The Beneficial Effects of Anthocyanins from Cornelian Cherry (Cornus mas L.) Fruits and Their Possible Uses: A Review
Abstract
:1. Introduction
2. Methods
3. The Structure of Anthocyanins
4. Methods for Extraction of Anthocyanin
5. The Role of Anthocyanins in Plants
6. Cornelian Cherry Fruit as the Source of Anthocyanins
6.1. Total Anthocyanin Content
6.2. Differences in the Content of Individual Anthocyanins Depend on Genetic Characteristics
6.3. The Effect of Cornelian Cherry Fruit Ripeness on the Anthocyanin Content
6.4. Changes in the Anthocyanins Content after Fruit Harvest
7. Uses of Cornelian Cherry and Presence of Anthocyanins in Cornelian Cherry Products
7.1. Anthocyanins in Food Products Derived from Cornelian Cherry
7.2. Anthocyanins in Pharmaceuticals Derived from Cornelian Cherry
7.3. Anthocyanins in Cosmetic Products Derived from Cornelian Cherry
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jadhav, R.V.; Bhujbal, S.S. A Review on Natural Food Colors. Pharm. Reson. 2020, 2, 12–20. [Google Scholar]
- Prajapati, R.A.; Jadeja, G.C. Natural Food Colorants: Extraction and Stability Study. Mater. Today Proc. 2022, 57, 2381–2395. [Google Scholar] [CrossRef]
- De Mejia, E.G.; Zhang, Q.; Penta, K.; Eroglu, A.; Lila, M.A. The Colors of Health: Chemistry, Bioactivity, and Market Demand for Colorful Foods and Natural Food Sources of Colorants. Annu. Rev. Food Sci. Technol. 2020, 11, 145–182. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Liu, J.; Li, L.; Ren, J.; Lu, J.; Luo, F. Advances in Embedding Techniques of Anthocyanins: Improving Stability, Bioactivity and Bioavailability. Food Chem. X 2023, 20, 100983. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Shen, P.; Chi, X.; Zhou, Y.; Liu, J.; Cheng, T.; Wang, J.; Zhang, Q.; Cai, M.; Pan, H. The Anthocyanin Formation of Purple Leaf Is Associated with the Activation of LfiHY5 and LfiMYB75 in Crape Myrtle. Hortic. Plant J. 2023, in press. [Google Scholar] [CrossRef]
- Li, Z.; Ahammed, G.J. Plant Stress Response and Adaptation via Anthocyanins: A Review. Plant Stress 2023, 10, 100230. [Google Scholar] [CrossRef]
- Sozański, T.; Kucharska, A.Z.; Rapak, A.; Szumny, D.; Trocha, M.; Merwid-Ląd, A.; Dzimira, S.; Piasecki, T.; Piórecki, N.; Magdalan, J.; et al. Iridoid–Loganic Acid versus Anthocyanins from the Cornus mas Fruits (Cornelian Cherry): Common and Different Effects on Diet-Induced Atherosclerosis, PPARs Expression and Inflammation. Atherosclerosis 2016, 254, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Noh, J.S.; Kim, J.H.; Tanaka, T.; Zhao, Q.; Matsumoto, K.; Shibahara, N.; Yokozawa, T. Evaluation of Morroniside, Iridoid Glycoside from Corni Fructus, on Diabetes-Induced Alterations Such as Oxidative Stress, Inflammation, and Apoptosis in the Liver of Type 2 Diabetic Db/Db Mice. Biol. Pharm. Bull. 2011, 34, 1559–1565. [Google Scholar] [CrossRef]
- Łysiak, G.P.; Szot, I. The Possibility of Using Fruit-Bearing Plants of Temperate Climate in the Treatment and Prevention of Diabetes. Life 2023, 13, 1795. [Google Scholar] [CrossRef]
- Yousefi, B.; Abasi, M.; Abbasi, M.M.; Jahanban-Esfahlan, R. Anti-Proliferative Properties of Cornus mass Fruit in Different Human Cancer Cells. Asian Pac. J. Cancer Prev. 2015, 16, 5727–5731. [Google Scholar] [CrossRef]
- Asgary, S.; Rafieian-Kopaei, M.; Adelnia, A.; Kazemi, S.; Shamsi, F. Comparing the Effects of Lovastatin and Cornus mas Fruit on Fibrinogen Level in Hypercholesterolemic Rabbits. ARYA Atheroscler. 2010, 6, 1–5. [Google Scholar]
- Asgary, S.; Kelishadi, R.; Rafieian-Kopaei, M.; Najafi, S.; Najafi, M.; Sahebkar, A. Investigation of the Lipid-Modifying and Antiinflammatory Effects of Cornus mas L. Supplementation on Dyslipidemic Children and Adolescents. Pediatr. Cardiol. 2013, 34, 1729–1735. [Google Scholar] [CrossRef] [PubMed]
- Łysiak, G. Ornamental Flowers Grown in Human Surroundings as a Source of Anthocyanins with High Anti-Inflammatory Properties. Foods 2022, 11, 948. [Google Scholar] [CrossRef] [PubMed]
- Eshaghi, M.; Zare, S.; Banihabib, N.; Nejati, V.; Farokhi, F.; Mikaili, P. Cardioprotective Effect of Cornus mas Fruit Extract against Carbon Tetrachloride Induced-Cardiotoxicity in Albino Rats. J. Basic Appl. Sci. Res. 2012, 2, 11106–11114. [Google Scholar]
- Francik, R.; Kryczyk, J.; Krośniak, M.; Berköz, M.; Sanocka, I.; Francik, S. The Neuroprotective Effect of Cornus mas on Brain Tissue of Wistar Rats. Sci. World J. 2014, 2014, 847368. [Google Scholar] [CrossRef] [PubMed]
- Moayed Alavian, S.; Banihabib, N.; Es Haghi, M.; Panahi, F. Protective Effect of Cornus mas Fruits Extract on Serum Biomarkers in CCl4-Induced Hepatotoxicity in Male Rats. Hepat Mon. 2014, 14, e10330. [Google Scholar] [CrossRef]
