The Advancement and Prospects of the Tree Trunk Injection Technique in the Prevention and Control of Diseases and Pests
Abstract
:1. Introduction
2. Mechanism of Tree Trunk Injection
2.1. Transportation within Plants
2.2. Theory of Transpiration-Cohesion-Tension
2.3. Hypothesis of Stress Flow
3. The Development Process of Tree Trunk Injection
4. Advantages of Trunk Injection
4.1. Easy and Accessible Operations
4.2. High Pesticides Utilization Rate and Prolonged Efficacy
4.3. Wide Range
4.4. Reducing the Contamination of Pesticides
5. Injecting Methods and Devices
5.1. Low-Pressure Injection Method
5.2. No-Pressure Injection Method
5.3. High-Pressure Injection Method
6. Critical Technological Challenges
6.1. Selection of Injectable Pesticides
6.2. Injection Site and Depth
6.3. Timing of Administration
6.4. Protection of Injection Wound
7. Conclusions and Prospects
7.1. Summary of Trunk Injection Technology
7.2. Looking Ahead to Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Nan, Y.L.; Zhang, H.C.; Zheng, J.Q.; Yang, K.Q.; Ge, Y.F. Low-volume precision spray for plant pest control using profile variable rate spraying and ultrasonic detection. Front. Plant Sci. 2023, 13, 1042769. [Google Scholar] [CrossRef] [PubMed]
- Archer, L.; Crane, J.H.; Albrecht, U. Trunk Injection as a Tool to Deliver Plant Protection Materials—An Overview of Basic Principles and Practical Considerations. Horticulturae 2022, 8, 552. [Google Scholar] [CrossRef]
- Bunescu, H.; Oltean, I.; Mihai, G.; Bodis, I.; Dinuta, A. Alternative pest control strategies in orchard ecosystems. In Proceedings of the Symposium on Prospects of the Agriculture of the 3rd Millenium Science, Cluj Napoca, Romania, 6–7 October 2005; p. 406. [Google Scholar]
- Lee, H.D.; Ihm, Y.B.; Kwon, H.Y.; Kim, J.B.; Kyung, K.S.; Kim, C.S.; Oh, B.Y.; Im, G.J.; Kim, J.E. Dissipation pattern of pesticide residues in/on different varieties of lettuce applied with foliar spraying under greenhouse condition. Korean J. Pestic. Sci. 2005, 9, 354–358. [Google Scholar]
- Acimovic, S.G.; Zeng, Q.; McGhee, G.C.; Sundin, G.W.; Wise, J.C. Control of fire blight (Erwinia amylovora) on apple trees with trunk-injected plant resistance inducers and antibiotics and assessment of induction of pathogenesis-related protein genes. Front. Plant Sci. 2015, 6, 16. [Google Scholar] [CrossRef]
- Li, M.; Nangong, Z.Y. Precision trunk injection technology for treatment of huanglongbing (HLB)-affected citrus trees—A review. J. Plant Dis. Prot. 2022, 129, 15–34. [Google Scholar] [CrossRef]
- Zhang, P.Y.; Branham, B.E. Measurement of foliar spray retention on creeping bentgrass. Weed Technol. 2019, 33, 827–832. [Google Scholar] [CrossRef]
- Coslor, C.C. Refining Trunk Injection Strategies for Control of Foliar Insect Pests and Disease in Michigan Apple Orchards. Ph.D. Thesis, Michigan State University, East Lansing, MI, USA, 2017. [Google Scholar]
- Wheeler, C.E. Control of Pear Psylla in Pears and Black Stem Borer in Apples with Trunk Injection. Master’s Thesis, Michigan State University, East Lansing, MI, USA, 2020. [Google Scholar]
- Afreh-Nuamah, K. Spray Distribution in a Tree Crop. Ph.D. Thesis, Imperial College London (United Kingdom), London, UK, 1987. [Google Scholar]
