The Effect of Humic Acid Supplementation on Selected Ruminal Fermentation Parameters and Protozoal Generic Distribution in Cows
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Animal Diets
2.2. Sampling and Chemical Analyses of Feed Ingredients
2.3. Sampling and Analyses of Rumen Fluid and Protozoa Identification
2.4. Sampling and Analysis of Fecal Nitrogen
2.5. Correlation Analysis
2.6. Statistical Analysis
- H = Shannon diversity index;
- pi = proportion of individuals of i-th species in a whole community.
- n = number of individuals of each species;
- N = total number of individuals of all species.
3. Results and Discussion
3.1. The Impact of HA Supplementation on the Ruminal Fermentation Variables
3.2. Comparison of Protozoal Community in the Rumen among the Different Levels of HA Dietary Inclusion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gerber, P.; Vellinga, T.; Opio, C.; Henderson, B.; Steinfeld, H. Greenhouse Gas Emissions from the Dairy Sector. A life Cycle Assessment; Food and Agricultural Organization of the United Nations: Animal Production and Health Division: Rome, Italy, 2010. [Google Scholar]
- Cobellis, G.; Trabalza-Marinucci, M.; Yu, Z. Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. Sci. Total Environ. 2016, 545, 556–568. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.K.; Yu, Z. Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Appl. Environ. Microbiol. 2012, 78, 4271–4280. [Google Scholar] [CrossRef] [PubMed]
- Durmic, Z.; Moate, P.J.; Eckard, R.; Revell, D.K.; Williams, R.; Vercoe, P.E. In vitro screening of selected feed additives, plant essential oils and plant extracts for rumen methane mitigation. J. Sci. Food Agric. 2014, 94, 1191–1196. [Google Scholar] [CrossRef] [PubMed]
- Benchaar, C.; Greathead, H. Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Anim. Feed Sci. Technol. 2011, 166, 338–355. [Google Scholar] [CrossRef]
- Guyader, J.; Eugène, M.; Meunier, B.; Doreau, M.; Morgavi, D.; Silberberg, M.; Rochette, Y.; Gerard, C.; Loncke, C.; Martin, C. Additive methane-mitigating effect between linseed oil and nitrate fed to cattle. J. Anim. Sci. 2015, 93, 3564–3577. [Google Scholar] [CrossRef]
- Benchaar, C.; Hassanat, F.; Martineau, R.; Gervais, R. Linseed oil supplementation to dairy cows fed diets based on red clover silage or corn silage: Effects on methane production, rumen fermentation, nutrient digestibility, N balance, and milk production. J. Dairy Sci. 2015, 98, 7993–8008. [Google Scholar] [CrossRef]
- Choi, Y.Y.; Shin, N.H.; Lee, S.J.; Lee, Y.J.; Kim, H.S.; Eom, J.S.; Lee, S.S.; Kim, E.T.; Lee, S.S. In vitro five brown algae extracts for efficiency of ruminal fermentation and methane yield. J. Appl. Phycol. 2021, 33, 1253–1262. [Google Scholar] [CrossRef]
- Maia, M.R.; Fonseca, A.J.; Oliveira, H.M.; Mendonça, C.; Cabrita, A.R. The potential role of seaweeds in the natural manipulation of rumen fermentation and methane production. Sci. Rep. 2016, 6, 32321. [Google Scholar] [CrossRef]
- Sofyan, A.; Irawan, A.; Herdian, H.; Harahap, M.A.; Sakti, A.A.; Suryani, A.E.; Novianty, H.; Kurniawan, T.; Darma, I.N.G.; Windarsih, A. Effects of various macroalgae species on methane production, rumen fermentation, and ruminant production: A meta-analysis from in vitro and in vivo experiments. Anim. Feed Sci. Technol. 2022, 294, 115503. [Google Scholar] [CrossRef]
- Alsudays, I.M.; Alshammary, F.H.; Alabdallah, N.M.; Alatawi, A.; Alotaibi, M.M.; Alwutayd, K.M.; Alharbi, M.M.; Alghanem, S.M.; Alzuaibr, F.M.; Gharib, H.S. Applications of humic and fulvic acid under saline soil conditions to improve growth and yield in barley. BMC Plant Biol. 2024, 24, 191. [Google Scholar] [CrossRef]
