient digestibility in swamp buffaloes. Asian-Australas J. Anim. Sci. 2014, 27, 46–54. [Google Scholar] [CrossRef]
- Calsamiglia, S.; Ferret, A.; Devant, M. Effects of pH and pH Fluctuations on microbial fermentation and nutrient flow from a dual-flow continuous culture system. J. Dairy Sci. 2022, 85, 574–579. [Google Scholar] [CrossRef]
Items | Cl− | CO32− | HCO3− | SO42− | Ca2+ | Mg2+ | K+ | Na+ | Total Soluble Salts |
---|---|---|---|---|---|---|---|---|---|
Soil salt-based ions (g·kg−1) | 3.07 | - | 0.11 | 1.2 | 1.4 | 0.45 | 6.69 | 7.62 | 20.53 |
Compound salt composition (%) | 14.95 | - | 0.54 | 5.85 | 6.82 | 2.19 | 32.59 | 37.12 | 100 |
Items | Treatment | Days | ||
---|---|---|---|---|
2 | 3 | 4 | ||
Germination (piece) | 0% | 24.0 ± 2.0 a | 30.3 ± 4.0 a | 34.0 ± 2.0 a |
0.4% | 19.0 ± 1.0 b | 20.0 ± 2.7 b | 23.0 ± 1.7 b | |
0.8% | 14.0 ± 2.0 c | 17.0 ± 2.0 bc | 19.0 ± 1.7 c | |
1.2% | 11.0 ± 3.0 c | 12.0 ± 3.0 c | 13.0 ± 2.0 d | |
1.6% | 5.0 ± 2.0 d | 6.0 ± 2.0 d | 7.0 ± 1.7 e | |
Bud length (cm) | 0% | 1.1–2.6 | 1.7–6 | 1.3–8.9 |
0.4% | 0.9–2.4 | 1.4–4.3 | 1.5–5.4 | |
0.8% | 0.5–1.5 | 0.9–1.6 | 0.9–1.6 | |
1.2% | 0.5–1.3 | 0.6–1.3 | 0.6–1.3 | |
1.6% | 0.5–0.7 | 0.7–1.3 | 0.7–1.4 |
Items | Days | |||||
---|---|---|---|---|---|---|
5 | 6 | 7 | ||||
Plant Height (cm) | Root Length (cm) | Plant Height (cm) | Root Length (cm) | Plant Height (cm) | Root Length (cm) | |
0% | 11.43 ± 0.76 a | 6.43 ± 0.64 b | 14.60 ± 0.87 a | 7.60 ± 1.56 a | 18.43 ± 1.50 a | 9.73 ± 1.17 a |
0.4% | 6.77 ± 1.51 b | 7.77 ± 0.50 a | 12.17 ± 0.91 b | 7.80 ± 1.15 a | 15.93 ± 0.47 b | 8.83 ± 1.92 a |
0.8% | 3.10 ± 0.30 c | 3.47 ± 0.55 c | 10.70 ± 0.17 b | 7.57 ± 0.91 a | 11.30 ± 1.01 c | 8.33 ± 0.78 a |
1.2% | 1.27 ± 0.47 d | 1.27 ± 0.47 d | 7.83 ± 1.59 c | 5.80 ± 1.76 ab | 9.07 ± 2.32 c | 7.93 ± 0.80 a |
1.6% | 0.53 ± 0.35 d | 0.53 ± 0.35 d | 3.30 ± 1.16 d | 3.50 ± 0.70 b | 4.57 ± 0.36 d | 3.80 ± 0.26 b |
Items | Chlorophyll (mg·L−1) | MDA (μmol·g−1) | Soluble Sugar (μg·g−1) | Proline (%) | ||
---|---|---|---|---|---|---|
Chlorophyll a | Chlorophyll b | Total Chlorophyll | ||||
0% | 348.82 ± 8.22 b | 32.50 ± 13.73 b | 381.32 ± 21.31 b | 0.014 ± 0.001 ab | 0.630 ± 0.044 c | 0.0050 ± 0.0009 c |
0.4% | 729.71 ± 9.16 a | 223.19 ± 5.44 a | 952.90 ± 14.31 a | 0.015 ± 0.002 a | 0.562 ± 0.015 c | 0.0036 ± 0.0001 d |
0.8% | 269.72 ± 8.62 c | ND | 269.72 ± 8.62 c | 0.016 ± 0.003 a | 0.786 ± 0.091 bc | 0.0071 ± 0.0002 b |
1.2% | 94.45 ± 8.00 d | ND | 94.45 ± 8.00 d | 0.010 ± 0.003 b | 0.879 ± 0.068 b | 0.0076 ± 0.0008 b |
