The Efficacy of Plant Pathogens Control by Complexed Forms of Copper
Abstract
:1. Introduction
2. Materials and Methods
2.1. Effects of Copper on In Vitro Fungal Growth
2.2. Rolled Towel Test
- I. no symptoms;
- II. less than 50% of seedlings attacked;
- III. more than 50% of seedlings attacked;
- IV. 100% of seedlings attacked.
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Tadesse, W.; Sanchez-Garcia, M.; Assefa, S.G.; Amri, A.; Bishaw, Z.; Ogbonnaya, F.C.; Baum, M. Genetic gains in wheat breeding and its role in feeding the world. Crop Breed. Genet. Genome 2019, 1, e190005. [Google Scholar] [CrossRef]
- Erenstein, O.; Jaleta, M.; Mottaleb, K.A.; Sonder, K.; Donovan, J.; Braun, H.J. Global trends in wheat production, consumption and trade. In Wheat Improvement; Reynolds, M.P., Braun, H.J., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Zörb, C.; Ludewig, U.; Hawkesford, M.J. Perspective on wheat yield and quality with reduced nitrogen supply. Trends Plant Sci. 2018, 23, 1029–1037. [Google Scholar] [CrossRef]
- Linina, A.; Ruza, A. The Influence of Cultivar, Weather Conditions and Nitrogen Fertilizer on Winter Wheat Grain Yield. Agron. Res. 2018, 16, 147–156. [Google Scholar] [CrossRef]
- Farook, U.B.; Khan, Z.H.; Ahad, I.; Maqbool, S.; Yaqoob, M.; Rafieq, I.; Rehman, S.A.; Sultan, N. A review on insect pest complex of wheat (Triticum aestivum L.). J. Entomol. Zool. Stud. 2019, 7, 1292–1298. [Google Scholar]
- Flessner, M.L.; Burke, I.C.; Dille, J.A.; Everman, W.J.; VanGessel, M.J.; Tidemann, B.; Manuchehri, M.R.; Soltani, N.; Sikkema, P.H. Potential wheat yield loss due to weeds in the United States and Canada. Weed Technol. 2021, 35, 916–923. [Google Scholar] [CrossRef]
- Figueroa, M.; Hammond-Kosack, K.E.; Solomon, P.S. A review of wheat diseases—A field perspective. Mol. Plant Pathol. 2018, 19, 1523–1536. [Google Scholar] [CrossRef] [PubMed]
- Kazan, K.; Gardiner, D.M. Fusarium crown rot caused by Fusarium pseudograminearum in cereal crops: Recent progress and future prospects. Mol. Plant Pathol. 2018, 19, 1547–1562. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, I.; Persson, P.; Friberg, H. Fusarium head blight from a microbiome perspective. Front. Microbiol. 2021, 12, 628373. [Google Scholar] [CrossRef]
- Perincherry, L.; Lalak-Kańczugowska, J.; Stępień, Ł. Fusarium-Produced Mycotoxins in Plant-Pathogen Interactions. Toxins 2019, 11, 664. [Google Scholar] [CrossRef]
- Qiu, J.; Lu, Y.; He, D.; Lee, Y.W.; Ji, F.; Xu, J.; Shi, J. Fusarium fujikuroi Species Complex Associated with Rice, Maize, and Soybean from Jiangsu Province, China: Phylogenetic, Pathogenic, and Toxigenic Analysis. Plant Dis. 2020, 104, 2193–2201. [Google Scholar] [CrossRef]
- Ficke, A.; Asalf, B.; Norli, H.R. Volatile Organic Compound Profiles from Wheat Diseases Are Pathogen-Specific and Can Be Exploited for Disease Classification. Front. Microbiol. 2022, 12, 803352. [Google Scholar] [CrossRef]
- Afzal, I.; Javed, T.; Amirkhani, M.; Taylor, A.G. Modern seed technology: Seed coating delivery systems for enhancing seed and crop performance. Agriculture 2020, 10, 526. [Google Scholar] [CrossRef]
- Capo, L.; Zappino, A.; Reyneri, A.; Blandino, M. Role of the Fungicide Seed Dressing in Controlling Seed-Borne Fusarium spp. Infection and in Enhancing the Early Development and Grain Yield of Maize. Agronomy 2020, 10, 784. [Google Scholar] [CrossRef]