- Es Hagi, M.; Dehghan, G.; Banihabib, N.; Zare, S.; Mikalili, P.; Panahi, F. Protective Effects of Cornus mas Fruit Extract on Carbon Tetrachloride Induced Nephrotoxicity in Rats. Indian J. Nephrol. 2014, 24, 291. [Google Scholar] [CrossRef]
- Nawrot, K.; Polak-Szczybyło, E.; Stępień, A.E. Characteristics of the Health-Promoting Properties of Cornus mas. Eur. J. Clin. Exp. Med. 2022, 20, 217–223. [Google Scholar] [CrossRef]
- Szczepaniak, O.M.; Kobus-Cisowska, J.; Kusek, W.; Przeor, M. Functional Properties of Cornelian Cherry (Cornus mas L.): A Comprehensive Review. Eur. Food Res. Technol. 2019, 245, 2071–2087. [Google Scholar] [CrossRef]
- Kazimierski, M.; Reguła, J.; Molska, M. Cornelian Cherry (Cornus mas L.)—Characteristics, Nutritional and pro-Health Properties. Acta Sci. Pol. Technol. Aliment. 2019, 18, 5–12. [Google Scholar] [CrossRef]
- Bayram, H.M.; Arda Ozturkcan, S. Bioactive Components and Biological Properties of Cornelian Cherry (Cornus mas L.): A Comprehensive Review. J. Funct. Foods 2020, 75, 104252. [Google Scholar] [CrossRef]
- Mohammadi, K.; Alizadeh Sani, M.; Nattagh-Eshtivani, E.; Yaribash, S.; Rahmani, J.; Shokrollahi Yancheshmeh, B.; Julian McClements, D. A Systematic Review and Meta-analysis of the Impact of Cornelian Cherry Consumption on Blood Lipid Profiles. Food Sci. Nutr. 2021, 9, 4629–4638. [Google Scholar] [CrossRef] [PubMed]
- Gholamrezayi, A.; Yaghubi, E.; Ghafouri, A. A Review of Probable Effects of Cornelian Cherry Fruit. J. Biochem. Tech. 2019, 2, 71–74. [Google Scholar]
- Kerem ÇeviïK, C.; Akça, K.T.; Suntar, İ. Cornelian Cherry (Cornus mas L.): Insight into Its Phytochemistry and Bioactivity. JRP 2022, 26, 1493–1512. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y.; Man, S.; Guo, L.; Li, X.; Gao, W. Functional Factors, Nutritional Value and Development Strategies of Cornus: A Review. Trends Food Sci. Technol. 2023, 139, 104121. [Google Scholar] [CrossRef]
- Dehne, G.C. Review of McNaught & Wilkinson (1997): Compendium of Chemical Terminology, IUPAC Recommendations. TERM 1997, 4, 347–351. [Google Scholar] [CrossRef]
- Chaves-Silva, S.; Santos, A.L.D.; Chalfun-Júnior, A.; Zhao, J.; Peres, L.E.P.; Benedito, V.A. Understanding the Genetic Regulation of Anthocyanin Biosynthesis in Plants—Tools for Breeding Purple Varieties of Fruits and Vegetables. Phytochemistry 2018, 153, 11–27. [Google Scholar] [CrossRef] [PubMed]
- Dembczyński, R.; Białas, W.; Olejnik, A.; Kowalczewski, P.; Drożdżyńska, A.; Jankowski, T. Obtaining Anthocyanins From Chokeberry, Blackurant and Elderberry Fruits, and From Roots of Black Carrot Using Extraction Method. Zywnosc Nauka Technol. Jakosc/Food Sci. Technol. Qual. 2015, 5, 165–181. [Google Scholar] [CrossRef]
- Milenkovic-Andjelkovic, A.; Radovanovic, B.; Andjelkovic, M.; Radovanovic, A.; Nikolic, V.; Randjelovic, V. The Anthocyanin Content and Bioactivity of Cornelian Cherry (Cornus mas) and Wild Blackberry (Rubus fruticosus): Fruit Extracts from the Vlasina Region. Adv. Techn. 2015, 4, 26–31. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E.; Eisele, T.; Giusti, M.M.; Hach, J.; Hofsommer, H.; Koswig, S.; Krueger, D.A. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the PH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef]
- Cetkovská, J.; Diviš, P.; Vespalcová, M.; Pořízka, J.; Řezníček, V. Basic Nutritional Properties of Cornelian Cherry (Cornus mas L.) Cultivars Grown in the Czech Republic. Acta Aliment. 2015, 44, 357–364. [Google Scholar] [CrossRef]
- Chandra, A.; Rana, J.; Li, Y. Separation, Identification, Quantification, and Method Validation of Anthocyanins in Botanical Supplement Raw Materials by HPLC and HPLC−MS. J. Agric. Food Chem. 2001, 49, 3515–3521. [Google Scholar] [CrossRef] [PubMed]
- Torrini, F.; Renai, L.; Scarano, S.; Del Bubba, M.; Palladino, P.; Minunni, M. Colorimetric Selective Quantification of Anthocyanins with Catechol/Pyrogallol Moiety in Edible Plants upon Zinc Complexation. Talanta 2022, 240, 123156. [Google Scholar] [CrossRef] [PubMed]
- McGhie, T.K.; Rowan, D.R.; Edwards, P.J. Structural Identification of Two Major Anthocyanin Components of Boysenberry by NMR Spectroscopy. J. Agric. Food Chem. 2006, 54, 8756–8761. [Google Scholar] [CrossRef] [PubMed]
- Vakula, A.; Šumić, Z.; Zeković, Z.; Tepić Horecki, A.; Pavlić, B. Screening, Influence Analysis and Optimization of Ultrasound-assisted Extraction Parameters of Cornelian Cherries (Cornus mas L.). J. Food Process Preserv. 2019, 43, e14226. [Google Scholar] [CrossRef]
- Yoshitama, K.; Ishii, K.; Yasuda, H. Chromatographic Survey of Anthocyanins. J. Fac. Sci. Shinshu Univ. 1980, 15, 19–26. [Google Scholar]