- Cusack, P. Effects of a dietary complex of humic and fulvic acids (FeedMAX 15™) on the health and production of feedlot cattle destined for the Australian domestic market. Aust. Vet. J. 2008, 86, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Kholif, A.; Matloup, O.; EL-Bltagy, E.; Olafadehan, O.; Sallam, S.; El-Zaiat, H. Humic substances in the diet of lactating cows enhanced feed utilization, altered ruminal fermentation, and improved milk yield and fatty acid profile. Livest. Sci. 2021, 253, 104699. [Google Scholar] [CrossRef]
- Terry, S.A.; de Oliveira Ribeiro, G.; Gruninger, R.J.; Hunerberg, M.; Ping, S.; Chaves, A.V.; Burlet, J.; Beauchemin, K.A.; McAllister, T.A. Effect of humic substances on rumen fermentation, nutrient digestibility, methane emissions, and rumen microbiota in beef heifers. J. Anim. Sci. 2018, 96, 3863–3877. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.; Salem, A.; Elghandour, M.; Hafsa, S.A.; Reddy, P.; Atia, S.; Vidu, L. Humic substances isolated from clay soil may improve the ruminal fermentation, milk yield, and fatty acid profile: A novel approach in dairy cows. Anim. Feed Sci. Technol. 2020, 268, 114601. [Google Scholar] [CrossRef]
- McMurphy, C.; Duff, G.; Harris, M.; Sanders, S.; Chirase, N.; Bailey, C.; Ibrahim, R. Effect of humic/fulvic acid in beef cattle finishing diets on animal performance, ruminal ammonia and serum urea nitrogen concentration. J. Appl. Anim. Res. 2009, 35, 97–100. [Google Scholar] [CrossRef]
- Kühnert, V.; Bartels, K.; Kröll, S.; Lange, N. Huminsäurehaltige tierarzneimittel in therapie and prophylaxe bei gastrointestinalen erkrankungen von hund und katze. Monatshefte Vet. 1991, 46, 4–8. [Google Scholar]
- Nagaraju, R.; Reddy, B.; Gloridoss, R.; Suresh, B.; Ramesh, C. Effect of dietary supplementation of humic acids on performance of broilers. Indian J. Anim. Sci. 2014, 84, 447–452. [Google Scholar] [CrossRef]
- Lala, A.; Okwelum, N.; Oso, A.; Ajao, A.; Adegbenjo, A. Response of broiler chickens to varying dosage of humic acid in drinking water. J. Anim. Prod. Res. 2017, 29, 288–294. [Google Scholar]
- Kucukersan, S.; Kucukersan, K.; Colpan, I.; Goncuoglu, E.; Reisli, Z.; Yeşilbağ, D. The effects of humic acid on egg production and egg traits of laying hen. Vet. Med. 2005, 50, 406–410. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, Y.; Yoo, J.; Kim, H.; Cho, J.; Kim, I. Effects of supplemental humic substances on growth performance, blood characteristics and meat quality in finishing pigs. Livest. Sci. 2008, 117, 270–274. [Google Scholar] [CrossRef]
- Wang, Q.; Ying, J.; Zou, P.; Zhou, Y.; Wang, B.; Yu, D.; Li, W.; Zhan, X. Effects of dietary supplementation of humic acid sodium and zinc oxide on growth performance, immune status and antioxidant capacity of weaned piglets. Animals 2020, 10, 2104. [Google Scholar] [CrossRef] [PubMed]
- Váradyová, Z.; Kišidayová, S.; Jalč, D. Effect of humic acid on fermentation and ciliate protozoan population in rumen fluid of sheep in vitro. J. Sci. Food Agric. 2009, 89, 1936–1941. [Google Scholar] [CrossRef]
- McMurphy, C.; Duff, G.; Sanders, S.; Cuneo, S.; Chirase, N. Effects of supplementing humates on rumen fermentation in Holstein steers. S. Afr. J. Anim. Sci. 2011, 41, 134–140. [Google Scholar] [CrossRef]
- Degirmencioglu, T. Possibilities of using humic acid in diets for Saanen goats. Dairy/Mljekarstvo 2012, 62, 278–283. [Google Scholar]
