Nutritional Value of Parsley Roots Depending on Nitrogen and Magnesium Fertilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil
2.3. Treatment Details
2.4. Weather Conditions
2.5. Parsley Root Sublimation Drying
2.6. Analysis of Ascorbic Acid
2.7. Analysis of Sugars
2.8. Analysis of Elements
2.9. Statistical Analysis
3. Results and Discussion
3.1. Ascorbic Acid
3.2. Total Sugars and Reducing Sugars
3.3. Elements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abd El-Aleem, W.; Ramadan, M.; Shalaby, O. Effect of magnesium fertilization on growth, yield, chemical composition and essential oils of some new cultivars of parsley under Sinai conditions. Egypt. J. Desert Res. 2016, 66, 267–286. [Google Scholar] [CrossRef]
- Punoševac, M.; Radović, J.; Leković, A.; Kundaković-Vasović, T. A review of botanical characteristics, chemical composition, pharmacological activity and use of parsley. Arh. Farm. 2021, 71, 177–196. [Google Scholar] [CrossRef]
- Nour, V.; Trandafir, I.; Cosmulescu, S. Bioactive compounds, antioxidant activity and nutritional quality of different culinary aromatic herbs. Not. Bot. Horti Agrobot. Cluj-Napoca 2017, 45, 179–184. [Google Scholar] [CrossRef]
- Alan, O.; Avci, A.B.; Akcali Giachino, R.R. Harvest number and growing season effects on quality and health related compounds in parsley. Indian J. Pharm. Educ. Res. 2017, 51, 276–280. [Google Scholar] [CrossRef]
- Akinci, A.; Eşrefoğlu, M.; Taşlıdere, E.; Ateş, B. Petroselinum crispum is Effective in Reducing Stress-Induced Gastric Oxidative Damage. Balkan Med. J. 2017, 34, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Najla, S.; Sanoubar, R.; Murshed, R. Morphological and biochemical changes in two parsley varieties upon water stress. Physiol. Mol. Biol. Plants 2012, 18, 133–139. [Google Scholar] [CrossRef]
- Karklelienė, R.; Dambrauskienė, E.; Juškevičienė, D.; Radzevičius, A.; Rubinskienė, M.; Viškelis, P. Productivity and nutritional value of dill and parsley. Hort. Sci. 2014, 41, 131–137. [Google Scholar] [CrossRef]
- Miller, C.F.; Wang, Q.; Kanissery, R.; McAvoy, E.J.; Raid, R.N.; Snodgrass, C.A.; Beuzelin, J.; Seal, D.R.; Whidden, A.J.; Desaeger, J.; et al. 2020–2021 Vegetable Production Handbook: Chapter 10. Minor Vegetable Crop Production; EDIS: Karnataka, India, 2020. [Google Scholar] [CrossRef]
- Dobričević, N.; Šic Žlabur, J.; Voća, S.; Pliestić, S.; Galić, A.; Delić, A.; Fabek Uher, S. Bioactive compounds content and nutritional potential of different parsley parts (Petroselinum crispum Mill.). J. Cent. Eur. Agric. 2019, 20, 900–910. [Google Scholar] [CrossRef]
- Adiloglu, S.; Acikgoz, F.E.; Solmaz, Y.; Adiloglu, A.; Karaman, M.R. The Effect of Different Doses of Calcium Nitrate Applications on Some Phytonutrient Element Contents of Leafy Parsley (Petroselinum crispum (Mill.)) Plant. J. Exp. Agric. Int. 2018, 19, 1–6. [Google Scholar] [CrossRef]
- Knez, E.; Kadac-Czapska, K.; Dmochowska-Ślęzak, K.; Grembecka, M. Root Vegetables-Composition, Health Effects, and Contaminants. Int. J. Environ. Res. Public. Health 2022, 19, 15531. [Google Scholar] [CrossRef]
- Christensen, L.P. Aliphatic C17-Polyacetylenes of the Falcarinol Type as Potential Health Promoting Compounds in Food Plants of the Apiaceae Family. Recent. Pat. Food Nutr. Agric. 2011, 3, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Daradkeh, G.; Essa, M.M. Leafy medicinal herbs: Botany, chemistry, postharvest technology and uses Parsley. In Leafy Medicinal Herbs: Botany, Chemistry, Postharvest Technology and Uses; Ambrose, D.C.P., Manickavasagan, A., Naik, R., Eds.; CAB Int.: London, UK, 2016. [Google Scholar] [CrossRef]
