Using Models and Artificial Neural Networks to Predict Soil Compaction Based on Textural Properties of Soils under Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling
2.2. Soil Measurements
2.3. Curve Fitting to the Van Genuchten (WG) Model and Calculations
2.4. Developing the PFT Function from the PR Values Read
2.5. Developing the ANN Model
2.6. Model Validation and Performance Measures
3. Results
3.1. Descriptive Statistics of the Soil Variables
3.2. Obtained Results for the SWRC Model According
3.3. PR Values Corrected for Θopt Content
3.4. Determination of Scripts According to the Pearson Correlation Coefficients (r) Created and the Results of the PCA Analysis
3.5. Prediction of Soil PR Using Neural Networks
4. Discussion Corrected
5. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- de Lima, R.P.; da Silva, A.R.; da Silva, Á.P. soilphysics: An R package for simulation of soil compaction induced by agricultural field traffic. Soil Tillage Res. 2021, 206, 104824. [Google Scholar] [CrossRef]
- Dörner, J.; Bravo, S.; Stoorvogel, M.; Dec, D.; Valle, S.; Clunes, J.; Horn, R.; Uteau, D.; Wendroth, O.; Lagos, L.; et al. Short-term effects of compaction on soil mechanical properties and pore functions of an Andisol. Soil Tillage Res. 2022, 221, 105396. [Google Scholar] [CrossRef]
- Keller, T.; Sandin, M.; Colombi, T.; Horn, R. Historical increase in agricultural machinery weights enhanced soil stress levels and adversely affected soil functioning. Soil Tillage Res. 2019, 194, 104293. [Google Scholar] [CrossRef]
- Shah, A.N.; Tanveer, M.; Shahzad, B.; Yang, G.; Fahad, S.; Ali, S.; Bukhari, M.A.; Tung, S.A.; Hafeez, A.; Souliyanonh, B.; et al. Soil compaction effects on soil health and cropproductivity: An overview. Environ. Sci. Pollut. Res. 2017, 24, 10056–10067. [Google Scholar] [CrossRef] [PubMed]
- Techen, A.-K.; Helming, K.; Brüggemann, N.; Veldkamp, E.; Reinhold-Hurek, B.; Lorenz, M.; Bartke, S.; Heinrich, U.; Amelung, W.; Augustin, K.; et al. Chapter Four—Soil research challenges in response to emerging agricultural soil management practices. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 179–240. [Google Scholar]
- Solgi, A.; Naghdi, R.; Marchi, E.; Laschi, A.; Keivan Behjou, F.; Hemmati, V.; Masumian, A. Impact Assessment of Skidding Extraction: Effects on Physical and Chemical Properties of Forest Soils and on Maple Seedling Growing along the Skid Trail. Forests 2019, 10, 134. [Google Scholar] [CrossRef]
- Yang, P.; Dong, W.; Heinen, M.; Qin, W.; Oenema, O. Soil Compaction Prevention, Amelioration and Alleviation Measures Are Effective in Mechanized and Smallholder Agriculture: A Meta-Analysis. Land 2022, 11, 645. [Google Scholar] [CrossRef]
- Zhang, W.; Gao, W.; Ren, T.; Richard Whalley, W. A novel approach to estimate soil penetrometer resistance from water content, bulk density, and shear wave velocity: A laboratory study on a loamy sand soil. Geoderma 2020, 368, 114276. [Google Scholar] [CrossRef]
- Lipiec, J.; Horn, R.; Pietrusiewicz, J.; Siczek, A. Effects of soil compaction on root elongation and anatomy of different cereal plant species. Soil Tillage Res. 2012, 121, 74–81. [Google Scholar] [CrossRef]
- Nunes, M.R.; Denardin, J.E.; Pauletto, E.A.; Faganello, A.; Pinto, L.F.S. Mitigation of clayey soil compaction managed under no-tillage. Soil Tillage Res. 2015, 148, 119–126. [Google Scholar] [CrossRef]