1.6% | ND | ND | ND | 0.005 ± 0.002 c | 1.653 ± 0.256 a | 0.0089 ± 0.0001 a |
Items | DM (%) | Ash (%) | NDF (%) | ADF (%) | EE (%) | CP (%) |
---|---|---|---|---|---|---|
0% | 17.90 ± 0.44 e | 1.93 ± 0.12 d | 23.18 ± 0.57 b | 5.37 ± 0.66 c | 14.09 ± 0.68 a | 12.73 ± 0.04 c |
0.4% | 25.73 ± 0.89 d | 5.14 ± 0.05 ab | 35.00 ± 0.79 a | 8.48 ± 0.25 a | 11.30 ± 0.48 b | 15.23 ± 0.05 a |
0.8% | 38.73 ± 0.79 c | 5.38 ± 0.08 a | 21.51 ± 0.89 c | 6.55 ± 0.47 b | 10.98 ± 0.44 b | 13.26 ± 0.01 b |
1.2% | 40.47 ± 0.84 b | 4.90 ± 0.04 bc | 17.81 ± 0.55 d | 2.96 ± 0.04 d | 9.12 ± 0.64 c | 12.64 ± 0.08 d |
1.6% | 43.82 ± 0.99 a | 4.80 ± 0.30 c | 16.72 ± 0.67 d | 1.55 ± 0.06 e | 9.39 ± 0.70 c | 12.03 ± 0.04 e |
Items | a 1 | b 2 | c 3 | a + b | pH | NH3-N (mg·dL−1) | IVDMD (%) |
---|---|---|---|---|---|---|---|
0% | −2.47 ± 1.25 c | 69.62 ± 0.13 c | 0.20 ± 0.02 a | 67.15 ± 1.25 c | 6.85 ± 0.09 c | 11.12 ± 0.10 | 41.29 ± 1.05 b |
0.4% | 9.19 ± 2.07 a | 62.97 ± 1.53 d | 0.11 ± 0.02 b | 72.16 ± 2.68 b | 7.13 ± 0.04 ab | 11.20 ± 0.05 | 42.85 ± 1.23 b |
0.8% | 5.17 ± 0.83 b | 68.09 ± 1.38 c | 0.13 ± 0.01 b | 73.26 ± 1.90 b | 7.18 ± 0.07 a | 10.99 ± 0.06 | 47.68 ± 1.43 a |
1.2% | −2.64 ± 2.58 c | 75.68 ± 3.82 b | 0.21 ± 0.06 a | 73.05 ± 1.52 b | 7.03 ± 0.05 b | 11.00 ± 0.20 | 48.41 ± 0.82 a |
1.6% | 2.05 ± 2.00 b | 89.23 ± 2.13 a | 0.13 ± 0.01 b | 91.27 ± 3.94 a | 6.82 ± 0.05 c | 11.00 ± 0.12 | 49.39 ± 0.84 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Wang, J.; Sun, Y.; Dong, Y.; Cai, H.; Raja, I.H.; Guo, T.; Zhang, S. Effects of Compound Salt Concentration on Growth, Physiological and Nutritional Value of Hydroponic Forage Wheat. Agriculture 2023, 13, 1833. https://doi.org/10.3390/agriculture13091833
Ma Y, Wang J, Sun Y, Dong Y, Cai H, Raja IH, Guo T, Zhang S. Effects of Compound Salt Concentration on Growth, Physiological and Nutritional Value of Hydroponic Forage Wheat. Agriculture. 2023; 13(9):1833. https://doi.org/10.3390/agriculture13091833
Chicago/Turabian StyleMa, Yan, Jiao Wang, Yu Sun, Yu Dong, Hongyu Cai, Imtiaz Hussain Raja, Tongjun Guo, and Sujiang Zhang. 2023. "Effects of Compound Salt Concentration on Growth, Physiological and Nutritional Value of Hydroponic Forage Wheat" Agriculture 13, no. 9: 1833. https://doi.org/10.3390/agriculture13091833
APA StyleMa, Y., Wang, J., Sun, Y., Dong, Y., Cai, H., Raja, I. H., Guo, T., & Zhang, S. (2023). Effects of Compound Salt Concentration on Growth, Physiological and Nutritional Value of Hydroponic Forage Wheat. Agriculture, 13(9), 1833. https://doi.org/10.3390/agriculture13091833