- Ku, Y.G.; Woolley, D.J.; Ahn, S.J.; Lee, J.H. Affecting Asparagus officinalis Shoot and Root Growth Characteristics with CPPU Foliar Sprays and Soil Drench. Korean J. Hortic. Sci. Technol. 2010, 28, 167–171. [Google Scholar]
- Resende-Silva, G.A.; Joseph, D.A.; Guedes, R.N.C.; Cutler, G.C. Impact of Imidacloprid Soil Drenching on Survival, Longevity, and Reproduction of the Zoophytophagous Predator Podisus maculiventris (Hemiptera: Pentatomidae: Asopinae). J. Econ. Entomol. 2020, 113, 108–114. [Google Scholar] [CrossRef]
- McLeod, A.; Masikane, S.L.; Novela, P.; Ma, J.; Mohale, P.; Nyoni, M.; Stander, M.; Wessels, J.P.B.; Pieterse, P. Quantification of root phosphite concentrations for evaluating the potential of foliar phosphonate sprays for the management of avocado root rot. Crop Prot. 2018, 103, 87–97. [Google Scholar] [CrossRef]
- Calvin, M. Mechanism of photosynthesis in green plants. Rend. -Ist. Super. Sanita 1956, 19, 247–264. [Google Scholar]
- Berger, C.; Laurent, F. Trunk injection of plant protection products to protect trees from pests and diseases. Crop Prot. 2019, 124, 104831. [Google Scholar] [CrossRef]
- Martínez-Vilalta, J.; Mencuccini, M.; Alvarez, X.; Camacho, J.; Loepfe, L.; Piñol, J. Spatial Distribution and Packing of Xylem Conduits. Am. J. Bot. 2012, 99, 1189–1196. [Google Scholar] [CrossRef] [PubMed]
- Tanis, S.R.; Cregg, B.M.; Mota-Sanchez, D.; McCullough, D.G.; Poland, T.M. Spatial and temporal distribution of trunk-injected 14C-imidacloprid in Fraxinus trees. Pest Manag. Sci. 2012, 68, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Carlquist, S. Interxylary phloem: Diversity and functions. Brittonia 2013, 65, 477–495. [Google Scholar] [CrossRef]
- Bentrup, F.W. Water ascent in trees and lianas: The cohesion-tension theory revisited in the wake of Otto Renner. Protoplasma 2017, 254, 627–633. [Google Scholar] [CrossRef] [PubMed]
- David, T.S.; Ferreira, M.I.; David, J.S.; Pereira, J.S. Transpiration from a mature Eucalyptus globulus plantation in Portugal during a spring-summer period of progressively higher water deficit. Oecologia 1997, 110, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Perron, N.; Baltzer, J.L.; Sonnentag, O. Spatial and temporal variation in forest transpiration across a forested boreal peatland complex. Hydrol. Process. 2023, 37, e14815. [Google Scholar] [CrossRef]
- Angeles, G.; Bond, B.; Boyer, J.S.; Brodribb, T.; Brooks, J.R.; Burns, M.J.; Cavender-Bares, J.; Clearwater, M.; Cochard, H.; Comstock, J.; et al. The Cohesion-Tension theory. New Phytol. 2004, 163, 451–452. [Google Scholar]
- Greulach, V.A. A Proposed New Name for the Cohesion Theory of Water Ascent in Plants. Science 1951, 114, 675. [Google Scholar] [CrossRef]
- Steudle, E. The cohesion-tension mechanism and the acquisition of water by plant roots. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 847–875. [Google Scholar] [CrossRef]
- Liu, S.; Li, G.W.; IEEE. Research on Water Transport Pattern and Branch-Borer Control Efficiency of Qurcus Mongolica. In Proceedings of the World Automation Congress (WAC), Puerto Vallarta, Mexico, 24–28 June 2012. [Google Scholar]
- Yang, C.; Fan, F.H.; Xu, G.; Ding, G.J. Development, differentiation, and material distribution of secondary phloem in Pinus massoniana. J. For. Res. 2023, 34, 1915–1926. [Google Scholar] [CrossRef]
- Turgeon, R. The Puzzle of Phloem Pressure. Plant Physiol. 2010, 154, 578–581. [Google Scholar] [CrossRef] [PubMed]