- Massah, J.; Asefpour Vakilian, K.; Torktaz, S. Supervised Machine Learning Algorithms Can Predict Penetration Resistance in Mineral-fertilized Soils. Commun. Soil Sci. Plant Anal. 2019, 50, 2169–2177. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.; Huang, X.; Gao, W.; Ren, T. An empirical model for estimating soil penetrometer resistance from relative bulk density, matric potential, and depth. Soil Tillage Res. 2021, 208, 104904. [Google Scholar] [CrossRef]
- Busscher, W. Adjustment of flat-tipped penetrometer resistance data to a common water content. Trans. ASAE 1990, 33, 519–0524. [Google Scholar] [CrossRef]
- de Lima, R.P.; da Silva, A.R.; da Silva, A.P.; Leão, T.P.; Mosaddeghi, M.R. soilphysics: An R package for calculating soil water availability to plants by different soil physical indices. Comput. Electron. Agric. 2016, 120, 63–71. [Google Scholar] [CrossRef]
- Khalilmoghadam, B.; Afyuni, M.; Abbaspour, K.C.; Jalalian, A.; Dehghani, A.A.; Schulin, R. Estimation of surface shear strength in Zagros region of Iran—A comparison of artificial neural networks and multiple-linear regression models. Geoderma 2009, 153, 29–36. [Google Scholar] [CrossRef]
- da Silva, A.P.; Kay, B.D. Estimating the Least Limiting Water Range of Soils from Properties and Management. Soil Sci. Soc. Am. J. 1997, 61, 877–883. [Google Scholar] [CrossRef]
- Dexter, A.R.; Czyż, E.A.; Gaţe, O.P. A method for prediction of soil penetration resistance. Soil Tillage Res. 2007, 93, 412–419. [Google Scholar] [CrossRef]
- To, J.; Kay, B.D. Variation in penetrometer resistance with soil properties: The contribution of effective stress and implications for pedotransfer functions. Geoderma 2005, 126, 261–276. [Google Scholar] [CrossRef]
- Whalley, W.R.; To, J.; Kay, B.D.; Whitmore, A.P. Prediction of the penetrometer resistance of soils with models with few parameters. Geoderma 2007, 137, 370–377. [Google Scholar] [CrossRef]
- Moraes, M.T.d.; Debiasi, H.; Franchini, J.C.; Silva, V.R.d. Resistência do solo à penetração em latossolo influenciada pelo tráfego agrícola e o conteúdo de água do solo. Eng. Agrícola 2013, 33, 748–757. [Google Scholar] [CrossRef]
- Fernandes, M.M.H.; Coelho, A.P.; Silva, M.F.d.; Bertonha, R.S.; Queiroz, R.F.d.; Furlani, C.E.A.; Fernandes, C. Estimation of soil penetration resistance with standardized moisture using modeling by artificial neural networks. CATENA 2020, 189, 104505. [Google Scholar] [CrossRef]
- Smith, C.W.; Johnston, M.A.; Lorentz, S. Assessing the compaction susceptibility of South African forestry soils. II. Soil properties affecting compactibility and compressibility. Soil Tillage Res. 1997, 43, 335–354. [Google Scholar] [CrossRef]
- Bayat, H.; Asghari, S.; Rastgou, M.; Sheykhzadeh, G.R. Estimating Proctor parameters in agricultural soils in the Ardabil plain of Iran using support vector machines, artificial neural networks and regression methods. CATENA 2020, 189, 104467. [Google Scholar] [CrossRef]
- Hernanz, J.L.; Peixoto, H.; Cerisola, C.; Sánchez-Girón, V. An empirical model to predict soil bulk density profiles in field conditions using penetration resistance, moisture content and soil depth. J. Terramechanics 2000, 37, 167–184. [Google Scholar] [CrossRef]
- Assouline, S. What Can We Learn from the Water Retention Characteristic of a Soil Regarding Its Hydrological and Agricultural Functions? Review and Analysis of Actual Knowledge. Water Resour. Res. 2021, 57, e2021WR031026. [Google Scholar] [CrossRef]