- Lamichhane, J.R.; You, M.P.; Laudinot, V.; Barbetti, M.J.; Aubertot, J.-N. Revisiting Sustainability of Fungicide Seed Treatments for Field Crops. Plant Dis. 2020, 104, 610–623. [Google Scholar] [CrossRef]
- Balmas, V.; Delogu, G.; Sposito, S.; Rau, D.; Migheli, Q. Use of a complexation of tebuconazole with β-cyclodextrin for controlling foot and crown rot of durum wheat incited by Fusarium culmorum. J. Agric. Food Chem. 2006, 54, 480–484. [Google Scholar] [CrossRef] [PubMed]
- Odds, F.C.; Brown, A.J.P.; Gow, N.A.R. Antifungal agents: Mechanisms of action. Trends Microbiol. 2003, 11, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Du, J.; Tang, C.; Huang, Y.; Jin, H. H2S-Induced Sulfhydration: Biological Function and Detection Methodology. Front. Pharmacol. 2017, 8, 608. [Google Scholar] [CrossRef] [PubMed]
- Jacquet, F.; Jeuffroy, M.-H.; Jouan, J.; Le Cadre, E.; Litrico, I.; Malausa, T.; Reboud, X.; Huyghe, C. Pesticide-free agriculture as a new paradigm for research. Agron. Sustain. Dev. 2022, 42, 8. [Google Scholar] [CrossRef]
- Carvalho, F.P. Pesticides, environment, and food safety. Food Energy Secur. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions a Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System (Brussels, 20 May 2020 COM(2020) 381 Final). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0381 (accessed on 26 December 2023).
- Fortunati, E.; Mazzaglia, A.; Balestra, G.M. Sustainable control strategies for plant protection and food packaging sectors by natural substances and novel nanotechnological approaches. J. Sci. Food Agric. 2019, 99, 986–1000. [Google Scholar] [CrossRef]
- Kumar, J.; Ramlal, A.; Mallick, D.; Mishra, V. An Overview of Some Biopesticides and Their Importance in Plant Protection for Commercial Acceptance. Plants 2021, 10, 1185. [Google Scholar] [CrossRef]
- Yruela, I. Transition metals in plant photosynthesis. Metallomics 2013, 5, 1090–1109. [Google Scholar] [CrossRef]
- Ruiz, L.M.; Libedinsky, A.; Elorza, A.A. Role of Copper on Mitochondrial Function and Metabolism. Front. Mol. Biosci. 2021, 8, 711227. [Google Scholar] [CrossRef] [PubMed]
- Vatamaniuk, O.K. Plant Movement and LAC of It: How Copper Facilitates Explosive Seed Dispersal. Proc. Natl. Acad. Sci. USA 2022, 119, e2208331119. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, E.C.; Nogueira, R.; da Silva, M.A.; de Albuquerque, M.B. Drought stress and plant nutrition. Plant Stress 2011, 5, 32–41. [Google Scholar]
- Broadley, M.; Brown, P.; Cakmak, I.; Rengel, Z.; Zhao, F. Function of nutrients: Micronutrients. In Mineral Nutrition of Higher Plants; Marschner, P., Ed.; Academic Press Inc.: San Diego, CA, USA, 2012; pp. 191–248. [Google Scholar]
- Kantek, K. Wpływ nawożenia miedzią na plonowanie pszenicy ozimej i zawartość tego pierwiastka w roślinie. Zesz. Nauk. UP Wroc. Rol. 2015, 611, 21–32. [Google Scholar]
- Alloway, B.J. Micronutrients and crop production: An introduction. In Micronutrient Deficiencies in Global Crop Production; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–39. [Google Scholar]