- Oberbaueri, S.F.; Starr, G. The Role of Anthocyanins for Photosynthesis of Alaskan Arctic Evergreens during Snowmelt. In Advances in Botanical Research; Elsevier: Amsterdam, The Netherlands, 2002; Volume 37, pp. 129–145. ISBN 978-0-12-005937-9. [Google Scholar]
- Condurache (Lazăr), N.-N.; Croitoru, C.; Enachi, E.; Bahrim, G.-E.; Stănciuc, N.; Râpeanu, G. Eggplant Peels as a Valuable Source of Anthocyanins: Extraction, Thermal Stability and Biological Activities. Plants 2021, 10, 577. [Google Scholar] [CrossRef] [PubMed]
- Unal, N.; Okatan, V.; Bilgin, J.; Kahramanoğlu, I.; Hajizadeh, H.S. Impacts of Different Planting Times on Fruit Quality and Some Bioactive Contents of Different Strawberry Cultivars. Folia Hortic. 2023, 35, 221–231. [Google Scholar] [CrossRef]
- Pyrkosz-Biardzka, K.; Kucharska, A.; Sokół-Łętowska, A.; Strugała, P.; Gabrielska, J. A Comprehensive Study on Antioxidant Properties of Crude Extracts from Fruits of Berberis vulgaris L., Cornus mas L. and Mahonia Aquifolimum Nutt. Pol. J. Food Nutr. Sci. 2014, 64, 91–99. [Google Scholar] [CrossRef]
- Horbowicz, M.; Kosson, R.; Grzesiuk, A.; Dębski, H. Anthocyanins of Fruits and Vegetables—Their Occurrence, Analysis and Role in Human Nutrition. J. Fruit Ornam. Plant Res. 2008, 68, 5–22. [Google Scholar] [CrossRef]
- Pantelidis, G.; Vasilakakis, M.; Manganaris, G.; Diamantidis, G. Antioxidant Capacity, Phenol, Anthocyanin and Ascorbic Acid Contents in Raspberries, Blackberries, Red Currants, Gooseberries and Cornelian Cherries. Food Chem. 2007, 102, 777–783. [Google Scholar] [CrossRef]
- Cansev, A.; İPek, M.; ÇelïK, G.; Taşkesen, S.; Şahan, Y.; İPek, A.; Akpinar, A. Comparative Characterization of the Content and in Vitro Bioaccessibility of Minerals in Two Cornus Species. Mediterr. Agric. Sci. 2022, 35, 115–120. [Google Scholar] [CrossRef]
- Ryk, M. The Detection of Anthocyans Through Extraction of Red Cabbage (Brassica Oleracea Var. Capitata F. Rubra), Grapes (Vitis Vinifera Subsp.Vinifera) And Aubergine (Solanum melogena). Acta Juvenum 2018, 3, 109–115. [Google Scholar]
- Lawrence, W.J.C.; Price, J.R.; Robinson, G.M.; Robinson, R. The Distribution of Anthocyanins in Flowers, Fruits and Leaves. Philos. Trans. R. Soc. Lond. B 1939, 230, 149–178. [Google Scholar] [CrossRef]
- Bijelić, S.M.; Gološin, B.R.; Ninić Todorović, J.I.; Cerović, S.B.; Popović, B.M. Physicochemical Fruit Characteristics of Cornelian Cherry (Cornus mas L.) Genotypes from Serbia. HortScience 2011, 46, 849–853. [Google Scholar] [CrossRef]
- Szot, I.; Lipa, T.; Sosnowska, B. Evaluation of Yield and Fruit Quality of Several Ecotypes of Cornelian Cherry (Cornus mas L.) in Polish Conditions. Acta Sci. Polonorum. Hortorum Cultus 2019, 18, 141–150. [Google Scholar] [CrossRef]
- Hassanpour, H.; Yousef, H.; Jafar, H.; Mohammad, A. Antioxidant Capacity and Phytochemical Properties of Cornelian Cherry (Cornus mas L.) Genotypes in Iran. Sci. Hortic. 2011, 129, 459–463. [Google Scholar] [CrossRef]
- Kucharska, A.Z.; Szumny, A.; Sokół-Łętowska, A.; Piórecki, N.; Klymenko, S.V. Iridoids and Anthocyanins in Cornelian Cherry (Cornus mas L.) Cultivars. J. Food Compos. Anal. 2015, 40, 95–102. [Google Scholar] [CrossRef]
- Klymenko, S.; Kucharska, A.Z.; Sokół-Łętowska, A.; Piórecki, N.; Przybylska, D.; Grygorieva, O. Iridoids, Flavonoids, and Antioxidant Capacity of Cornus mas, C. Officinalis, and C. Mas × C. Officinalis Fruits. Biomolecules 2021, 11, 776. [Google Scholar] [CrossRef]
- Koca, A.F. Physical, Chemical and Antioxidant Properties of Tarhana with Cornelian Cherry. Asian J. Chem. 2008, 20, 5667–5672. [Google Scholar]
- Ochmian, I.; Oszmiański, J.; Lachowicz, S.; Krupa-Małkiewicz, M. Rootstock Effect on Physico-Chemical Properties and Content of Bioactive Compounds of Four Cultivars Cornelian Cherry Fruits. Sci. Hortic. 2019, 256, 108588. [Google Scholar] [CrossRef]
- Sengul, M.; Eser, Z.; Ercisli, S. Chemical Properties and Antioxidant Capacity of Cornelian Cherry Genotypes Grown in Coruh Valley of Turkey. Acta Sci. Pol. Hortorum Cultus 2014, 13, 73–82. [Google Scholar]
- Tural, S.; Koca, I. Physico-Chemical and Antioxidant Properties of Cornelian Cherry Fruits (Cornus mas L.) Grown in Turkey. Sci. Hortic. 2008, 116, 362–366. [Google Scholar] [CrossRef]
- Yilmaz, K.; Ercisli, S.; Zengin, Y.; Sengul, M.; Kafkas, E. Preliminary Characterisation of Cornelian Cherry (Cornus mas L.) Genotypes for Their Physico-Chemical Properties. Food Chem. 2009, 114, 408–412. [Google Scholar] [CrossRef]
- Perova, I.B.; Zhogova, A.A.; Polyakova, A.V.; Eller, K.L.; Ramenskaya, G.V.; Samylina, I.A. Biologically Active Substances of Cornelian Cherry Fruits (Cornus mas L.). Vopr. Pitan. 2014, 83, 86–94. [Google Scholar] [PubMed]