- El-Zaiat, H.; Morsy, A.; El-Wakeel, E.; Anwer, M.; Sallam, S. Impact of humic acid as an organic additive on ruminal fermentation constituents, blood parameters and milk production in goats and their kids growth rate. J. Anim. Feed Sci. 2018, 27, 105–113. [Google Scholar] [CrossRef]
- Sheng, P.; Ribeiro, G.O.; Wang, Y.; McAllister, T.A. Humic substances reduce ruminal methane production and increase the efficiency of microbial protein synthesis in vitro. J. Sci. Food Agric. 2019, 99, 2152–2157. [Google Scholar] [CrossRef]
- Terry, S.A.; Ramos, A.F.; Holman, D.B.; McAllister, T.A.; Breves, G.; Chaves, A.V. Humic substances alter ammonia production and the microbial populations within a RUSITEC fed a mixed hay–concentrate diet. Front. Microbiol. 2018, 9, 1410. [Google Scholar] [CrossRef]
- Terry, S.; Ribeiro, G., Jr.; Gruninger, R.; Hünerberg, M.; Sheng, P.; Chaves, A.; Beauchemin, K.; Burlet, J.; McAllister, T. 364 Effect of humic substances on rumen fermentation, nutrient digestibility, methane emissions and rumen microbiota in beef heifers. J. Anim. Sci. 2018, 96, 181–182. [Google Scholar] [CrossRef]
- Kansagara, Y.; Savsani, H.; Chavda, M.; Chavda, J.; Belim, S.; Makwana, K.; Kansagara, B. Rumen microbiota and nutrient metabolism: A review. Bhartiya Krishi Anusandhan Patrika 2022, 37, 320–327. [Google Scholar] [CrossRef]
- Chaudhary, L.C.; Srivastava, A.; Singh, K.K. Rumen fermentation pattern and digestion of structural carbohydrates in buffalo (Bubalus bubalis) calves as affected by ciliate protozoa. Anim. Feed Sci. Technol. 1995, 56, 111–117. [Google Scholar] [CrossRef]
- Andersen, T.O.; Altshuler, I.; Vera-Ponce de León, A.; Walter, J.M.; McGovern, E.; Keogh, K.; Martin, C.; Bernard, L.; Morgavi, D.P.; Park, T.; et al. Metabolic influence of core ciliates within the rumen microbiome. Isme J. 2023, 17, 1128–1140. [Google Scholar] [CrossRef] [PubMed]
- Bach, A.; Calsamiglia, S.; Stern, M.D. Nitrogen Metabolism in the Rumen. J. Dairy Sci. 2005, 88, E9–E21. [Google Scholar] [CrossRef] [PubMed]
- Sheng, P.; Ribeiro, G., Jr.; Wang, Y.; McAllister, T. Humic substances supplementation reduces ruminal methane production and increases the efficiency of microbial protein synthesis in vitro. J. Anim. Sci. 2017, 95, 300. [Google Scholar] [CrossRef]
- Galip, N.; Polat, U.; Biricik, H. Effects of supplemental humic acid on ruminal fermentation and blood variables in rams. Ital. J. Anim. Sci. 2010, 9, e74. [Google Scholar] [CrossRef]
- Bell, K.; Byers, F.; Greene, L. Humate modification of fermentation of forage/grain diets in continuous culture. J. Anim. Sci. 1997, 75, 269. [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Beef Cattle: Eighth Revised Edition; The National Academies Press: Washington, DC, USA, 2016; p. 494. [Google Scholar]
- Sommer, A.C.; Frydrych, Z.; Kralik, O.; Kralikova, Z.; Krasa, A.; Pajtas, M.; Petrikovic, P.; Pozdisek, J.; Simek, M.; Trinacty, J.; et al. Nutrient Requirements and Tables of Nutrient Value of Ruminant Feed; ČZS VÚVZ: Pohořelice, Czech Republic, 1994; p. 198. [Google Scholar]
- European Union. Commission Regulation (EC) No. 152/2009 laying down the methods of sampling and analysis for the official control of feed. Off. J. Eur. Union 2009, 54, 2–54. [Google Scholar]
- Van Soest, P.J.; Robertson, J.; Lewis, B. Methods of dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Diary Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- ISO 10520; Native Starch—Determination of Starch Content—Ewers Polarimetric Method. ISO: Geneva, Switzerland, 1997.