- Nirumand, M.C.; Hajialyani, M.; Rahimi, R.; Farzaei, M.H.; Zingue, S.; Nabavi, S.M.; Bishayee, A. Dietary Plants for the Prevention and Management of Kidney Stones: Preclinical and Clinical Evidence and Molecular Mechanisms. Int. J. Mol. Sci. 2018, 19, 765. [Google Scholar] [CrossRef]
- Fernandes, Â.; Polyzos, N.; Petropoulos, S.A.; Pinela, J.; Ardohain, E.; Moreira, G.; Ferreira, I.C.F.R.; Barros, L. Phytochemical Composition and Nutritional Value of Pot-Grown Turnip-Rooted and Plain and Curly-Leafed Parsley Cultivars. Agronomy 2020, 10, 1416. [Google Scholar] [CrossRef]
- Hozayen, W.G.; El-Desouky, M.A.; Soliman, H.A.; Ahmed, R.R.; Khaliefa, A.K. Antiosteoporotic effect of Petroselinum crispum, Ocimum basilicum and Cichorium intybus L. in glucocorticoid-induced osteoporosis in rats. BMC Complement. Altern. Med. 2016, 16, 165. [Google Scholar] [CrossRef]
- Teuscher, E.; Bauermann, U.; Werner, M. Medicinal Spices: A Handbook of Culinary Herbs, Spices, Spice Mixtures and Their Essential Oils; Medpharm Scientific Publishers: Stuttgart, Germany, 2006; pp. 1–459. ISBN 0849319625. [Google Scholar]
- Cakmak, I.; Yazici, A.M. Magnesium: A forgotten element in crop production. Better. Crops 2010, 94, 23–25. Available online: https://www.ks-minerals-and-agriculture.com/en/pdf-articles/article-201006-better-crops-magnesium.pdf (accessed on 10 December 2023).
- Wang, Z.; Hassan, M.U.; Nadeem, F.; Wu, L.; Zhang, F.; Li, X. Magnesium Fertilization Improves Crop Yield in Most Production Systems: A Meta-Analysis. Front. Plant Sci. 2020, 10, 1727. [Google Scholar] [CrossRef] [PubMed]
- Yağmur, B.; Okur, B.; Okur, N. The Effect of Nitrogen, Magnesium, and Iron Applications on the Nutrient Content of Parsley (Petroselinum crispum). Poljoprivreda 2022, 28, 3–8. [Google Scholar] [CrossRef]
- Chenard, C.H.; Kopsell, D.A.; Kopsell, D.E. Nitrogen concentration affects nutrient and carotenoid accumulation in parsley. J. Plant Nutr. 2005, 282, 85–297. [Google Scholar] [CrossRef]
- Shaul, O. Magnesium transport and function in plants: The tip of the iceberg. Biometals 2002, 15, 307–321. [Google Scholar] [CrossRef]
- Loide, V. About the effect of the contents and ratios of soil’s available calcium, potassium and magnesium in liming of acid soils. Agron. Res. 2004, 2, 71–82. [Google Scholar]
- Mengel, K.; Kirkby, E.A.; Kosegarten, H.; Appel, T. (Eds.) The Soil as a Plant Nutrient Medium. In Principles of Plant Nutrition; Springer: Dordrecht, The Netherland, 2001; pp. 15–110. [Google Scholar] [CrossRef]
- Mayland, H.F.; Wilkinson, S.R. Soil factors affecting magnesium availability in plant-animal systems: A review. J. Anim. Sci. 1989, 67, 3437–3444. [Google Scholar] [CrossRef]
- Soetan, K.O.; Olaiya, C.O.; Oyewole, O.E. The importance of mineral elements for humans, domestic animals and plants: A review. Afr. J. Food Sci. 2010, 4, 200–222. [Google Scholar]
- Njira, K.; Nabwami, J. A review of effects of nutrient elements on crop quality. Afr. J. Food Agric. Nutr. Dev. 2015, 15, 9777–9793. [Google Scholar] [CrossRef]
- Roemheld, V.; Kirkby, E.A. Magnesium functions in crop nutrition and yield. Int. Fertil. Soc. 2007, 616, 24. [Google Scholar]
- Yanardağ, R.; Bolkent, S.; Tabakoğlu-Oğuz, A.; Ozsoy-Saçan, O. Effects of Petroselinum crispum extract on pancreatic B cells and blood glucose of streptozocin-induced diabetic rats. Biol. Pharm. Bull. 2003, 26, 1206–1210. [Google Scholar] [CrossRef] [PubMed]
- Martindale, W. Food supply chain innovations. Asp. Apll. Biol. 2010, 102, 1–6. Available online: https://www4.shu.ac.uk/_assets/pdf/foodinnov-wm-food-supply-chain-innovations.pdf (accessed on 10 December 2023).