- Pickard, W.F. The riddle of root pressure. II. Root exudation at extreme osmolalities. Funct. Plant Biol. 2003, 30, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Koehler, T.; Wankmüller, F.J.P.; Sadok, W.; Carminati, A. Transpiration response to soil drying versus increasing vapor pressure deficit in crops: Physical and physiological mechanisms and key plant traits. J. Exp. Bot. 2023, 74, 4789–4807. [Google Scholar] [CrossRef] [PubMed]
- Roach, W.A. Plant Injection as a Physiological Method. Ann. Bot. 1939, 3, 155–277. [Google Scholar] [CrossRef]
- Rumbold, C. The Injection of Chemicals into Chestnut Trees. Am. J. Bot. 1920, 7, 1–20. [Google Scholar] [CrossRef]
- Zhang, W.J.; Wu, X.Q.; Ye, J.R.; Li, C.Q.; Hu, L.J.; Rui, L.; Zhang, Y.; Shi, X.F.; Wang, L. Toxicity of an Emamectin Benzoate Microemulsion against Bursaphelenchus xylophilus and Its Effect on the Prevention of Pine Wilt Disease. Forests 2023, 14, 1476. [Google Scholar] [CrossRef]
- Burkhard, R.; Binz, H.; Roux, C.A.; Brunner, M.; Ruesch, O.; Wyss, P. Environmental fate of emamectin benzoate after tree micro injection of horse chestnut trees. Environ. Toxicol. Chem. 2014, 34, 297–302. [Google Scholar] [CrossRef]
- Guo, Y.J.; Ma, J.Y.; Sun, Y.Z.; Carballar-Lejarazu, R.; Weng, M.Q.; Shi, W.C.; Wu, J.Q.; Hu, X.; Wang, R.; Zhang, F.P.; et al. Spatiotemporal dynamics of fluopyram trunk-injection in Pinus massoniana and its efficacy against pine wilt disease. Pest Manag. Sci. 2023, 79, 2230–2238. [Google Scholar] [CrossRef]
- Haugen, L.; Stennes, M. Fungicide injection to control Dutch elm disease: Understanding the options. Plant Diagn. Q. 1999, 20, 29–38. [Google Scholar]
- Karnosky, D.F. Dutch elm disease: A review of the history, environmental implications, control, and research needs. Environ. Conserv. 1979, 6, 311–322. [Google Scholar] [CrossRef]
- Perry, T.O.; Santamour, F.S.; Stipes, R.J.; Shear, T.; Shigo, A.L. Exploring Alternatives to Tree Injection. J. Arboric. 1991, 17, 217–226. [Google Scholar] [CrossRef]
- Li, X.; Jin, D.; Jin, X.; Nam-chang, N.; Li, D. Selection of Trunk Injection Pesticides for Preventive of Pine Wilt Disease, Bursaphelenchus xylophilus on Japanese Black Pine (Pinus thunbergii). Korean J. Pestic. Sci. 2009, 13, 267–274. [Google Scholar]
- Shin, W.S.; Jung, Y.H.; Lee, S.M.; Lee, C.M.; Lee, C.J.; Kim, D.S.; Mun, I.S.; Lee, D.W. Development of Effective Screening Method for Efficacy Test of Trunk Injection Agents Against Pine Wood Nematode, Bersaphelenchus xylophilus in Japanese Black Pine, Pinus thunbergii. Korean J. Pestic. Sci. 2015, 19, 440–449. [Google Scholar] [CrossRef]
- Ni, A.S.; Yang, D.; Cheng, H.; Ye, J.R. Preliminary Study on Early Diagnosis and Rehabilitation Treatment of Pine Wood Nematode Disease Based on Partial Symptoms. Forests 2023, 14, 657. [Google Scholar] [CrossRef]
- Calzarano, F.; Di Marco, S.; Cesari, A. Benefit of fungicide treatment after trunk renewal of vines with different types of esca necrosis. Phytopathol. Mediterr. 2004, 43, 116–124. [Google Scholar] [CrossRef]
- Kiss, M.; Soros, C.; Gutermuth, A.; Ittzes, A.; Szabo, A. Avermectin Trunk Injections: A Promising Approach for Managing the Walnut Husk Fly (Rhagoletis completa). Horticulturae 2023, 9, 655. [Google Scholar] [CrossRef]