- Dehority, B.A. Laboratory Manual for Classification and Morphology of Rumen Ciliate Protozoa; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Ogimoto, K.; Imai, S. Atlas of Rumen Microbiology; Japan Scientific Societies Press: Tokyo, Japan, 1981. [Google Scholar]
- Baraka, T. Comparative studies of rumen pH, total protozoa count, generic and species composition of ciliates in camel, buffalo, cattle, sheep and goat in Egypt. J. Am. Sci. 2012, 8, 655–669. [Google Scholar]
- Filípek, J.; Dvořák, R. Determination of the volatile fatty acid content in the rumen liquid: Comparison of gas chromatography and capillary isotachophoresis. Acta Vet. Brno 2009, 78, 627–633. [Google Scholar] [CrossRef]
- Chen, G.; Russell, J.; Sniffen, C. A procedure for measuring peptides in rumen fluid and evidence that peptide uptake can be a rate-limiting step in ruminal protein degradation. J. Dairy Sci. 1987, 70, 1211–1219. [Google Scholar] [CrossRef]
- Dai, X.; Karring, H. A determination and comparison of urease activity in feces and fresh manure from pig and cattle in relation to ammonia production and pH changes. PLoS ONE 2014, 9, e110402. [Google Scholar] [CrossRef] [PubMed]
- Bhatta, R.; Tajima, K.; Kurihara, M. Influence of temperature and pH on fermentation pattern and methane production in the rumen simulating fermenter (RUSITEC). Asian Australas. J. Anim. Sci. 2006, 19, 376–380. [Google Scholar] [CrossRef]
- Dehority, B.A. Rumen Microbiology; Nottingham University Press: Nottingham, UK, 2003. [Google Scholar]
- Zheng, Y.; Xue, S.; Zhao, Y.; Li, S. Effect of cassava residue substituting for crushed maize on in vitro ruminal fermentation characteristics of dairy cows at mid-lactation. Animals 2020, 10, 893. [Google Scholar] [CrossRef]
- Van Soest, P.J. Nutritional Ecology of the Ruminant; Cornell University Press: Ithaca, NY, USA, 1994. [Google Scholar]
- Zamarreño, A.M.; García-Mina, J.M.; Cantera, R.G. A new methodology for studying the performance of products against ruminal acidosis. J. Sci. Food Agric. 2003, 83, 1607–1612. [Google Scholar] [CrossRef]
- Ramos, S.C.; Kim, S.H.; Jeong, C.D.; Mamuad, L.L.; Son, A.R.; Kang, S.H.; Cho, Y.I.; Kim, T.G.; Lee, J.S.; Cho, K.K.; et al. Increasing buffering capacity enhances rumen fermentation characteristics and alters rumen microbiota composition of high-concentrate fed Hanwoo steers. Sci. Rep. 2022, 12, 20739. [Google Scholar] [CrossRef] [PubMed]
- Sallam, S.M.; Ibrahim, M.A.; Allam, A.M.; El-Waziry, A.M.; Attia, M.F.; Elazab, M.A.; El-Nile, A.E.; El-Zaiat, H.M. Feeding Damascus goats humic or fulvic acid alone or in combination: In vitro and in vivo investigations on impacts on feed intake, ruminal fermentation parameters, and apparent nutrients digestibility. Trop. Anim. Health Prod. 2023, 55, 265. [Google Scholar] [CrossRef]