- Tian, M.; Qin, S.; Whalley, W.R.; Zhou, H.; Ren, T.; Gao, W. Changes of soil structure under different tillage management assessed by bulk density, penetrometer resistance, water retention curve, least limiting water range and X-ray computed tomography. Soil Tillage Res. 2022, 221, 105420. [Google Scholar] [CrossRef]
- Vaz, C.M.P.; Manieri, J.M.; de Maria, I.C.; Tuller, M. Modeling and correction of soil penetration resistance for varying soil water content. Geoderma 2011, 166, 92–101. [Google Scholar] [CrossRef]
- Hummel, J.W.; Ahmad, I.S.; Newman, S.C.; Sudduth, K.A.; Drummond, S.T. Simultaneous soil moisture and cone index measurement. Trans. ASAE 2004, 47, 607–618. [Google Scholar] [CrossRef]
- Bayat, H.; Ebrahim Zadeh, G. Estimation of the soil water retention curve using penetration resistance curve models. Comput. Electron. Agric. 2018, 144, 329–343. [Google Scholar] [CrossRef]
- da Silva, A.P.; Kay, B.D.; Perfect, E. Characterization of the Least Limiting Water Range of Soils. Soil Sci. Soc. Am. J. 1994, 58, 1775–1781. [Google Scholar] [CrossRef]
- Benjamin, J.G.; Karlen, D.L. LLWR Techniques for Quantifying Potential Soil Compaction Consequences of Crop Residue Removal. BioEnergy Res. 2014, 7, 468–480. [Google Scholar] [CrossRef]
- Rabot, E.; Wiesmeier, M.; Schlüter, S.; Vogel, H.J. Soil structure as an indicator of soil functions: A review. Geoderma 2018, 314, 122–137. [Google Scholar] [CrossRef]
- Eck, D.V.; Qin, M.; Hirmas, D.R.; Giménez, D.; Brunsell, N.A. Relating Quantitative Soil Structure Metrics to Saturated Hydraulic Conductivity. Vadose Zone J. 2016, 15, vzj2015.05.0083. [Google Scholar] [CrossRef]
- Yamaç, S.S.; Şeker, C.; Negiş, H. Evaluation of machine learning methods to predict soil moisture constants with different combinations of soil input data for calcareous soils in a semi arid area. Agric. Water Manag. 2020, 234, 106121. [Google Scholar] [CrossRef]
- Alaboz, P.; Dengiz, O.; Demir, S.; Şenol, H. Digital mapping of soil erodibility factors based on decision tree using geostatistical approaches in terrestrial ecosystem. CATENA 2021, 207, 105634. [Google Scholar] [CrossRef]
- Kashi, H.; Emamgholizadeh, S.; Ghorbani, H. Estimation of Soil Infiltration and Cation Exchange Capacity Based on Multiple Regression, ANN (RBF, MLP), and ANFIS Models. Commun. Soil Sci. Plant Anal. 2014, 45, 1195–1213. [Google Scholar] [CrossRef]
- Çarman, K. Prediction of soil compaction under pneumatic tires a using fuzzy logic approach. J. Terramechanics 2008, 45, 103–108. [Google Scholar] [CrossRef]
- De Meester, T. Soils of the Great Konya Basin, Turkey. Agric. Res. Rep. 1970, 740, 290. [Google Scholar]
- Gee, G.W.; Or, D. 2.4 Particle-Size Analysis. In Methods of Soil Analysis; Soil Science Society of America, Inc.: Madison, WI, USA, 2002; pp. 255–293. [Google Scholar]
- Moebius-Clune, B.; Moebius-Clune, D.; Gugino, B.; Idowu, O.; Schindelbeck, R.; Ristow, A.; Van Es, H.; Thies, J.; Shayler, H.; McBride, M.; et al. Comprehensive Assessment of Soil Health: The Cornell Framework; Cornell University: Ithaca, NY, USA, 2016. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis; American Society of Agronomy: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- van Genuchten, M.T. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Mualem, Y. Hydraulic Conductivity of Unsaturated Soils: Prediction and Formulas. In Methods of Soil Analysis; John and Wiley and Sons: Hoboken, NJ, USA, 1986; pp. 799–823. [Google Scholar]