- Hu, J.H.; Wang, N.A. Evaluation of the Spatiotemporal Dynamics of Oxytetracycline and Its Control Effect Against Citrus Huanglongbing via Trunk Injection. Phytopathology 2016, 106, 1495–1503. [Google Scholar] [CrossRef]
- Mota-Sanchez, D.; Cregg, B.M.; McCullough, D.G.; Poland, T.M.; Hollingworth, R.M. Distribution of trunk-injected 14C-imidacloprid in ash trees and effects on emerald ash borer (Coleoptera: Buprestidae) adults. Crop Prot. 2009, 28, 655–661. [Google Scholar] [CrossRef]
- Mashal, M.M.; Obeidat, B.F. The efficacy assessment of emamectin benzoate using micro injection system to control red palm weevil. Heliyon 2019, 5, e01833. [Google Scholar] [CrossRef]
- Akinsanmi, O.A.; Drenth, A. Phosphite and metalaxyl rejuvenate macadamia trees in decline caused by Phytophthora cinnamomi. Crop Prot. 2013, 53, 29–36. [Google Scholar] [CrossRef]
- Dalakouras, A.; Jarausch, W.; Buchholz, G.; Bassler, A.; Braun, M.; Manthey, T.; Krczal, G.; Wassenegger, M. Delivery of Hairpin RNAs and Small RNAs Into Woody and Herbaceous Plants by Trunk Injection and Petiole Absorption. Front. Plant Sci. 2018, 9, 1253. [Google Scholar] [CrossRef] [PubMed]
- Archer, L.; Albrecht, U. Evaluation of Trunk Injection Techniques for Systemic Delivery of Huanglongbing Therapies in Citrus. Hortscience 2023, 58, 768–778. [Google Scholar] [CrossRef]
- Cevenini, L.; Minelli, A. Translocation of Active Ingredient Using Three Trunk Injection Methods. In Proceedings of the 2nd International Conference on Landscape and Urban Horticulture, Bologna, Italy, 9–13 June 2009; pp. 409–412. [Google Scholar]
- Choi, H.S.; Kim, W.S.; Kim, H.J.; Choi, K.J.; Lee, Y. Variation of Soil and Leaf in a ‘Wonhwang’ Pear Orchard Appled by Selenium Solution. Korea J. Org. Agric. 2010, 18, 541–548. [Google Scholar]
- Huang, J.; Zhang, J.; Li, Y.; Li, J.; Shi, X.H. Evaluation of the effectieness of insecticide trunk injections for control of Latoia lepida (Cramer) in the sweet olive tree Osmanthus fragrans. Peerj 2016, 4, e2480. [Google Scholar] [CrossRef]
- Li, J.Y.; Kolbasov, V.G.; Pang, Z.Q.; Duan, S.; Lee, D.; Huang, Y.X.; Xu, J.; Teper, D.; Lamichhane, T.; Wang, N.A. Evaluation of the control effect of SAR inducers against citrus Huanglongbing applied by foliar spray, soil drench or trunk injection. Phytopathol. Res. 2021, 3, 2. [Google Scholar] [CrossRef]
- Wheeler, C.E.; Vandervoort, C.; Wise, J.C. Organic Control of Pear Psylla in Pear with Trunk Injection. Insects 2020, 11, 650. [Google Scholar] [CrossRef]
- Byeongjin, C.; Kim, M.-Y.; Kab, K.J.; Kim, C.-E.; Lee, K.J. Influence of the Injection Wound Size and the Crown Condition on the Trunk-injection Efficiency in Zelkova Trees. J. Agric. Life Sci. 2019, 53, 73–84. [Google Scholar] [CrossRef]
- Wang, X.Y.; Zheng, X.L.; Lu, W. The complete mitochondrial genome of an Asian longicorn beetle Glenea cantor (Coleoptera: Cerambycidae: Lamiinae). Mitochondrial DNA Part B-Resour. 2019, 4, 2906–2907. [Google Scholar] [CrossRef]
- Yamanobe, T.; Hosoda, H. High survival rates for the longicorn beetle, Apriona japonica (Coleoptera, Cerambycidae) Thomson in beech trees (Fagus crenata Blume) planted in lowlands. Jpn. J. Appl. Entomol. Zool. 2002, 46, 256–258. [Google Scholar] [CrossRef]