- Bouis, H.E.; Hotz, C.; McClafferty, B.; Meenakshi, J.V.; Pfeiffer, W.H. Biofortification: A new tool to reduce micronutrient malnutrition. Food Nutr. Bull. 2011, 32, 31–40. [Google Scholar] [CrossRef]
- Kołota, E. Yield and quality of leafy parsley as affected by the nitrogen fertilization. Acta Sci. Pol. Hortorum Cultus 2011, 10, 145–154. [Google Scholar]
- Lisiewska, Z.; Kmiecik, W.; Korus, A. Content of vitamin C, carotenoids, chlorophylls and polyphenols in green parts of dill (Anethum graveolens L.) depending on plant height. J. Food Compost. Anal. 2006, 19, 134–140. [Google Scholar] [CrossRef]
- Viškelis, P.; Rubinskienė, M.; Dambrauskienė, E.; Karklelienė, R.; Radzevičius, A. Quality parameters of dill (Anethum graveolens L.) and their changes during storage. In Proceedings of the Innovative and Healthy Food for Consumers, Kaunas, Lithuania, 17–18 May 2012; p. 112. [Google Scholar]
- Hinneburg, I.; Damien Dorman, H.J.; Hiltunen, R. Antioxidant activities of extracts from selected culinary herbs and spices. Food Chem. 2006, 97, 122–129. [Google Scholar] [CrossRef]
- Wu, T.T.; Hwang, B.R.; Cho, E.J. Scavenging effect of extract from Perilla frutescens and rosmarinic acid from free radical and lipid peroxidation. J. Food Sci. Nutr. 2011, 16, 224–229. [Google Scholar] [CrossRef]
- PN-ISO. 10390; Chemical and Agricultural Analysis-Determining Soil pH. Polish Standards Committee: Warszawa, Poland, 1997.
- PN-R-04023; Chemical and Agricultural Analysis-Determination of the Content of Available Phosphorus in Mineral Soil. Polish Standards Committee: Warsaw, Poland, 1996.
- PN-R-04022; Chemical and Agricultural Analysis-Determination of the Content Available Potassium in Mineral Soils. Polish Standards Committee: Warsaw, Poland, 1996.
- PN-R-04020; Chemical and Agricultural Analysis-Determination of the Content Available Magnesium. Polish Standards Committee: Warsaw, Poland, 1994.