- Rai, M.; Ingle, A.P.; Pandit, R.; Paralikar, P.; Shende, S.; Gupta, I.; Biswas, J.K.; Da Silva, S.S. Copper and copper nanoparticles: Role in management of insect-pests and pathogenic microbes. Nanotechnol. Rev. 2018, 7, 303–315. [Google Scholar] [CrossRef]
- Husak, V. Copper and copper-containing pesticides: Metabolism, toxicity and oxidative stress. J. Vasyl Stefanyk Precarpathian Natl. Univ. 2015, 2, 38–50. [Google Scholar] [CrossRef]
- Lamichhane, J.R.; Osdaghi, E.; Behlau, F.; Köhl, J.; Jones, J.B.; Aubertot, J.-N. Thirteen decades of antimicrobial copper compounds applied in agriculture. A review. Agron. Sustain. Dev. 2018, 38, 28. [Google Scholar] [CrossRef]
- Oussou-Azo, A.; Nakama, T.; Nakamura, M.; Futagami, T.; Vestergaard, M. Antifungal Potential of Nanostructured Crystalline Copper and Its Oxide Forms. Nanomaterials 2020, 10, 1003. [Google Scholar] [CrossRef]
- Tamm, L.; Thuerig, B.; Apostolov, S.; Blogg, H.; Borgo, E.; Corneo, P.E.; Fittje, S.; de Palma, M.; Donko, A.; Experton, C.; et al. Use of Copper-Based Fungicides in Organic Agriculture in Twelve European Countries. Agronomy 2022, 12, 673. [Google Scholar] [CrossRef]
- Sedlar, A.; Gvozdenac, S.; Pejovi´c, M.; Višacki, V.; Turan, J.; Tanaskovi´c, S.; Burg, P.; Vasi´c, F. The Influence of Wetting Agent and Type of Nozzle on Copper Hydroxide Deposit on Sugar Beet Leaves (Beta vulgaris L.). Appl. Sci. 2022, 12, 2911. [Google Scholar] [CrossRef]
- González-Hernández, A.I.; Llorens, E.; Agustí-Brisach, C.; Vicedo, B.; Yuste, T.; Cerveró, A.; Ledó, C.; García-Augustín, P.; Lepeña, L. Copper heptagluconate as ecofriendly compound enhancing the plant immune system of Solanum lycopersicum against Pseudomonas syringae, causal agent of bacterial speck. In Proceedings of the 18th International Conference on Organic Fruit-Growing, Hohenheim, Germany, 19–21 February 2018. [Google Scholar]
- Malode, K.S.; Pandey, I.K.; Bhonde, S.; Kothawade, P. Benefits of Novel Organic Chelated Lignosulfonate Fertilizers for the Plant, Soil and Environment: ‘A Brief Review’. IJCSPUB 2023, 13, 156–159. [Google Scholar]
- Commission Implementing Regulation (EU) 2018/1981 of 13 December 2018 Renewing the Approval of the Active Substances Copper Compounds, as Candidates for Substitution, in Accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council Concerning the Placing of Plant Protection Products on the Market, and Amending the Annex to Commission Implementing Regulation (EU) No 540/2011. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018R1981 (accessed on 26 December 2023).
- Booth, C. The Genus Fusarium; Commonwealth Mycological Institute: Kew, UK, 1971; 237p. [Google Scholar]
- Kwaśna, H.; Chełkowski, J.; Zajkowski, P. Flora Polska. Grzyby (Mycota). Tom XXII. Sierpik (Fusarium); Instytut Botaniki PAN: Kraków, Poland, 1991. (In Polish) [Google Scholar]
- Domin, M.; Kluza, F.; Góral, D.; Nazarewicz, S.; Kozłowicz, K.; Szmigielski, M.; Ślaska-Grzywna, B. Germination Energy and Capacity of Maize Seeds Following Low-Temperature Short Storage. Sustainability 2020, 12, 46. [Google Scholar] [CrossRef]
- Zhang, T.; Fan, S.; Xiang, Y.; Zhang, S.; Wang, J.; Sun, Q. Non-destructive analysis of germination percentage, germination energy and simple vigour index on wheat seeds during storage by Vis/NIR and SWIR hyperspectral imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 239, 118488. [Google Scholar] [CrossRef]