- Byrne, F.J.; Urena, A.A.; Robinson, L.J.; Krieger, R.I.; Doccola, J.; Morse, J.G. Evaluation of neonicotinoid, organophosphate and avermectin trunk injections for the management of avocado thrips in California avocado groves. Pest Manag. Sci. 2012, 68, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Coslor, C.C.; Sundin, G.W.; Wise, J.C. The efficacy of trunk injections of emamectin benzoate and phosphorous acid for control of obliquebanded leafroller and apple scab on semi-dwarf apple. Crop Prot. 2019, 118, 44–49. [Google Scholar] [CrossRef]
- Ouyang, X.H.; Fan, Q.B.; Chen, A.L.; Huang, J.H. Effects of trunk injection with emamectin benzoate on arthropod diversity. Pest Manag. Sci. 2023, 79, 935–946. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Kim, D.S.; Kim, C.S.; Cho, K.S.; Choo, H.Y.; Lee, D.W. Persistence and Distribution of Trunk-Injected Abamectin in Pinus thunbergii and Pinus koraiensis Tissues. Korean J. Pestic. Sci. 2009, 13, 190–196. [Google Scholar]
- Sunamura, E.; Tamura, S.; Taki, H.; Buczkowski, G.; Shoda-Kagaya, E. Effects of neonicotinoid insecticide trunk injections on non-target arboreal ants, potential biological control agents for invasive longhorn beetle Aromia bungii on cherry trees. Appl. Entomol. Zool. 2023, 58, 401–407. [Google Scholar] [CrossRef]
- Ferreira, J.A.; Esparraguera, L.B.; Queiroz, S.C.N.; Bottoli, C.B.G. Vegetative Endotherapy-Advances, Perspectives, and Challenges. Agriculture 2023, 13, 1465. [Google Scholar] [CrossRef]
- Duane Cronenwett, G. Apparatus and Method for Injecting Trees. US4698935, 13 October 1987. [Google Scholar]
- West, O.S.; Hale, G.E. Tree Injector System. US5355619, 30 September 1993. [Google Scholar]
- Boyd, W.A.; Britt, R.T. Plant Injection Method and Apparatus. US4011685, 15 March 1977. [Google Scholar]
- Gillespie John, L. Apparatus for Hydraulic Tree Injection. US19830496852, 23 May 1983. [Google Scholar]
- Wild, P.M.; Floyd, D.E.; Doccola, J.J. Plant Injection Method and Apparatus. WO2003US20863, 1 July 2003. [Google Scholar]
- Shang, Q.; Zhao, B.; Zhang, Y. The development of a high-pressure, large-capacity tree trunk injection machine. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2009, 33, 101–104. [Google Scholar]
- Acimovic, S.G.; VanWoerkom, A.H.; Reeb, P.D.; Vandervoort, C.; Garavaglia, T.; Cregg, B.M.; Wise, J.C. Spatial and temporal distribution of trunk-injected imidacloprid in apple tree canopies. Pest Manag. Sci. 2014, 70, 1751–1760. [Google Scholar] [CrossRef]
- Takai, K.; Soejima, T.; Suzuki, T.; Kawazu, K. Studies on development of a novel trunk injection agent against the pine wilt disease, Part 2. Development of a water-soluble preparation of emamectin benzoate and its preventative effect against the wilting of pot-grown pine trees inoculated with the pine wood nematode, Bursaphelenchus xylophilus. Pest Manag. Sci. 2001, 57, 463–466. [Google Scholar] [CrossRef]
- Dula, T.; Kappes, E.M.; Horvath, A.; Rabai, A. Preliminary trials on treatment of esca-infected grapevines with trunk injection of fungicides. Phytopathol. Mediterr. 2007, 46, 91–95. [Google Scholar]
- Wild, P.M.; Floyd, D.E.; Mikesell, L.D. Woody Plant Injection Method and Apparatus. U.S. Patent 20020046486, 25 April 2002. [Google Scholar]