- Pawlowska, A.M.; Camangi, F.; Braca, A. Quali-Quantitative Analysis of Flavonoids of Cornus mas L. (Cornaceae) Fruits. Food Chem. 2010, 119, 1257–1261. [Google Scholar] [CrossRef]
- De Biaggi, M.; Donno, D.; Mellano, M.G.; Riondato, I.; Rakatoniaina, E.N.; Beccaro, G.L. Cornus mas (L.) Fruit as a Potential Source of Natural Health-Promoting Compounds: Physico-Chemical Characterisation of Bioactive Components. Plant Foods Hum. Nutr. 2018, 73, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Koraqi, H. Analysis of Anthocyanins in Cornelian Cherry (Cornus mas L.). UBT Int. Conf. 2021, 342, 1–5. [Google Scholar]
- Odžaković, B.; Bodroža, D.; Kukrić, Z.; Topalić-Trivunović, L.; Savić, A.; Sailović, P. Nutritive Composition and Functionality of Wild Cornelian Cherry Fruit. Food Process. Preserv. 2022, 46, e15832. [Google Scholar] [CrossRef]
- Dumitraşcu, L.; Enachi, E.; Stănciuc, N.; Aprodu, I. Optimization of Ultrasound Assisted Extraction of Phenolic Compounds from Cornelian Cherry Fruits Using Response Surface Methodology. CyTA J. Food 2019, 17, 814–823. [Google Scholar] [CrossRef]
- Popović, B.M.; Štajner, D.; Slavko, K.; Sandra, B. Antioxidant Capacity of Cornelian Cherry (Cornus mas L.)—Comparison between Permanganate Reducing Antioxidant Capacity and Other Antioxidant Methods. Food Chem. 2012, 134, 734–741. [Google Scholar] [CrossRef]
- Vareed, S.K.; Reddy, M.K.; Schutzki, R.E.; Nair, M.G. Anthocyanins in Cornus Alternifolia, Cornus Controversa, Cornus Kousa and Cornus Florida Fruits with Health Benefits. Life Sci. 2006, 78, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Antolak, H.; Czyzowska, A.; Sakač, M.; Mišan, A.; Đuragić, O.; Kregiel, D. Phenolic Compounds Contained in Little-Known Wild Fruits as Antiadhesive Agents against the Beverage-Spoiling Bacteria Asaia spp. Molecules 2017, 22, 1256. [Google Scholar] [CrossRef] [PubMed]
- Capanoglu, E.; Boyacioglu, D.; de Vos, R.C.H.; Hall, R.D.; Beekwilder, J. Procyanidins in Fruit from Sour Cherry (Prunus cerasus) Differ Strongly in Chainlength from Those in Laurel Cherry (Prunus lauracerasus) and Cornelian Cherry (Cornus mas). J. Berry Res. 2011, 1, 137–146. [Google Scholar] [CrossRef]
- Babaloo, F.; Jamei, R. Anthocyanin Pigment Stability of Cornus mas-Macrocarpa under Treatment with PH and Some Organic Acids. Food Sci. Nutr. 2018, 6, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Szczepaniak, O.; Kobus-Cisowska, J.; Kmiecik, D. Freezing Enhances the Phytocompound Content in Cornelian Cherry (Cornus mas L.) Liqueur. Czech J. Food Sci. 2020, 38, 259–263. [Google Scholar] [CrossRef]
- Martinović, A.; Cavoski, I. The Exploitation of Cornelian Cherry (Cornus mas L.) Cultivars and Genotypes from Montenegro as a Source of Natural Bioactive Compounds. Food Chem. 2020, 318, 126549. [Google Scholar] [CrossRef] [PubMed]
- Moldovan, B.; Filip, A.; Clichici, S.; Suharoschi, R.; Bolfa, P.; David, L. Antioxidant Activity of Cornelian Cherry (Cornus mas L.) Fruits Extract and the in Vivo Evaluation of Its Anti-Inflammatory Effects. J. Funct. Foods 2016, 26, 77–87. [Google Scholar] [CrossRef]
- Borroto Fernández, E.G.; Mokhber, A.; Zeiser, M.; Laimer, M. Phenotypic Characterization of a Wild-Type Population of Cornelian Cherries (Cornus mas L.) from Austria. Erwerbs-Obstbau 2022, 64, 673–683. [Google Scholar] [CrossRef]
- Dzydzan, O.; Bila, I.; Kucharska, A.Z.; Brodyak, I.; Sybirna, N. Antidiabetic Effects of Extracts of Red and Yellow Fruits of Cornelian Cherries (Cornus mas L.) on Rats with Streptozotocin-Induced Diabetes Mellitus. Food Funct. 2019, 10, 6459–6472. [Google Scholar] [CrossRef]
- Blagojević, B.; Agić, D.; Serra, A.T.; Matić, S.; Matovina, M.; Bijelić, S.; Popović, B.M. An in Vitro and in Silico Evaluation of Bioactive Potential of Cornelian Cherry (Cornus mas L.) Extracts Rich in Polyphenols and Iridoids. Food Chem. 2021, 335, 127619. [Google Scholar] [CrossRef]
- Tarko, T.; Duda-Chodak, A.; Wajda, Ł.; Satora, P.; Sroka, P.; Emik-Szczurak, D.S. Application of Principal Component Analysis for Optimization of Polyphenol Extraction from Alternative Plant Sources. J. Food Nutr. Res. 2017, 56, 61–72. [Google Scholar]
- Begic-Akagic, A.; Drkenda, P.; Vranac, A.; Orazem, P.; Hudina, M. Influence of Growing Region and Storage Time on Phenolic Profile of Cornelian Cherry Jam and Fruit. Eur. J. Hortic. Sci. 2013, 78, 30–39. [Google Scholar]
- Seeram, N.P.; Schutzki, R.; Chandra, A.; Nair, M.G. Characterization, Quantification, and Bioactivities of Anthocyanins in Cornus Species. J. Agric. Food Chem. 2002, 50, 2519–2523. [Google Scholar] [CrossRef] [PubMed]
- Du, C.-T.; Francis, F.J. Anthocyanins from Cornus mas. Phytochemistry 1973, 12, 2487–2489. [Google Scholar] [CrossRef]