- Kapur, A.; Hasković, A.; Čopra-Janićijević, A.; Klepo, L.; Topčagić, A.; Tahirović, I.; Sofić, E. Spectrophotometric analysis of total ascorbic acid content in various fruits and vegetables. Bull. Chem. Technol. Bosnia Herzeg. 2012, 38, 39–42. [Google Scholar]
- Talburt, W.; Smith, O. Potato Processing; (No 6648 T3 1987); Van Nostrand Reinhold: New York, NY, USA, 1987; pp. 1–796. [Google Scholar]
- Sáez-Plaza, P.; Navas, M.J.; Wybraniec, S.; Michałowski, T.; Asuero, A.G. An Overview of the Kjeldahl Method of Nitrogen Determination. Part II. Sample Preparation, Working Scale, Instrumental Finish, and Quality Control. Crit. Rev. Anal. Chem. 2013, 43, 224–272. [Google Scholar] [CrossRef]
- Jones, J.B.; Case, V.W. Sampling, Handling, and Analyzing Plant Tissue Samples. In Soil Testing and Plant Analysis; Westerman, R.L., Ed.; Book Series 3; Soil Science Society of America: Madison, WI, USA, 1990; pp. 389–427. [Google Scholar] [CrossRef]
- Catunescu, G.M.; Tofana, M.; Muresan, C.; Ranga, F.; David, A.; Muntean, M. The effect of cold storage on some quality characteristics of minimally processed parsley (Petroselinum crispum), dill (Anethum graveolens) and lovage (Levisticum officinale). Bull. UASVM Agric. 2012, 69, 213–221. [Google Scholar] [CrossRef]
- Santos, J.; Herrero, M.; Mendiola, J.A.; Oliva-Teles, M.T.; Ibanez, E.; Delerue-Matos, C.; Oliveira, M.B.P.P. Fresh-cut aromatic herbs: Nutritional quality stability during shelf-life. Food Sci. Technol. 2014, 59, 101–107. [Google Scholar] [CrossRef]
- Smirnoff, N.; Conklin, P.L.; Loewus, F.A. Biosynthesis of ascorbic acid in plants: A renaissance. Annu. Rev. Plant Biol. 2001, 52, 437–467. [Google Scholar] [CrossRef]
- Osińska, E.; Rosłon, W.; Drzewiecka, M. The evaluation of quality of selected cultivars of parsley (Petroselinum sativum L. ssp. crispum). Acta Sci. Pol. Hortorum Cultus 2012, 11, 47–57. Available online: https://czasopisma.up.lublin.pl/index.php/asphc/article/view/3118/2152 (accessed on 10 December 2023).
- Rahimić, A.; Komlen, V.; Govedarica-Lučić, A.; Šupljeglav-Jukić, A. The influence of variety and fertilization on yield and content of vitamin c in the root of parsley (Petroselinum ssp.). Acta Agric. Serbica 2018, 23, 77–84. [Google Scholar] [CrossRef]
- Chadzinikolau, T.; Formela-Luboińska, M. Nitrogen Metabolism and Antioxidant Capacity of Selected Vegetables from Organic and Conventional Crops. Appl. Sci. 2023, 13, 11170. [Google Scholar] [CrossRef]
- Brandt, K.; Mølgaard, J.P. Organic agriculture: Does it enhance or reduce the nutritional value of plant foods? J. Sci. Food Agric. 2001, 81, 924–931. [Google Scholar] [CrossRef]
- Souza, M.A.A.; Araujo, O.J.; Ferreira, M.A.; Stark, E.M.L.; Fernandes, M.S.; Souza, S.R. Produção de biomassa e óleo essencial de hortelã em hidroponia em função de nitrogênio e fósforo. Hortic. Bras. 2007, 25, 41–48. [Google Scholar] [CrossRef]