- Takai, K.; Suzuki, T.; Kawazu, K. Development and preventative effect against pine wilt disease of a novel liquid formulation of emamectin benzoate. Pest Manag. Sci. 2003, 59, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Reding, M.E.; Oliver, J.B.; Schultz, P.B.; Ranger, C.M.; Youssef, N.N. Ethanol Injection of Ornamental Trees Facilitates Testing Insecticide Efficacy Against Ambrosia Beetles (Coleoptera: Curculionidae: Scolytinae). J. Econ. Entomol. 2013, 106, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Byeongjin, C.; Sangsub, H.; Kim, K.W.; Kim, D.; Woon, L.D. Improving Strategies for Trunk Injection Considering Tree Anatomy and Physiology. Korean J. Pestic. Sci. 2020, 24, 218–230. [Google Scholar] [CrossRef]
- Shin, J.H.; Kwon, O.; Lee, C.M.; Lee, S.M.; Choi, Y.H.; Kim, J.H.; Kim, Y.S.; Lee, D.W. Nematicidal Activity of Eclipta prostrata Extract and Terthiophene against Pine Wood Nematode, Bursaphelenchus xylophilus. Korean J. Pestic. Sci. 2016, 20, 56–65. [Google Scholar] [CrossRef]
- Qureshi, M.S.; Midmore, D.J.; Syeda, S.S.; Reid, D.J. Pyriproxyfen controls silverleaf whitefly, Bemisia tabaci (Gennadius), biotype B (Homoptera: Aleyrodidae) (SLW) better than buprofezin in bitter melons Momordica charantia L. (Cucurbitaceae). Aust. J. Entomol. 2009, 48, 60–64. [Google Scholar] [CrossRef]
- Coslor, C.C.; Vandervoort, C.; Wise, J.C. Control of insect pests using trunk injection in a newly established apple orchard. Int. J. Fruit Sci. 2019, 19, 151–164. [Google Scholar] [CrossRef]
- Archer, L.; Kunwar, S.; Alferez, F.; Batuman, O.; Albrecht, U. Trunk Injection of Oxytetracycline for Huanglongbing Management in Mature Grapefruit and Sweet Orange Trees. Phytopathology 2023, 113, 1010–1021. [Google Scholar] [CrossRef]
- Byrne, F.J.; Krieger, R.I.; Doccola, J.; Morse, J.G. Seasonal timing of neonicotinoid and organophosphate trunk injections to optimize the management of avocado thrips in California avocado groves. Crop Prot. 2014, 57, 20–26. [Google Scholar] [CrossRef]
- Koh, Y.J.; Lee, D.H.; Shin, J.S.; Hur, J.S. Chemical and cultural control of bacterial blossom blight of kiwifruit caused by Pseudomonas syringae in Korea. N. Z. J. Crop Hortic. Sci. 2001, 29, 29–34. [Google Scholar] [CrossRef]
- Choi, J.-H.; Lee, H.-W.; Jang, C.; Kim, Y.S.; Okki, M.A.; Ha, N.M.; Lee, J.K.; Han, H.; Nam, Y.W.; Lee, D. Time-dependent Change of Host by Nematicide Tree Injection and Pine Wood Nematode, Bursaphelenchus xylophilus Inoculation in Two Pine Species, Pinus densiflora and P. thunbergii. Korean J. Pestic. Sci. 2022, 26, 43–54. [Google Scholar] [CrossRef]
- Albrecht, U.; Archer, L. Trunk Injection in Citrus-Compartmentalization of Wounds and the Codit Concept. Hortscience 2021, 56, S82. [Google Scholar]
- Acimovic, S.G.; Cregg, B.M.; Sundin, G.W.; Wise, J.C. Comparison of drill- and needle-based tree injection technologies in healing of trunk injection ports on apple trees. Urban For. Urban Green. 2016, 19, 151–157. [Google Scholar] [CrossRef]
- Lee, S.M.; Jung, Y.H.; Seo, S.-T.; Kim, D.S.; Woon, L.D. Comparison of Nematicidal Effect and Residual Amount by Injection Time and Number of Holes using Emamectin Benzoate Via Tree Injection Against Pine Wood Nematode, Bursaphelenchus xylophilus. Korean J. Pestic. Sci. 2021, 25, 371–378. [Google Scholar] [CrossRef]
- Archer, L.; Albrecht, U. Wound reaction to trunk injection of oxytetracycline or water in huanglongbing-affected sweet orange (Citrus sinensis) trees. Trees-Struct. Funct. 2023, 37, 1483–1497. [Google Scholar] [CrossRef]