- Kucharska, A.Z. Związki Sktywne Owoców Derenia (Cornus mas L.); Uniwersytet Przyrodniczy we Wrocławiu: Wrocław, Poland, 2012; ISBN 978-83-7717-096-0. [Google Scholar]
- Sozański, T.; Kucharska, A.Z.; Szumny, A.; Magdalan, J.; Bielska, K.; Merwid-Ląd, A.; Woźniak, A.; Dzimira, S.; Piórecki, N.; Trocha, M. The Protective Effect of the Cornus mas Fruits (Cornelian cherry) on Hypertriglyceridemia and Atherosclerosis through PPARα Activation in Hypercholesterolemic Rabbits. Phytomedicine 2014, 21, 1774–1784. [Google Scholar] [CrossRef] [PubMed]
- Gunduz, K.; Saracoglu, O.; Özgen, M.; Serce, S. Antioxidant, Physical and Chemical Characteristics of Cornelian Cherry Fruits (Cornus mas L.) at Different Stages of Ripeness. Acta Sci. Pol. Hortorum Cultus 2013, 12, 59–66. [Google Scholar]
- Yarılgaç, T.; Kadim, H.; Ozturk, B. Role of Maturity Stages and Modified-Atmosphere Packaging on the Quality Attributes of Cornelian Cherry Fruits (Cornus mas L.) throughout Shelf Life. J. Sci. Food Agric. 2019, 99, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Ilyinska, A.; Klymenko, S. The New Earliest Cultivar of Cornelian Cherry (Cornus mas L.). Plant. Introd. 2023, 97–98, 46–60. [Google Scholar] [CrossRef]
- Mohebbi, S.; Mostofi, Y.; Zamani, Z. Influence of Modified Atmosphere Packaging on Quality and Shelf Life of Cornelian Cherry Fruits. Food 2012, 6, 28–32. [Google Scholar]
- Walkowiak-Tomczak, D.; Idaszewska, N.; Łysiak, G.P.; Bieńczak, K. The Effect of Mechanical Vibration during Transport under Model Conditions on the Shelf-Life, Quality and Physico-Chemical Parameters of Four Apple Cultivars. Agronomy 2021, 11, 81. [Google Scholar] [CrossRef]
- Holcroft, D.M.; Kader, A.A. Carbon Dioxide—Induced Changes in Color and Anthocyanin Synthesis of Stored Strawberry Fruit. HortScience 1999, 34, 1244–1248. [Google Scholar] [CrossRef]
- Ebrahimzadeh, A.; Esmaeili, M.; Hassanpour, H.; Hassanpouraghdam, M.B.; Ercisli, S.; Bozhuyuk, M.R.; Dokoupil, L.; Mlcek, J. Quality Attributes of Chitosan-Coated Cornelian Cherry (Cornus mas L.) Fruits under Different Storage Temperatures. Horticulturae 2021, 7, 540. [Google Scholar] [CrossRef]
- Bahram, R.P.; Damirchi, S.A.; Hesari, J.; Peighambardoust, S.H.; Bodbodak, S.; Farmani, B. Changes of Bioactive Compounds and Physico-Chemiacal Properties of Cornelian Cherry Fruit during Storage at Ambient Temperature (25C). Iran. Food Sci. Technol. Res. J. 2018, 13, 759–770. [Google Scholar]
- Aghdam, M.S.; Dokhanieh, A.Y.; Hassanpour, H.; Rezapour Fard, J. Enhancement of Antioxidant Capacity of Cornelian Cherry (Cornus mas) Fruit by Postharvest Calcium Treatment. Sci. Hortic. 2013, 161, 160–164. [Google Scholar] [CrossRef]
- Polatoğlu, B.; Beşe, A. Sun Drying of Cornelian Cherry Fruits (Cornus mas L.). J. Sci. Technol. 2017, 10, 68–77. [Google Scholar]
- Szczepaniak, O.M.; Kobus-Cisowska, J.; Nowosad, K.; Stuper-Szablewska, K.; Markowska, J.; Szulc, P. Relationship of Colour with the Phytocompounds Present in Cornus mas Cultivars. Int. J. Food Prop. 2021, 24, 400–414. [Google Scholar] [CrossRef]
- Ordóñez-Santos, L.E.; Martínez-Girón, J.; Arias-Jaramillo, M.E. Effect of Ultrasound Treatment on Visual Color, Vitamin C, Total Phenols, and Carotenoids Content in Cape Gooseberry Juice. Food Chem. 2017, 233, 96–100. [Google Scholar] [CrossRef]
- Gao, Z.; Sing Wong, S.; House, L.A.; Spreen, T.H. French Consumer Perception, Preference of, and Willingness to Pay for Fresh Fruit Based on Country of Origin. Br. Food J. 2014, 116, 805–820. [Google Scholar] [CrossRef]
- Naderi, B.; Maghsoudlou, Y.; Aminifar, M.; Ghorbani, M.; Rashidi, L. Comparison of Microwave with Conventional Heating on Phytochemical Compounds of Cornelian Cherry (Cornus mas L.) Concentrate. J. Agric. Sci. Technol. 2016, 18, 1197–1208. [Google Scholar]
- Salejda, A.M.; Kucharska, A.Z.; Krasnowska, G. Effect of Cornelian Cherry (Cornus mas L.) Juice on Selected Quality Properties of Beef Burgers. J. Food Qual. 2018, 2018, 1563651. [Google Scholar] [CrossRef]
- Topdaş, E.F.; Çakmakçi, S.; Çakiroğlu, K. Kızılcık (Cornus mas L.) Ezmesi İlaveli Dondurmanın Antioksidan Aktivitesi, C Vitamini İçeriği, Fiziksel, Kimyasal ve Duyusal Özellikleri. Kafkas Univ. Vet. Fak. Derg. 2017, 23, 691–697. [Google Scholar] [CrossRef]
- Šimora, V.; Ďúranová, H.; Brindza, J.; Moncada, M.; Ivanišová, E.; Joanidis, P.; Straka, D.; Gabríny, L.; Kačániová, M. Cornelian Cherry (Cornus mas) Powder as a Functional Ingredient for the Formulation of Bread Loaves: Physical Properties, Nutritional Value, Phytochemical Composition, and Sensory Attributes. Foods 2023, 12, 593. [Google Scholar] [CrossRef] [PubMed]