- de Andrade, M.F.; Alves, L.S.; Costa, E.S.P.; Andre, M.; de Souza, A.; Castro, R.N.; de Almeida, C.D.S.; Santos, A.M. Harvest timing and nitrogen fertilization alter the production of biomass and antioxidant compound in the parsley. Afr. J. Agric. Res. 2023, 19, 482–488. [Google Scholar] [CrossRef]
- Lee, S.K.; Kader, A.A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, F.; Wang, Y.; Ma, X.; Shen, Y.; Wang, X.; Yang, H.; Zhang, W.; Lakshmanan, P.; Hu, Y.; et al. Physiological and metabolomic analysis reveals maturity stage-dependent nitrogen regulation of vitamin C content in pepper fruit. Front. Plant Sci. 2023, 13, 1049785. [Google Scholar] [CrossRef]
- Hesari, N.; Szegő, A.; Mirmazloum, I.; Pónya, Z.; Kiss-Bába, E.; Kolozs, H.; Gyöngyik, M.; Vasas, D.; Papp, I. High-Nitrate-Supply-Induced Transcriptional Upregulation of Ascorbic Acid Biosynthetic and Recycling Pathways in Cucumber. Plants 2023, 12, 1292. [Google Scholar] [CrossRef]
- Wszelaczyńska, E.; Pobereżny, J.; Janowiak, J.; Spychaj-Fabisiak, E. Effect of organic and nitrogen fertilization on selected components in potato tubers grown in a simplified crop rotation. J. Elem. 2014, 19, 1153–1166. [Google Scholar] [CrossRef]
- Fernandes, A.M.; Soratto, R.P.; Souza, E.D.F.C.D.; Job, A.L.G. Nutrient uptake and removal by potato cultivars as affected by phosphate fertilization of soils with different levels of phosphorus availability. Rev. Bras. Cienc. Solo 2017, 41. [Google Scholar] [CrossRef]
- Wszelaczyńska, E.; Pobereżny, J. Effect of foliar magnesium fertilisation and storage on some parameters of the nutritive value of carrot storage roots. J. Elem. 2011, 16, 635–649. [Google Scholar] [CrossRef]
- Yağmur, B.; Okur, B.; Okur, N. Effect of Nitrogen, Magnesium and Iron Applications on Content of Chlorophyll, Vitamin C, Nitrate and Nitrite of Parsley in a Clay Soil. MAS J. Appl. Sci. 2021, 6, 1045–1063. [Google Scholar] [CrossRef]
- Khalil, E.; Esoh, R.; Rababah, T.; Almajwal, A.M.; Alu, M.H. Minerals, proximate composition and their correlations of medicinal plants from Jordan. J. Med. Plants Res. 2012, 6, 5757–5762. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Constantopoulou, E.; Karapanos, I.; Akoumianakis, C.A.; Passam, H.C. Diurnal variation in the nitrate content of parsley foliage. Int. J. Plant Prod. 2011, 5, 431–438. [Google Scholar] [CrossRef]
- Pokluda, R. Content of dry matter, carotenoids and reducing sugars in selected vegetables. Ann. Hortic. 2008, 18, 1–9. [Google Scholar] [CrossRef]
- Yousaf, M.; Bashir, S.; Raza, H.; Shah, A.N.; Iqbal, J.; Arif, M.; Bukhari, M.A.; Muhammad, S.; Hashim, S.; Alkahtani, J.; et al. Role of nitrogen and magnesium for growth, yield and nutritional quality of radish. Saudi J. Biol. Sci. 2021, 28, 3021–3030. [Google Scholar] [CrossRef]