- Dexter, A.R. Soil physical quality: Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma 2004, 120, 201–214. [Google Scholar] [CrossRef]
- Şeker, C.; Özaytekin, H.H.; Negiş, H.; Gümüş, İ.; Dedeoğlu, M.; Atmaca, E.; Karaca, Ü. Assessment of soil quality index for wheat and sugar beet cropping systems on an entisol in Central Anatolia. Environ. Monit. Assess. 2017, 189, 135. [Google Scholar] [CrossRef]
- Şeker, C.; Özaytekin, H.H.; Negiş, H.; Gümüş, İ.; Dedeoğlu, M.; Atmaca, E.; Karaca, Ü. Identification of regional soil quality factors and indicators: A case study on an alluvial plain (central Turkey). Solid Earth 2017, 8, 583–595. [Google Scholar] [CrossRef]
- Şeker, C. The effect of water content on the penetration resistance of different soils, and regression models. Turk. J. Agric. For. 1999, 23, 467–472. [Google Scholar]
- Vaz, C.M.P.; Manieri, J.M.; de Maria, I.C.; Tuller, M. Scaling the Dependency of Soil Penetration Resistance on Water Content and Bulk Density of Different Soils. Soil Sci. Soc. Am. J. 2013, 77, 1488–1495. [Google Scholar] [CrossRef]
- Aragón, A.; García, M.G.; Filgueira, R.R.; Pachepsky, Y.A. Maximum compactibility of Argentine soils from the Proctor test: The relationship with organic carbon and water content. Soil Tillage Res. 2000, 56, 197–204. [Google Scholar] [CrossRef]
- Bayat, H.; Neyshaburi, M.R.; Mohammadi, K.; Nariman-Zadeh, N. Improving water content estimations using penetration resistance and principal component analysis. Soil Tillage Res. 2013, 129, 83–92. [Google Scholar] [CrossRef]
- Barzegar, A.R.; Asoodar, M.A.; Ansari, M. Effectiveness of sugarcane residue incorporation at different water contents and the Proctor compaction loads in reducing soil compactibility. Soil Tillage Res. 2000, 57, 167–172. [Google Scholar] [CrossRef]
- Fredlund, M.D.; Wilson, G.W.; Fredlund, D.G. Use of the grain-size distribution for estimation of the soil-water characteristic curve. Can. Geotech. J. 2002, 39, 1103–1117. [Google Scholar] [CrossRef]
- Huang, G.-H.; Zhang, R.-D.; Huang, Q.-Z. Modeling Soil Water Retention Curve with a Fractal Method1 1Project supported by the National Natural Science Foundation of China (Nos. 50479011 and 50279025). Pedosphere 2006, 16, 137–146. [Google Scholar] [CrossRef]
- Hodnett, M.G.; Tomasella, J. Marked differences between van Genuchten soil water-retention parameters for temperate and tropical soils: A new water-retention pedo-transfer functions developed for tropical soils. Geoderma 2002, 108, 155–180. [Google Scholar] [CrossRef]
- Zheng, G.; Jiao, C.; Xie, X.; Cui, X.; Shang, G.; Zhao, C.; Zeng, R. Pedotransfer functions for predicting bulk density of coastal soils in East China. Pedosphere 2023, 33, 849–856. [Google Scholar] [CrossRef]
- Busscher, W.J.; Bauer, P.J.; Camp, C.R.; Sojka, R.E. Correction of cone index for soil water content differences in a coastal plain soil. Soil Tillage Res. 1997, 43, 205–217. [Google Scholar] [CrossRef]
- Sargent, R.G. An introduction to verification and validation of simulation models. In Proceedings of the 2013 Winter Simulations Conference (WSC), Washington, DC, USA, 8–11 December 2013; IEEE: Piscataway, NJ, USA. [Google Scholar]
- Merdun, H.; Çınar, Ö.; Meral, R.; Apan, M. Comparison of artificial neural network and regression pedotransfer functions for prediction of soil water retention and saturated hydraulic conductivity. Soil Tillage Res. 2006, 90, 108–116. [Google Scholar] [CrossRef]