- Cerit, İ.; Şenkaya, S.; Tulukoğlu, B.; Kurtuluş, M.; Seçilmişoğlu, Ü.R.; Demirkol, O. Enrichment of Functional Properties of White Chocolates with Cornelian Cherry, Spinach and Pollen Powders. GIDA 2016, 41, 311–316. [Google Scholar] [CrossRef]
- Moldovan, B.; David, L. Influence of Temperature and Preserving Agents on the Stability of Cornelian Cherries Anthocyanins. Molecules 2014, 19, 8177–8188. [Google Scholar] [CrossRef] [PubMed]
- Krisch, J.; Galgoczy, L.; Tolgyesi, M.; Papp, T.; Vagvolgyi, C. Effect of Fruit Juices and Pomace Extracts on the Growth of Gram-Positive and Gram-Negative Bacteria. Acta Biol. Szeged. 2008, 52, 267–270. [Google Scholar]
- Kyriakopoulos, A.; Dinda, B. Cornus mas (Linnaeus) Novel Devised Medicinal Preparations: Bactericidal Effect against Staphylococcus aureus and Pseudomonas aeruginosa. Molecules 2015, 20, 11202–11218. [Google Scholar] [CrossRef]
- Yigit, D. Antimicrobial and Antioxidant Evaluation of Fruit Extract from Cornus mas L. Aksaray Univ. J. Sci. Eng. 2018, 2, 41–51. [Google Scholar] [CrossRef]
- Haghani, S.; Hadidi, M.; Pouramin, S.; Adinepour, F.; Hasiri, Z.; Moreno, A.; Munekata, P.E.S.; Lorenzo, J.M. Application of Cornelian Cherry (Cornus mas L.) Peel in Probiotic Ice Cream: Functionality and Viability during Storage. Antioxidants 2021, 10, 1777. [Google Scholar] [CrossRef]
- Kucharska, A.Z.; Sokół-Łętowska, A.; Hudko, J.; Nawirska, A. Influence of the Preparation Procedure on the Antioxidant Activity and Colour of Liquers from Cornelian Cherry (Cornus mas L.). Pol. J. Food Nutr. Sci. 2007, 57, 343–347. [Google Scholar]
- Rødtjer, A.; Skibsted, L.H.; Andersen, M.L. Identification and Quantification of Phenolics in Aromatic Bitter and Cherry Liqueur by HPLC with Electrochemical Detection. Eur. Food Res. Technol. 2006, 223, 663–668. [Google Scholar] [CrossRef]
- Alamprese, C.; Pompei, C. Influence of Processing Variables on Some Characteristics of Nocino Liqueur. Food Chem. 2005, 92, 203–209. [Google Scholar] [CrossRef]
- Kawa-Rygielska, J.; Adamenko, K.; Kucharska, A.Z.; Prorok, P.; Piórecki, N. Physicochemical and Antioxidative Properties of Cornelian Cherry Beer. Food Chem. 2019, 281, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Adamenko, K.; Kawa-Rygielska, J.; Kucharska, A.Z. Characteristics of Cornelian Cherry Sour Non-Alcoholic Beers Brewed with the Special Yeast Saccharomycodes Ludwigii. Food Chem. 2020, 312, 125968. [Google Scholar] [CrossRef] [PubMed]
- Kawa-Rygielska, J.; Adamenko, K.; Kucharska, A.; Piórecki, N. Bioactive Compounds in Cornelian Cherry Vinegars. Molecules 2018, 23, 379. [Google Scholar] [CrossRef] [PubMed]
- Mantzourani, I.; Nouska, C.; Terpou, A.; Alexopoulos, A.; Bezirtzoglou, E.; Panayiotidis, M.; Galanis, A.; Plessas, S. Production of a Novel Functional Fruit Beverage Consisting of Cornelian Cherry Juice and Probiotic Bacteria. Antioxidants 2018, 7, 163. [Google Scholar] [CrossRef] [PubMed]
- Joshi, D.; Roy, S.; Banerjee, S. Prebiotics. In Natural Products and Drug Discovery; Elsevier: Amsterdam, The Netherlands, 2018; pp. 507–523. ISBN 978-0-08-102081-4. [Google Scholar]
- Jackman, R.L.; Yada, R.Y.; Tung, M.A.; Speers, R.A. Anthocyanins as Food Colorants: A Review. J. Food Biochem. 1987, 11, 201–247. [Google Scholar] [CrossRef]
- Dumitrașcu, L.; Stănciuc, N.; Aprodu, I. Encapsulation of Anthocyanins from Cornelian Cherry Fruits Using Heated or Non-Heated Soy Proteins. Foods 2021, 10, 1342. [Google Scholar] [CrossRef]
- Dumitraşcu, L.; Stănciuc, N.; Borda, D.; Neagu, C.; Enachi, E.; Barbu, V.; Aprodu, I. Microencapsulation of Bioactive Compounds from Cornelian Cherry Fruits Using Different Biopolymers with Soy Proteins. Food Biosci. 2021, 41, 101032. [Google Scholar] [CrossRef]
- Nizioł-Łukaszewska, Z.; Wasilewski, T.; Bujak, T.; Gaweł-Bęben, K.; Osika, P.; Czerwonka, D. Cornus mas L. Extract as a Multifunctional Material for Manufacturing Cosmetic Emulsions. Chin. J. Nat. Med. 2018, 16, 284–292. [Google Scholar] [CrossRef]
Σ Anthocyanins | Origin of the Cornelian Cherry Fruits Used in the Experiment | Methods of Extraction | Source |
---|---|---|---|
49.94 mg·100 g−1 FW | Fruits of cornelian cherry from the Arboretum and Institute of Physiography in Bolestraszyce, Poland. | To 5.00 g of fruit pulp, 10 mL of 805 methanol acidified with hydrochloric acid were added. | [40] |
117 mg·100 g−1 FW | Fruits of a cornelian cherry were collected in Riparbella (PI), Italy. | Lyophilized fruits of C. mas (280 g) were defatted at room temperature with n-hexane and extracted with MeOH by exhaustive maceration (5 × 500 mL) to yield 178 g of residue, which was dissolved in water and partitioned first with EtOAc and then with n-BuOH. | [57] |