- Abdul-Baki, A.A.; Anderson, J.D. Vigor determination in soybean seed by multiple criteria. Crop Sci. 1973, 13, 630–633. [Google Scholar] [CrossRef]
- Khaeim, H.M.; Clark, A.; Pearson, T.; Van Sanford, D. Methods of assessing Fusarium damage to wheat kernels. Al-Qadisiyah J. Agric. Sci. 2019, 9, 297–308. Available online: https://agris.fao.org/agris-search/search.do?recordID=DJ20210171273 (accessed on 15 December 2023). [CrossRef]
- Moumni, M.; Brodal, G.; Romanazzi, G. Recent innovative seed treatment methods in the management of seedborne pathogens. Food Secur. 2023, 15, 1365–1382. [Google Scholar] [CrossRef]
- Adrees, M.; Ali, S.; Rizwan, M.; Ibrahim, M.; Abbas, F.; Farid, M.; Zia-ur-Rehman, M.; Irshad, M.K.; Bharwana, S.A. The effect of excess copper on growth and physiology of important food crops: A review. Environ. Sci. Pollut. Res. 2015, 22, 8148–8162. [Google Scholar] [CrossRef]
- Singh, D.; Nath, K.; Sharma, Y.K. Response of wheat seed germination and seedling growth under copper stress. J. Environ. Biol. 2007, 28, 409–414. [Google Scholar]
- Hafeez, A.; Razzaq, A.; Mahmood, T.; Jhanzab, H.M. Potential of copper nanoparticles to increase growth and yield of wheat. J. Nanosci. Adv. Technol. 2015, 1, 6–11. [Google Scholar]
- Burkhead, J.L.; Gogolin, R.K.A.; Abdel-Ghany, S.E.; Cohu, C.M.; Pilon, M. Copper homeostasis. New Phytol. 2009, 182, 799–816. [Google Scholar] [CrossRef]
- Dias, M.A.N.; Cicero, S.M.; Novembre, A.D.L.C. Uptake of seed-applied copper by maize and the effects on seed vigor. Bragantia Camp. 2015, 74, 241–246. [Google Scholar] [CrossRef]
- Bhimani, M.D.; Golakiya, B.B.; Akbari, L.F. Evaluation of different fungicides against fenugreek wilt (Fusarium oxysporum Schlecht.). Int. J. Chem. 2018, 6, 29–34. [Google Scholar]
- González-Hernández, A.I.; Llorens, E.; Agustí-Brisach, C.; Vicedo, B.; Yuste, T.; Cerveró, A.; Ledó, C.; García-Agustín, P.; Lapeña, L. Elucidating the mechanism of action of copper heptagluconate on the plant immune system against Pseudomonas syringae in tomato (Solanum lycopersicum L): Effect of Cu-heptagluconate against Pseudomonas syringae in tomato. Pest Manag. Sci. 2018, 74, 2601–2607. [Google Scholar] [CrossRef] [PubMed]
- Lattanzio, V.; Lattanzio, V.M.; Cardinali, A. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochem. Adv. Res. 2006, 661, 23–67. [Google Scholar]
- Okorski, A.; Pszczółkowska, A.; Oszako, T.; Nowakowska, J.A. Current possibilities and prospects of using fungicides in forestry. For. Res. Pap. 2015, 76, 191–206. [Google Scholar] [CrossRef]
- Adawi, A.; Jarrar, S.; Almadi, L.; Alkowni, R.; Gallo, M.; D’Onghia, A.M.; Buonaurio, R.; Famiani, F. Effectiveness of Low Copper-Containing Chemicals against Olive Leaf Spot Disease Caused by Venturia oleaginea. Agriculture 2022, 12, 326. [Google Scholar] [CrossRef]
- Poggere, G.; Gasparin, A.; Barbosa, J.Z.; Melo, G.W.; Corrêa, R.S.; Motta, A.C.V. Soil contamination by copper: Sources, ecological risks, and mitigation strategies in Brazil. J. Trace Elem. Miner. 2023, 4, 100059. [Google Scholar] [CrossRef]
- Wurzer, G.K.; Hettegger, H.; Bischof, R.H.; Fackler, K.; Potthast, A.; Rosenau, T. Agricultural utilization of lignosulfonates. Holzforschung 2022, 76, 155–168. [Google Scholar] [CrossRef]