- Qu, S.; Li, H.; Zhang, X.; Gao, J.; Ma, R.; Ma, L.; Ma, J. Effects of Magnesium Imbalance on Root Growth and Nutrient Absorption in Different Genotypes of Vegetable Crops. Plants 2023, 12, 3518. [Google Scholar] [CrossRef]
- Głodowska, M.; Krawczyk, J. Difference in the concentration of macro elements between organically and conventionally grown vegetables. Agric. Sci. 2019, 10, 267–277. [Google Scholar] [CrossRef]
- Pokluda, R. Comparison of selected characteristics of root parsley [Petroselinum crispum conv. radicosum (Alef.) Danert] cultivars. Hort. Sci. 2003, 30, 67–72. [Google Scholar] [CrossRef]
- Geisseler, D.; Ortiz, R.S.; Diaz, J. Nitrogen nutrition and fertilization of onions (Allium cepa L.)–A literature review. Sci. Hortic. 2022, 291, 110591. [Google Scholar] [CrossRef]
- Kincses, I.; Filep, T.; Kremper, R.; Sipos, M. Effect of nitrogen fertilization and biofertilization on element content of Presley. In Proceedings of the VII. Alps-Adria Scientific Workshop, Stara Lesna, Slovakia, 28 April–2 May 2008; Cereal Research Communications. Springer: Berlin/Heidelberg, Germany; Volume 36, pp. 571–574. [Google Scholar]
Month | Air Temperature (°C) | Rainfall (mm) | ||||||
---|---|---|---|---|---|---|---|---|
2013 | 2014 | 2015 | 1953–2012 | 2013 | 2014 | 2015 | 1953–2012 | |
April | 13.6 | 9.9 | 7.5 | 7.4 | 7.0 | 40.7 | 15.6 | 27.2 |
May | 14.2 | 13.3 | 12.4 | 12.9 | 91.7 | 65.7 | 21.6 | 43.9 |
June | 17.4 | 16.0 | 15.7 | 16.2 | 49.3 | 44.9 | 33.0 | 54.4 |
July | 18.9 | 21.5 | 18.5 | 18.0 | 79.0 | 55.4 | 50.4 | 72.9 |
August | 18.1 | 17.2 | 20.9 | 17.5 | 56.6 | 57.3 | 20.3 | 55.8 |
September | 10.7 | 14.4 | 13.8 | 13.2 | 64.1 | 25.9 | 52.4 | 40.8 |
October | 8.2 | 9.6 | 6.4 | 8.3 | 18.6 | 18.0 | 20.9 | 31.9 |
Mean (air temp.) Sum (rain.) | 14.4 | 14.6 | 13.6 | 13.4 | 366.3 | 307.9 | 214.2 | 326.9 |
Fertilization N [kg ha−1] | Fertilization MgO [kg ha−1] | ||
---|---|---|---|
0 | 30 | Mean | |
0 | 256.1 ± 3.5 | 272.9 ± 3.8 | 264.5 ± 11.9 |
40 | 252.4 ± 11.0 | 263.2 ± 8.1 | 257.8 ± 7.6 |
80 | 238.2 ± 10.1 | 260.6 ± 7.6 | 249.4 ± 15.8 |
120 | 230.2 ± 7.3 | 256.0 ± 6.5 | 243.1 ± 18.2 |
Mean | 244.2 ± 12.1 | 263.2 ± 7.1 | 253.7 ± 13.4 |
2 LSD α = 0.05 | 1 A = 8.37 | ||
B = 5.35 | |||
A/B = N. S. | |||
p ≤ 0.05 | y = 255.1140 − 0.1816N + 0.6313MgO; r2 = 0.713 |
df | MS | F% | ||
---|---|---|---|---|
Ascorbic acid | 1 A | 3 | 1587 | <0.001 |
B | 1 | 6456 | <0.001 | |
A × B | 3 | 193 | 0.024 | |
Total sugars | A | 3 | 25 | <0.001 |
B | 1 | 53 | <0.001 | |
A × B | 3 | 3 | <0.001 | |
Reducing sugars | A | 3 | 841 | <0.001 |
B | 1 | 6750 | <0.001 | |
A × B | 3 | 14 | 0.018 | |
Ntot | A | 3 | 43,345 | <0.001 |
B | 1 | 1637 | <0.001 | |
A × B | 3 | 55 | 0.001 | |
Mg | A | 3 | 0.613 | <0.001 |
B | 1 | 2.223 | <0.001 | |
A × B | 3 | 0.02 | N. S. | |
K | A | 3 | 2.88 | <0.001 |
B | 1 | 4.62 | <0.001 | |
A × B | 3 | 0 | N. S. | |
Ca | A | 3 | 0.002 | N. S. |
B | 1 | 0.035 | <0.001 | |
A × B | 3 | 0.001 | N. S. |