- Ikyume, T.T.; Sowande, O.S.; Yusuf, A.O.; Oni, A.O.; Dele, P.A.; Ibrahim, O.T. In vitro gas production, methane production and fermentation kinetics of concentrate diet containing incremental levels of sodium humate. Agric. Conspec. Sci. 2020, 85, 183–189. [Google Scholar]
- Ikyume, T.T.; ONI, A.O.; Yusuf, A.O.; Sowande, O.S.; Adegbehin, S. Rumen metabolites and microbiome of semi-intensively managed West African Dwarf goats supplemented concentrate diet of varying levels of sodium humate. Egypt. J. Vet. Sci. 2020, 51, 263–270. [Google Scholar] [CrossRef]
- Sızmaz, Ö.; Köksal, B.H.; Yıldız, G. Rumen fermentation characteristics of rams fed supplemental boric acid and humic acid diets. Ank. Üniversitesi Vet. Fakültesi Derg. 2022, 69, 337–340. [Google Scholar] [CrossRef]
- Firkins, J.; Yu, Z.; Morrison, M. Ruminal nitrogen metabolism: Perspectives for integration of microbiology and nutrition for dairy. J. Dairy Sci. 2007, 90, E1–E16. [Google Scholar] [CrossRef]
- Hailemariam, S.; Zhao, S.; He, Y.; Wang, J. Urea transport and hydrolysis in the rumen: A review. Anim. Nutr. 2021, 7, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Malekjahani, F.; Mesgaran, M.D.; Vakili, A.; Sadeghi, M.; Yu, P. A novel approach to determine synchronization index of lactating dairy cow diets with minimal sensitivity to random variations. Anim. Feed Sci. Technol. 2017, 225, 143–156. [Google Scholar] [CrossRef]
- Henning, P.; Steyn, D.; Meissner, H. Effect of synchronization of energy and nitrogen supply on ruminal characteristics and microbial growth. J. Anim. Sci. 1993, 71, 2516–2528. [Google Scholar] [CrossRef]
- Rotger, A.; Ferret, A.; Calsamiglia, S.; Manteca, X. Effects of nonstructural carbohydrates and protein sources on intake, apparent total tract digestibility, and ruminal metabolism in vivo and in vitro with high-concentrate beef cattle diets. J. Anim. Sci. 2006, 84, 1188–1196. [Google Scholar] [CrossRef] [PubMed]
- Sannes, R.; Messman, M.; Vagnoni, D. Form of rumen-degradable carbohydrate and nitrogen on microbial protein synthesis and protein efficiency of dairy cows. J. Dairy Sci. 2002, 85, 900–908. [Google Scholar] [CrossRef]
- Newbold, J.; Rust, S. Effect of asynchronous nitrogen and energy supply on growth of ruminal bacteria in batch culture. J. Anim. Sci. 1992, 70, 538–546. [Google Scholar] [CrossRef]
- Henning, P.; Steyn, D.; Meissner, H. The effect of energy and nitrogen supply pattern on rumen bacterial growth in vitro. Anim. Sci. 1991, 53, 165–175. [Google Scholar] [CrossRef]
- McDonald, P.; Edwards, R.; Greenhalgh, J.F.D.; Morgan, C.; Sinclair, L.; Wilkinson, R. Animal Nutrition; Pearson Education: London, UK, 2011. [Google Scholar]
- Schwab, C.; Huhtanen, P.; Hunt, C.; Hvelplund, T. Nitrogen requirements of cattle. In Nitrogen and Phosphorus Nutrition of Cattle: Reducing the Environmental Impact of Cattle Operations; CABI Publishing: Wallingford, UK, 2005; pp. 13–70. [Google Scholar]