134.71 mg 100 g−1 FW | Fruits of genotype ‘Chieri’ located in the germplasm repository of the Department of Agricultural, Forest and Food Sciences of the University of Turin in Chieri, Piedmont (north-western Italy). | No data availble | [58] |
138.32 mg·100 g−1 FW | Wild cornelian cherry fruits were collected in the Vlasina region of southeast Serbia. | The fresh fruits (10 g) were crushed in a grinder for 2 min, extracted three times a with 35 mL acidified methanol solution (formic acid/methanol/water, 0.1/70/29.9, v/v/v%) in a magnetic stirrer for 24 h in the dark, and then centrifuged for 10 min at 4000 rpm. The extracts were combined and purified through a 0.45 μm syringe filter (Millipore) before analyses. | [29] |
146.12 mg·100 g−1 DW | Wild cornelian cherry fruits were collected in a forest in Kosovo. | The fresh cornelian cherry (Cornus mas L.) fruits were extracted and acid hydrolyzed using an acidified aqueous solvent of EtOH 96%/0.1% HCl (1:1, ratio) at room temperature for 4 h in the dark. | [59] |
92–163 mg·100 g−1 FW | Wild cornelian cherry fruits were collected in Bosnia and Herzegoivina. | Additionally, 200 g of fruit sample was extracted with 80% ethanol (250 mL) using a Soxhlet extractor. After extraction (6 h), the samples were evaporated until dryness in a rotary vacuum evaporator (50 °C). The obtained extracts were kept at −18 °C until analysis. | [60] |
223 mg·100 g−1 FW | Native fruits of cornelian cherry were collected from Mount Vermio, Northern Greece. | Prechilled fruit was ground with a pestle and mortar and placed on dry ice. The resulting tissue powder was well mixed with chilled acetone, placed in a freezer for 15 min, and then centrifuged at 20,000× g at 4 °C for 15 min. The pellet was dried under vacuum and extracted at 4C by gentle stirring with 100 mM sodium borate buffer (5 mL·g−1 fresh weight), pH 8.8, containing 5 mM ß-mercaptoethanol, 2 mM EDTA, and acid-washed polyvinylpolypyrrolidine at 10% the fresh weight. After 1 h, the solution was filtered through one layer of nylon cloth and centrifuged as above. | [42] |
145.54–276.61 mg·100 g−1 DW | Fruits of cornelian cherry cv. ‘Bordo’ procured from the local market (Roman, Neamt, Romania). | An amount of 1 g of freeze-dried cornelian cherry powder was mixed with the designated volume of ethanol of varying concentration and introduced in an ultrasonic bath equipped with a digital control system of sonication time, temperature, and frequency. UAE was performed at a constant frequency of 40 kHz, with a constant power of 100 W. Cold water was added to maintain a constant temperature (±3 °C) in the ultrasonic bath. Afterwards, the supernatant was separated by centrifugation at 9000 rpm for 10 min. The collected supernatant was dried at 40 °C using a vacuum rotary evaporator (AVC 2-18, Christ, UK). The dried extracts were stored at 4 °C prior to subsequent analysis. | [61] |
98.7–290 mg·100 g−1 FW | Fruits of ecotypes of cornelian cherry from a plantation in Dąbrowica, south-east Poland. | Additionally, 150 g of flesh from fresh cornelian cherry fruits was crushed and extracted with acidified 80% methanol. | [47] |
5.8–302.9 mg·100 g−1 FW | Fruits of 10 genotypes of cornelian cherry from Vojvodina province, northern Serbia. | Each sample consisted of 50 fruits per genotype (fruit mesocarp). All samples were dried at 40 °C in the dark. Extraction methodology was used, with 80% EtOH (in water) as an extractant, and for TPC, with acidic ethanol (0.1 mol/dm3 HCl in EtOH) as an extractant. | [62] |
134.57–341.18 mg·100 g−1 DW | Fruits of 19 cultivars from Arboretum and Institute of Physiography in Bolestraszyce, near Przemyśl, Poland, 7 cultivars were harvested in the National Botanical Gardens of the Ukrainian National Academy of Sciences, Kiev, Ukraine, 3 cultivars were harvested in the Research Station for Cultivar Testing in Zybiszów, near Wrocław, Poland, 2 cultivars were harvested in the Warsaw University Botanic Garden, and 2 ecotypes (‘Czarny’, ‘Jurek’) were harvested in the Wrocław University Botanical Garden, Wrocław, Poland. | Frozen ripe fruits of cornelian cherry (C. mas L.) (1 kg) were shredded and heated for 5 min at 95.8 °C using a Thermomix (Vorwerk, Wuppertal, Germany). The pulp was subsequently cooled down to 40.8 °C and depectinized at 50.8 °C for 2 h by adding 0.5 mL of Panzym Be XXL (Begerow GmbH & Co., Darmstadt, Germany) per 1 kg. After depectinization and the removal of stones, the pulp was pressed in a Zodiak laboratory hydraulic press (SRSE, Warsaw, Poland). The pressed juice was filtered and run through an Amberlite XAD-16 resin column (Rohm and Haas, Chauny Cedex, France). Impurities were washed off with distilled water, while pigments and iridoids were eluted with 80% ethanol. The eluate was concentrated under vacuum at 40.8 °C. | [49] |