Fertilization N [kg ha−1] | Total Sugars [g kg−1 f. m.] | Reducing Sugars [g kg−1 f. m.] | ||||
---|---|---|---|---|---|---|
Fertilization MgO [kg ha−1] | ||||||
0 | 30 | Mean | 0 | 30 | Mean | |
0 | 92.9 ± 3.0 | 111.3 ± 3.0 | 102.1 ± 13.0 | 12.5 ± 0.3 | 13.2 ± 0.3 | 12.9 ± 0.5 |
40 | 95.5 ± 1.6 | 116.3 ± 2.5 | 105.9 ± 14.7 | 13.1 ± 0.3 | 14.7 ± 0.4 | 13.9 ± 1.1 |
80 | 104.2 ± 2.2 | 121.7 ± 2.6 | 113.0 ± 12.4 | 14.0 ± 0.3 | 15.9 ± 0.5 | 15.0 ± 1.4 |
120 | 106.8 ± 2.3 | 127.7 ± 3.7 | 117.3 ± 14.8 | 14.3 ± 0.2 | 16.8 ± 0.6 | 15.6 ± 1.8 |
Mean | 99.9 ± 5.9 | 119.3 ± 7.1 | 109.6 ± 6.2 | 13.5 ± 0.8 | 15.2 ± 1.6 | 14.3 ± 1.2 |
2 LSD α = 0.05 | 1 A = 6.88 | A = 0.68 | ||||
B = 3.09 | B = 0.54 | |||||
A/B = N. S. | A/B = 0.42 | |||||
p ≤ 0.05 | y = 92.0010 + 0.1314N + 0.6455MgO; r2 = 0.944; | y = 12.0999 + 0.0227 + N + 0.0572MgO; r2 = 0.866 |
Parameters | Total Sugars | N | Mg | Ca |
---|---|---|---|---|
1 Ascorbic acid | 0.303 ** | 0.233 * | 0.317 ** | |
1 Total sugars | 0.852 ** | 0.692 ** | 0.392 ** | |
1 Reducing sugars | 0.652 ** | 0.513 ** | ||
2 N | 0.349 ** | 0.509 ** | ||
2 K | 0.879 ** | 0.522 ** | ||
2 Mg | 0.563 ** |
Fertilization N [kg ha−1] | Ntot | Magnesium | Potassium | Calcium | ||||
---|---|---|---|---|---|---|---|---|
Fertilization MgO [kg ha−1] | ||||||||
0 | 30 | 0 | 30 | 0 | 30 | 0 | 30 | |
0 | 9.71 ± 0.5 | 10.17 ± 0.6 | 4.30 ± 0.60 | 4.58 ± 0.53 | 19.11 ± 0.96 | 19.77 ± 1.19 | 0.404 ± 0.026 | 0.436 ± 0.031 |
40 | 10.15 ± 0.5 | 11.51 ± 1.0 | 3.86 ± 0.67 | 4.30 ± 0.55 | 18.73 ± 1.11 | 18.78 ± 0.99 | 0.423 ± 0.036 | 0.461 ± 0.029 |
80 | 10.79 ± 0.6 | 11.91 ± 1.1 | 3.88 ± 0.67 | 4.24 ± 0.59 | 18.48 ± 1.29 | 19.09 ± 1.16 | 0.406 ± 0.034 | 0.459 ± 0.033 |
120 | 11.46 ± 0.8 | 12.13 ± 0.3 | 3.9 ± 0.89 | 4.24 ± 0.86 | 18.14 ± 1.46 | 18.84 ± 1.79 | 0.403 ± 0.040 | 0.457 ± 0.034 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wszelaczyńska, E.; Pobereżny, J.; Gościnna, K.; Retmańska, K.; Kozera, W.J. Nutritional Value of Parsley Roots Depending on Nitrogen and Magnesium Fertilization. Agriculture 2024, 14, 143. https://doi.org/10.3390/agriculture14010143
Wszelaczyńska E, Pobereżny J, Gościnna K, Retmańska K, Kozera WJ. Nutritional Value of Parsley Roots Depending on Nitrogen and Magnesium Fertilization. Agriculture. 2024; 14(1):143. https://doi.org/10.3390/agriculture14010143
Chicago/Turabian StyleWszelaczyńska, Elżbieta, Jarosław Pobereżny, Katarzyna Gościnna, Katarzyna Retmańska, and Wojciech Jan Kozera. 2024. "Nutritional Value of Parsley Roots Depending on Nitrogen and Magnesium Fertilization" Agriculture 14, no. 1: 143. https://doi.org/10.3390/agriculture14010143
APA StyleWszelaczyńska, E., Pobereżny, J., Gościnna, K., Retmańska, K., & Kozera, W. J. (2024). Nutritional Value of Parsley Roots Depending on Nitrogen and Magnesium Fertilization. Agriculture, 14(1), 143. https://doi.org/10.3390/agriculture14010143