- Odle, J.; Schaefer, D. Influence of rumen ammonia concentration on the rumen degradation rates of barley and maize. Br. J. Nutr. 1987, 57, 127–138. [Google Scholar] [CrossRef]
- Hackmann, T.J.; Sen, A.; Firkins, J.L. Culture techniques for ciliate protozoa from the rumen: Recent advances and persistent challenges. Anaerobe 2024, 87, 102865. [Google Scholar] [CrossRef]
- Williams, A.G.; Coleman, G.S.; Williams, A.G.; Coleman, G.S. Role of protozoa in the rumen. Rumen Protozoa 1992, 317–347. [Google Scholar] [CrossRef]
- Stanford, K.; Bach, S.; Stephens, T.; McAllister, T. Effect of Rumen Protozoa onEscherichia coliO157: H7 in the Rumen and Feces of Specifically Faunated Sheep. J. Food Prot. 2010, 73, 2197–2202. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, M.A.; Carlson, S.A.; Franklin, S.K.; McCuddin, Z.P.; Wu, M.T.; Sharma, V.K. Exposure to rumen protozoa leads to enhancement of pathogenicity of and invasion by multiple-antibiotic-resistant Salmonella enterica bearing SGI1. Infect. Immun. 2005, 73, 4668–4675. [Google Scholar] [CrossRef] [PubMed]
- Carlson, S.A.; Sharma, V.K.; McCuddin, Z.P.; Rasmussen, M.A.; Franklin, S.K. Involvement of a Salmonella genomic island 1 gene in the rumen protozoan-mediated enhancement of invasion for multiple-antibiotic-resistant Salmonella enterica serovar Typhimurium. Infect. Immun. 2007, 75, 792–800. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Yan, M.; Somasundaram, S. Rumen protozoa and viruses: The predators within and their functions—A mini-review. JDS Commun. 2024, 5, 236–240. [Google Scholar] [CrossRef]
- Williams, A.G.; Coleman, G.S. The rumen protozoa. In The Rumen Microbial Ecosystem; Springer: New York, NY, USA, 1997; pp. 73–139. [Google Scholar]
- Mendoza, G.; Britton, R.; Stock, R. Influence of ruminal protozoa on site and extent of starch digestion and ruminal fermentation. J. Anim. Sci. 1993, 71, 1572–1578. [Google Scholar] [CrossRef]
- Chaucheyras-Durand, F.; Walker, N.; Bach, A. Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future. Anim. Feed Sci. Technol. 2008, 145, 5–26. [Google Scholar] [CrossRef]
- Martin, C.; Coppa, M.; Fougère, H.; Bougouin, A.; Baumont, R.; Eugène, M.; Bernard, L. Diets supplemented with corn oil and wheat starch, marine algae, or hydrogenated palm oil modulate methane emissions similarly in dairy goats and cows, but not feeding behavior. Anim. Feed Sci. Technol. 2021, 272, 114783. [Google Scholar] [CrossRef]
- Belanche, A.; De la Fuente, G.; Moorby, J.; Newbold, C.J. Bacterial protein degradation by different rumen protozoal groups. J. Anim. Sci. 2012, 90, 4495–4504. [Google Scholar] [CrossRef]
- Belanche, A.; de la Fuente, G.; Newbold, C.J. Effect of progressive inoculation of fauna-free sheep with holotrich protozoa and total-fauna on rumen fermentation, microbial diversity and methane emissions. FEMS Microbiol. Ecol. 2015, 91, fiu026. [Google Scholar] [CrossRef]