4.06–427.75 mg·100 g−1 FW | Fruits of five Ukrainian cultivars from the National Botanical Gardens of the Ukrainian National Academy of Sciences, Kiev, Ukraine. | Before analysis, the stones were manually removed, and the fruits without stones (300–350 g) were homogenized. The amount of approximately 5 g of homogenized fruits (combined from three trees for each cultivar) was extracted with 80% aqueous methanol (v/v) and acidified with 1% HCl to a final volume of 50 mL at room temperature. The extraction was performed in an ultrasonic bath (Polsonic, Warsaw, Poland) for 15 min. | [50] |
106.89–442.11 mg·100 g−1 FW | Fruits of six cornelian cherry genotypes were collected in a fruit garden in east Azerbaijan Province (Arasbaran). | Some frozen tissue was ground to a fine powder under liquid nitrogen by a cold mortar and pestle, and 1 g of the resultant powder was added to 10 mL of methanol containing HCl (1%, v/v) and held at 0 °C for 10 min. The slurry was centrifuged at 17,000× g for 15 min at 4 °C, and then the supernatant was used. | [48] |
No | Name of the Anthocyanin | Content | Source |
---|---|---|---|
1. | cyanidin 3-O-galactoside (Cy-gal) | 3.82 mg·100 g−1 FW 28 mg·100 g−1 of FW 4.63–130.93 mg·100 g−1 FW 3.82–166 mg·100 g−1 FW 6.3–288.6 mg·100 g−1 FW 20.26–22.62 mg·100 g−1 DW 759.2 mg·100 g−1 of DW 21.89–969.20 mg·100 g−1 DW 5.6 g·100 g−1 20.9–29.7 mg·100 g−1 100.7 mg·100 g−1 0–234.4 mg 100 g−1 | [67] [57] [68] [69] [70] [52] [71] [72] [73] [74] [29] [49] |
2. | cyanidin 3-O-β-galactopyranoside (Cy-galpyr) | 10.79 mg·10 g−1 FW | [75] |
3. | cyanidin 3-O-glucoside (Cy-glu) | 4.4 mg·100 g−1 DW 103.6 mg·100 g−1 DW 0.28 μg·mL−1 | [65] [61] [64] |
4. | cyanidin glucoside-rutinoside (Cy-glurut) | 11.8 mg·100 g−1 DW | [65] |
5. | cyanidin 3-O-robinobioside (Cy-rob) | 0.67–21.47 mg·100 g−1 FW 2.93–3.31 mg·100 g−1 DW 223.2 mg·100 g−1 of DW 0–45.32 mg·100 g−1 0.321 μg·mL−1 | [68] [52] [71] [49] [64] |
6. | cyanidin 3-O-rutinoside (Cy-rut) | 11.7 mg·100 g−1 DW 180.60 mg·100 g−1 DW 6.83–11.59 mg·100 mL−1 FW 0.2–4.7 mg·100 g−1 35.1 mg·100 g−1 | [65] [61] [53] [74] [73] |
7. | delphinidin 3-O-galactoside (Dp-gal) | 0.58–0.79 mg·100 g−1 DW 0.19–29.84 mg·100 g−1 DW 46.5 mg·100 g−1 DW 4.20–12.37 mg·100 mL−1 FW 4.91 mg·100 g−1 0–16.68 mg·100 g−1 | [52] [72] [71] [53] [29] [49] |
8. | delphinidin 3-O-β-galactopyranoside (Dp-galpyr) | 2.8 mg·10 g−1 FW | [75] |
9. | delphinidin 3-O-glucoside | 0.22–24.29 mg·100 g−1 FW | [68] |
10. | pelargonidin 3-O-galactoside (Pn-gal) | 1.95–39.47 mg·100 g−1 FW 6.4–235.5 mg·100 g−1 FW 171.24–183.61 mg·100 g−1 DW 52.08–211.06 mg·100 g−1 DW 1570 mg·100 g−1 DW 0–104.82 mg·100 g−1 | [68] [70] [52] [72] [71] [49] |
11. | pelargonidin 3-O-β-galactopyranoside (Pg-galpyr) | 7.1 mg·10 g−1 FW | [75] |
12. | pelargonidin 3-O-glucoside (Pg-glu) | 32.73 mg·100 g−1 58.62 mg·100 g−1 FW 87 mg·100 g−1 of FW | [29] [69] [57] |
13. | pelargonidin 3-O-pentoside (Pg-pent) | 0.39–0.47 mg·100 g−1 DW | [52] |
14. | pelargonidin 3-rhamnosylgalactoside (Pg-rhamgal) | lack of data | [76] |
15. | pelargonidin 3-O-robinobioside (Pg-rob) | 0.38–3.18 mg·100 g−1 FW 3.21–10.06 mg·100 g−1 DW 249.3 mg·100 g−1 DW 0–6.30 mg·100 g−1 0.302 μg·mL−1 | [68] [72] [71] [49] [64] |
16. | pelargonidin 3-O-robinosideoside (Pg-rob) | 19.15–20.41 mg·100 g−1 DW | [52] |
17. | pelargonidin 3-O-rutinoside (Pg-rut) | 2 mg·100 g−1 of FW 33.8 mg·100 g−1 FW | [57] [69] |
18. | peonidin 3-O-glucoside (Pn-glu) | 2.82–8.60 mg·100 mL−1 FW 17.9–69.6 mg·100 g−1 | [53] [74] |
19. | petunidin 3-glucoside (Pt-glu) | 0.380 μg·mL−1 17.9–69.6 mg·100 g−1 | [64] [74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szot, I.; Łysiak, G.P.; Sosnowska, B. The Beneficial Effects of Anthocyanins from Cornelian Cherry (Cornus mas L.) Fruits and Their Possible Uses: A Review. Agriculture 2024, 14, 52. https://doi.org/10.3390/agriculture14010052
Szot I, Łysiak GP, Sosnowska B. The Beneficial Effects of Anthocyanins from Cornelian Cherry (Cornus mas L.) Fruits and Their Possible Uses: A Review. Agriculture. 2024; 14(1):52. https://doi.org/10.3390/agriculture14010052
Chicago/Turabian StyleSzot, Iwona, Grzegorz P. Łysiak, and Bożena Sosnowska. 2024. "The Beneficial Effects of Anthocyanins from Cornelian Cherry (Cornus mas L.) Fruits and Their Possible Uses: A Review" Agriculture 14, no. 1: 52. https://doi.org/10.3390/agriculture14010052
APA StyleSzot, I., Łysiak, G. P., & Sosnowska, B. (2024). The Beneficial Effects of Anthocyanins from Cornelian Cherry (Cornus mas L.) Fruits and Their Possible Uses: A Review. Agriculture, 14(1), 52. https://doi.org/10.3390/agriculture14010052