- Pias, O.H.d.C.; Cherubin, M.R.; Basso, C.J.; Santi, A.L.; Molin, J.P.; Bayer, C. Soil penetration resistance mapping quality: Effect of the number of subsamples. Acta Scientiarum. Agronomy 2018, 40. [Google Scholar] [CrossRef]
- de Dios Herrero, J.; Colazo, J.C.; Buschiazzo, D.; Galantini, J. Influence of sand gradation on compaction of loess soils. Soil Tillage Res. 2020, 196, 104414. [Google Scholar] [CrossRef]
Combination Numbers | Input Combinations |
---|---|
1 | Sand |
2 | Clay |
3 | Sand, Clay |
4 | Sand, Clay, Pb |
5 | Sand, Clay, OC |
6 | Sand, Clay, AS |
Variable | Unit | Abbreviation | Mean | StDev | CoefVar | Minimum | Maximum |
---|---|---|---|---|---|---|---|
Sand | % | S | 42.463 | 9.855 | 23.21 | 21.400 | 68.900 |
Silt | % | Si | 19.463 | 6.536 | 33.58 | 6.870 | 36.870 |
Clay | % | C | 38.075 | 8.151 | 21.41 | 24.230 | 58.230 |
Bulk density | g cm−3 | Pb | 1.3591 | 0.1610 | 11.85 | 1.0859 | 1.7169 |
Field capacity (0.1 atm) | cm−3 cm−3 | FC10 | 0.39408 | 0.02289 | 5.81 | 0.32901 | 0.49141 |
Field capacity (0.33 atm) | cm−3 cm−3 | FC33 | 0.33790 | 0.01990 | 5.89 | 0.28028 | 0.41867 |
Wilting point | cm−3 cm−3 | WP | 0.19780 | 0.02761 | 13.96 | 0.12367 | 0.27826 |
Aggregate stability | % | AS | 27.672 | 9.751 | 35.24 | 7.175 | 57.465 |
Organic carbon | % | OC | 1.0232 | 0.3774 | 36.89 | 0.2380 | 2.3947 |
Penetration resistance | MPa | PR | 1.8102 | 0.2339 | 12.92 | 1.4386 | 2.4084 |
Mean | St Dev | Minimum | Maximum | Coef Var | |
---|---|---|---|---|---|
Theta r | 0.07088 | 0.01728 | 0.04040 | 0.12180 | 24.38 |
Theta s | 0.46463 | 0.05179 | 0.35590 | 0.55940 | 11.15 |
Alpha | 0.014830 | 0.008896 | 0.005000 | 0.044500 | 59.99 |
n | 1.3057 | 0.0396 | 1.2020 | 1.4148 | 3.03 |
m | 0.23341 | 0.02365 | 0.16805 | 0.29319 | 10.13 |
Methods | MSE | R2 | |
---|---|---|---|
1 | Training | 0.0046 | 0.9493 |
Validation | 0.0042 | 0.9466 | |
Test | 0.0051 | 0.9352 | |
2 | Training | 0.0103 | 0.8744 |
Validation | 0.0106 | 0.8785 | |
Test | 0.0109 | 0.8657 | |
3 | Training | 0.0027 | 0.9681 |
Validation | 0.0053 | 0.9399 | |
Test | 0.0029 | 0.9707 | |
4 | Training | 0.0004 | 0.9980 |
Validation | 0.0082 | 0.9228 | |
Test | 0.0003 | 0.9983 | |
5 | Training | 0.0031 | 0.9607 |
Validation | 0.0050 | 0.9542 | |
Test | 0.0047 | 0.9658 | |
6 | Training | 0.0014 | 0.9835 |
Validation | 0.0025 | 0.9719 | |
Test | 0.0084 | 0.9150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negiş, H. Using Models and Artificial Neural Networks to Predict Soil Compaction Based on Textural Properties of Soils under Agriculture. Agriculture 2024, 14, 47. https://doi.org/10.3390/agriculture14010047
Negiş H. Using Models and Artificial Neural Networks to Predict Soil Compaction Based on Textural Properties of Soils under Agriculture. Agriculture. 2024; 14(1):47. https://doi.org/10.3390/agriculture14010047
Chicago/Turabian StyleNegiş, Hamza. 2024. "Using Models and Artificial Neural Networks to Predict Soil Compaction Based on Textural Properties of Soils under Agriculture" Agriculture 14, no. 1: 47. https://doi.org/10.3390/agriculture14010047
APA StyleNegiş, H. (2024). Using Models and Artificial Neural Networks to Predict Soil Compaction Based on Textural Properties of Soils under Agriculture. Agriculture, 14(1), 47. https://doi.org/10.3390/agriculture14010047