Design and Experimental Testing of an Overhead Rail Automatic Variable-Distance Targeted Spray System for Solar Greenhouses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overall Structure and Working Principle
2.2. Design of Key Components
2.2.1. Design of Spraying Arm Structure
2.2.2. Design of Autonomous Movement System
2.2.3. Structural Design of Drug Supply System
2.2.4. Composition of Control System
2.3. Spray Parameter Adjustment Scheme and Control System Design
2.3.1. Spray Distance Adjustment Scheme
2.3.2. Automatic Variable-Range Target Spray Control Flow
2.4. Test Conditions
3. Test Results and Analysis
4. Conclusions and Discussions
4.1. Conclusions
4.2. Discussions
Author Contributions
Funding
Conflicts of Interest
References
- Xu, D.; Yang, X.; Li, X. Study on the occurrence and control of pests and diseases in solar greenhouse. Agric. Sci. Technol. Equip. 2021, 442, 20–21. [Google Scholar]
- Sun, J.; Gao, H.; Tian, J.; Wang, J.; Du, C.; Guo, S. Development status and trend of facility horticulture in China. J. Nanjing Agric. Univ. 2019, 42, 594–604. [Google Scholar]
- He, X. Technical equipment for precision pesticide application for plant protection. Agric. Eng. Technol. 2017, 37, 22–26. [Google Scholar]
- Dhananjayan, V.; Ravichandran, B. Occupational health risk of farmers exposed to pesticides in agricultural activities. Curr. Opin. Environ. Sci. Health 2018, 4, 31–37. [Google Scholar] [CrossRef]
- Li, C.; Zhao, L.; Xiong, B.; Zhang, L.; Li, Z.; Teng, F. Comparison of the application effect of four commonly used sprayers on plastic greenhouse tomato crops. North. Hortic. 2018, 21, 90–98. [Google Scholar]
- Zheng, Y.; Chen, B.; Lv, H.; Kang, F.; Jiang, S. Research Progress of Mechanization Technology and Equipment for Orchard Plant Protection in China. Trans. Chin. Soc. Agric. Eng. 2020, 36, 110–124. [Google Scholar]
- Grella, M.; Gallart, M.; Marucco, P.; Balsari, P.; Gil, E. Ground Deposition and Airborne Spray Drift Assessment in Vineyard and Orchard: The Influence of Environmental Variables and Sprayer Settings. Sustainability 2017, 9, 728. [Google Scholar] [CrossRef]
- He, X. Research status and development suggestions of precision drug application technology and equipment in China. Smart Agric. 2020, 2, 133–146. [Google Scholar]
- Hu, P.; Zhang, R.; Yang, J.; Chen, L. The development of domestic and foreign plant protection machinery and the prospect of intelligent integrated pest management system. China Plant Prot. Guide 2022, 42, 20–28. [Google Scholar]
- Chen, H.; Lan, Y.; Fritz, B.K.; Hoffmann, W.C.; Liu, S. Research progress on the control of rice diseases and pests by plant protection UAV. Jiangsu Agric. Sci. 2023, 51, 38–49. [Google Scholar]
- He, Y.; Wu, J.; Fang, H.; Zheng, Q.; Xiao, S.; Cen, H. Review on droplet deposition effect of plant protection UAV. J. Zhejiang Univ. Agric. Life Sci. 2018, 44, 392–398. [Google Scholar]
- Lan, Y.; Yan, Y.; Wang, B.; Song, C.; Wang, G. Research status and development trend of key technologies of intelligent drug application robot. Trans. Chin. Soc. Agric. Eng. 2022, 38, 30–40. [Google Scholar]
- Rafiq, A.; Kalantari, D.; Mashhadimeyghani, H. Construction and development of an automatic sprayer for greenhouse. Agric. Eng. Int. CIGR e-J. 2014, 16, 36–40. [Google Scholar]
- Lee, I.; Lee, K.; Lee, J.; You, K. Autonomous Greenhouse Sprayer Navigation Using Automatic Tracking Algorithm. Appl. Eng. Agric. 2015, 31, 17–21. [Google Scholar]
- Cantelli, L.; Bonaccorso, F.; Longo, D.; Melita, C.D.; Schillaci, G.; Muscato, G. A Small Versatile Electrical Robot for Autonomous Spraying in Agriculture. AgriEngineering 2019, 1, 391–402. [Google Scholar] [CrossRef]
- Mahmud, M.S.A.; Abidin, M.S.Z.; Mohamed, Z.; Rahman, M.K.I.A.; Iida, M. Multi-objective path planner for an agricultural mobile robot in a virtual greenhouse environment. Comput. Electron. Agric. 2019, 157, 488–499. [Google Scholar] [CrossRef]
- Khatawkar, D.S.; Dhalin, D.; James, P.S.; Subhagan, S.R. Electrostatic Induction Spray-charging System (Embedded Electrode) for Knapsack Mist-blower. Curr. J. Appl. Sci. Technol. 2020, 39, 80–91. [Google Scholar] [CrossRef]