- Scolaro, E.; Beligoj, M.; Estevez, M.P.; Alberti, L.; Renzi, M.; Mattetti, M. Electrification of Agricultural Machinery: A Review. IEEE Access 2021, 9, 164520–164541. [Google Scholar] [CrossRef]
- Xue, J.L.; Zhang, Y.; Zhang, S.S.; Feng, Y. Remote Control of an Agricultural Robot and Tests. In Proceedings of the International Conference on Sensors, Mechatronics and Automation (ICSMA), Shenzhen, China, 24–25 December 2013; pp. 1133–1136. [Google Scholar]
- Zhang, X.R.; Fu, X.Q.; Xue, Y.X.; Chang, X.Y.; Bai, X. A review on basic theory and technology of agricultural energy internet. IET Renew. Power Gener. 2023; early view. [Google Scholar] [CrossRef]
- Ding, W.G.; Taylor, G. Automatic moth detection from trap images for pest management. Comput. Electron. Agric. 2016, 123, 17–28. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.W. Plant diseases and pests detection based on deep learning: A review. Plant Methods 2021, 17, 22. [Google Scholar] [CrossRef]
Classification Basis | Name | Explanations of Measures and References | Features |
---|---|---|---|
No-Pressure Injection | Duane Cronenwett | Insert the capsule-shaped container into the borehole and administer the pesticides by piercing the sealed cap with an external needle [63]. | |
Low-Pressure Injection | West Otho S | Injecting a treatment liquid into a hole drilled into a trunk of a tree comprising a container for receiving the treatment liquid and a closure for closing the container [64]. | |
William | The needle portion of the device may be inserted into the plant either by applying force to the body of the device or by drilling hole sized relative to the width of the needle in the plant and inserting the needle therein [65]. | ||
Gillespie John | Utilize manual hydraulic cylinders for the infusion process, enhancing the efficiency of pesticides administration through multiple outlets [66]. | ||
High-Pressure Injection | Peter Wild | Improvement design of pesticides injection device, merge the connecting rod and piston rod, with both ends of the merged component equipped with pistons [67]. | |
Qingqing Shang | Portable high-pressure large-capacity tree injection device, incorporating a circular self-retracting serrated blade and a needle with excellent sealing properties to the tree trunk [68]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, Q.; Lu, H.; Yang, M.; Wu, Y.; Chen, Q. The Advancement and Prospects of the Tree Trunk Injection Technique in the Prevention and Control of Diseases and Pests. Agriculture 2024, 14, 107. https://doi.org/10.3390/agriculture14010107
Shang Q, Lu H, Yang M, Wu Y, Chen Q. The Advancement and Prospects of the Tree Trunk Injection Technique in the Prevention and Control of Diseases and Pests. Agriculture. 2024; 14(1):107. https://doi.org/10.3390/agriculture14010107
Chicago/Turabian StyleShang, Qingqing, Hongcai Lu, Mengdi Yang, Yujie Wu, and Qing Chen. 2024. "The Advancement and Prospects of the Tree Trunk Injection Technique in the Prevention and Control of Diseases and Pests" Agriculture 14, no. 1: 107. https://doi.org/10.3390/agriculture14010107
APA StyleShang, Q., Lu, H., Yang, M., Wu, Y., & Chen, Q. (2024). The Advancement and Prospects of the Tree Trunk Injection Technique in the Prevention and Control of Diseases and Pests. Agriculture, 14(1), 107. https://doi.org/10.3390/agriculture14010107