- Savy, D.; Cozzolino, V. Novel Fertilising Products from Lignin and Its Derivatives to Enhance Plant Development and Increase the Sustainability of Crop Production. J. Clean. Prod. 2022, 366, 132832. [Google Scholar] [CrossRef]
No. | Preparation | Dose per 200 L of Water | Surface of the Mycelium (mm) | |||
---|---|---|---|---|---|---|
Fusarium culmorum | Fusarium graminearum | Fusarium fujikuori | Fusarium avenaceum | |||
1 | Control | - | 90.0 a | 90.0 a | 90.0 a | 90.0 a |
2 | Copper heptagluconate | 1.0 L | 0.0 d | 0.0 b | 1.7 d | 0.0 c |
3 | Copper lignosulfonate | 1.0 L | 14.3 b | 0.0 b | 18.0 b | 7.7 b |
4 | Copper lignosulfonate | 1.2 L | 8.0 c | 0.0 b | 1.7 d | 0.0 c |
5 | Copper lignosulfonate | 1.5 L | 0.0 d | 0.0 b | 1.7 d | 0.0 c |
6 | Copper lignosulfonate | 3.0 L | 0.0 d | 0.0 b | 1.7 d | 0.0 c |
7 | Copper oxychloride | 1.0 kg | 0.0 d | 0.0 b | 12.7 c | 0.0 c |
8 | Copper hydroxide | 1.0 kg | 8.3 c | 1.7 b | 0.0 d | 0.0 c |
HSD (0.05) | 2.5 | 1.8 | 4.1 | 1.0 |
No. | Preparation | Dose per 100 kg of Grain | Grain Not Inoculated with Fusarium | Grain Inoculated with Fusarium | ||
---|---|---|---|---|---|---|
Germination Energy (%) | Germination Capacity (%) | Germination Energy (%) | Germination Capacity (%) | |||
1. | Control | - | 99.0 a | 100.0 a | 94.0 a | 95.0 a |
2. | Copper lignosulfonate | 0.125 L | 99.0 a | 99.0 a | 94.0 a | 98.0 a |
3. | Copper lignosulfonate | 0.25 L | 96.0 a | 100.0 a | 97.0 a | 98.0 a |
4. | Copper lignosulfonate | 0.5 L | 97.0 a | 98.0 a | 94.0 a | 95.0 a |
5. | Copper lignosulfonate | 1.0 L | 97.0 a | 99.0 a | 92.0 a | 97.0 a |
6. | Copper lignosulfonate | 1.2 L | 96.0 a | 99.0 a | 92.0 a | 96.0 a |
7. | Copper lignosulfonate | 1.5 L | 93.0 a | 99.0 a | 97.0 a | 98.0 a |
8. | Copper lignosulfonate | 3.0 L | 75.0 b | 89.0 b | 82.0 b | 95.0 a |
9. | Copper oxychloride | 1.42 kg | 91.0 a | 96.0 a | 94.0 a | 95.0 a |
10. | Copper hydroxide | 1.0 kg | 97.0 a | 99.0 a | 97.0 a | 99.0 a |
11. | Copper heptagluconate | 1.0 L | 90.0 a | 100.0 a | 93.0 a | 98.0 a |
12. | Tebuconazole | 50 mL | 98.0 a | 98.0 a | 97.0 a | 100.0 a |
HSD (0.05) | 5.5 | 3.8 | 6.2 | 5.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzanka, M.; Sobiech, Ł.; Filipczak, A.; Danielewicz, J.; Jajor, E.; Horoszkiewicz, J.; Korbas, M. The Efficacy of Plant Pathogens Control by Complexed Forms of Copper. Agriculture 2024, 14, 139. https://doi.org/10.3390/agriculture14010139
Grzanka M, Sobiech Ł, Filipczak A, Danielewicz J, Jajor E, Horoszkiewicz J, Korbas M. The Efficacy of Plant Pathogens Control by Complexed Forms of Copper. Agriculture. 2024; 14(1):139. https://doi.org/10.3390/agriculture14010139
Chicago/Turabian StyleGrzanka, Monika, Łukasz Sobiech, Arkadiusz Filipczak, Jakub Danielewicz, Ewa Jajor, Joanna Horoszkiewicz, and Marek Korbas. 2024. "The Efficacy of Plant Pathogens Control by Complexed Forms of Copper" Agriculture 14, no. 1: 139. https://doi.org/10.3390/agriculture14010139
APA StyleGrzanka, M., Sobiech, Ł., Filipczak, A., Danielewicz, J., Jajor, E., Horoszkiewicz, J., & Korbas, M. (2024). The Efficacy of Plant Pathogens Control by Complexed Forms of Copper. Agriculture, 14(1), 139. https://doi.org/10.3390/agriculture14010139