- Zhang, Y. Development and Experimental Study of Interrow Sprayer in Solar Greenhouse. Ph.D. Thesis, Shandong Agricultural University, Taian, China, 2019. [Google Scholar]
- Li, Y.; Li, Y.; Pan, X.; Li, Q.X.; Chen, R.; Li, X.; Pan, C.; Song, J. Comparison of a new air-assisted sprayer and two conventional sprayers in terms of deposition, loss to the soil and residue of azoxystrobin and tebuconazole applied to sunlit greenhouse tomato and field cucumber. Pest Manag. Sci. 2018, 74, 448–455. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, J.; Liu, X.; Niu, Z.; Chen, B.; Liu, X. Spraying strategy optimization with genetic algorithm for autonomous air-assisted sprayer in Chinese heliogreenhouses. Comput. Electron. Agric. 2019, 156, 84–95. [Google Scholar] [CrossRef]
- Shi, S. Design and Experimental Study of Single-Hanging Rail Greenhouse Sprayer. Master’s Thesis, Jiangsu University, Zhenjiang, China, 2019. [Google Scholar]
- Tian, F.; Xia, K.; Wang, J.; Song, Z.; Yan, Y.; Li, F.; Wang, F. Design and test of greenhouse self-propelled air-fed sprayer. Chin. J. Agric. Mech. 2020, 41, 54–61. [Google Scholar]
- Xin, T. Development and Test of Electrostatic Sprayer for Four-Wheel Independent Drive/Steering Facility. Master’s Thesis, Shandong Agricultural University, Taian, China, 2022. [Google Scholar]
- Zhang, R. Design and Experimental Study of Control System of Target Variable Spray Device in Greenhouse. Master’s Thesis, Jiangsu University, Zhenjiang, China, 2022. [Google Scholar]
- Yang, Z.; Yu, C.; Yang, H.; Chen, Y.; Zhou, X.; Ma, Y.; Wang, X. Design and test of greenhouse target spray robot based on LiDAR. J. Agric. Mech. Res. 2022, 44, 83–89. [Google Scholar]
- Zhang, Y. Design and Test of Integrated Air-Fed Electrostatic Fogging System in Solar Greenhouse; Shandong Agricultural University: Taian, China, 2022. [Google Scholar]
- JB/T 9782-2014; General Test Methods for Plant Protection Machinery. China Quality Inspection Press: Beijing, China, 2014.
Item | Numerical |
---|---|
Dimensions of the spraying system (length × width × height)/mm | 500 × 60 × 2000 |
Spraying system quality/kg | 50 |
Rated operating pressure/MPa | 0.3 |
Maximum working pressure/MPa | 0.5 |
Number of nozzles/pieces | 4 |
Nozzle type | Fan-shaped nozzle |
Spray angle/degrees | 60 |
Rated operating speed/(m/s) | 0.3 |
Maximum operating speed/(m/s) | 0.5 |
Spray Mode | Canopy Position | Average/% | Standard Deviation | Coefficient/% |
---|---|---|---|---|
Fixed-pitch target spray | Top floor | 66.78 | 6.80 | 10.19 |
Middle layer | 74.39 | 5.46 | 7.34 | |
Substratum | 71.72 | 5.28 | 7.36 | |
Overall | 70.96 | 6.65 | 9.37 | |
Automatic variable-pitch target spray | Top floor | 80.83 | 3.88 | 4.80 |
Middle layer | 84.36 | 3.21 | 3.81 | |
Substratum | 83.13 | 3.26 | 3.92 | |
Overall | 82.77 | 3.74 | 4.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Huang, D.; Jiang, P.; Xiang, S.; Liu, J.; Xu, M.; Shi, Y. Design and Experimental Testing of an Overhead Rail Automatic Variable-Distance Targeted Spray System for Solar Greenhouses. Agriculture 2023, 13, 1853. https://doi.org/10.3390/agriculture13091853
Luo Y, Huang D, Jiang P, Xiang S, Liu J, Xu M, Shi Y. Design and Experimental Testing of an Overhead Rail Automatic Variable-Distance Targeted Spray System for Solar Greenhouses. Agriculture. 2023; 13(9):1853. https://doi.org/10.3390/agriculture13091853
Chicago/Turabian StyleLuo, Yahui, Defan Huang, Ping Jiang, Siliang Xiang, Jianfei Liu, Minzi Xu, and Yixin Shi. 2023. "Design and Experimental Testing of an Overhead Rail Automatic Variable-Distance Targeted Spray System for Solar Greenhouses" Agriculture 13, no. 9: 1853. https://doi.org/10.3390/agriculture13091853
APA StyleLuo, Y., Huang, D., Jiang, P., Xiang, S., Liu, J., Xu, M., & Shi, Y. (2023). Design and Experimental Testing of an Overhead Rail Automatic Variable-Distance Targeted Spray System for Solar Greenhouses. Agriculture, 13(9), 1853. https://doi.org/10.3390/agriculture13091853