- Park, T.; Yu, Z. Interactions between Entodinium caudatum and an amino acid-fermenting bacterial consortium: Fermentation characteristics and protozoal population in vitro. J. Anim. Sci. Technol. 2023, 65, 387. [Google Scholar] [CrossRef]
- Majewska, M.P.; Miltko, R.; Skomiał, J.; Kowalik, B. Influence of humic acid supplemented to sheep diets on rumen enzymatic activity. Med. Weter. 2017, 73, 770–773. [Google Scholar] [CrossRef]
- Majewska, M.; Kędzierska, A.; Miltko, R.; Bełżecki, G.; Kowalik, B. Does humate supplementation affect ciliate population and fermentation parameters in the sheep rumen? J. Anim. Feed Sci. 2022, 31, 371–378. [Google Scholar] [CrossRef]
- Marcin, A.; Bujňák, L.; Mihok, T.; Naď, P. Effects of humic substances with urea on protozoal population and fermentation in the rumen of sheep. Bulg. J. Vet. Med. 2020, 23, 60–69. [Google Scholar] [CrossRef]
- Takenaka, A.; Tajima, K.; Mitsumori, M.; Kajikawa, H. Fiber digestion by rumen ciliate protozoa. Microbes Environ. 2004, 19, 203–210. [Google Scholar] [CrossRef]
- Dai, X.; Faciola, A.P. Evaluating strategies to reduce ruminal protozoa and their impacts on nutrient utilization and animal performance in ruminants–a meta-analysis. Front. Microbiol. 2019, 10, 2648. [Google Scholar] [CrossRef]
Diets 1 | ||||
---|---|---|---|---|
H0 | H50 | H100 | H200 | |
Ingredients, % of dry matter | ||||
Meadow hay | 71.3 | 71.0 | 70.8 | 70.4 |
Maize silage | 21 | 20.9 | 20.8 | 20.7 |
Granulated feed mixture (GFM) 2 | 7.7 | 7.7 | 7.7 | 7.7 |
Supplement HUMAK Natur AFM 3 | 0 | 0.3 | 0.6 | 1.3 |
Ingredients | ||||
---|---|---|---|---|
Nutrient Composition, % of Dry Matter | Meadow Hay | Maize Silage | GFM | HUMAK |
Dry matter, % | 90.63 | 93.72 | 91.58 | 75.64 |
Crude protein, % | 4.87 | 7.43 | 13.37 | 2.72 |
Starch, % | 0.00 | 35.41 | 38.8 | 24.7 |
Ash, % | 66.1 | 3.8 | 7.6 | 31.3 |
Crude fiber, % | 32.5 | 15.4 | 5.62 | 6.68 |
Fat, % | 1.57 | 3.1 | 2.68 | 0.07 |
Neutral detergent fiber (NDF), % | 35.1 | 37.18 | 19.6 | 0.22 |
NEV *, MJ | 38.09 | 12.65 | 11.41 | - |
PDIE, g | 571.8 | 157.9 | 161.5 | - |
PDIN, g | 569.4 | 109.2 | 163.2 | - |
Diets 1 | ||||
---|---|---|---|---|
H0 | H50 | H100 | H200 | |
Nutrient intake | ||||
DM, kg/d/animal | 11.813 | 11.859 | 11.906 | 11.999 |
CP, g/d/animal | 1013 | 1014.64 | 1016.31 | 1019.65 |
CF, g/d/animal | 262.29 | 265.7 | 269.1 | 275.9 |
Starch, g/d/animal | 1605.36 | 1622.56 | 1639.76 | 1674.16 |
NEV *, MJ | 59.78 | - | - | - |
PDIE, g | 891.2 | - | - | - |
PDIN, g | 841.8 | - | - | - |
Item | H0 | H50 | H100 | H200 | SEM | p-Value |
---|---|---|---|---|---|---|
pH | 6.39 | 6.28 | 6.38 | 6.5 | 1.9 | 0.064 |
Nitrogenous compounds (g/kg) | 3.42 a | 5.04 b | 3.36 ac | 4.49 abc | 1.87 | 0.007 |
Total nitrogen (g/kg) | 0.54 a | 0.79 b | 0.55 a | 0.69 a | 0.03 | 0.022 |
NH3-N(mg/dL) 1 | 6.35 a | 15.16 b | 7.27 ac | 9.55 c | 0.47 | 0.001 |
Fecal nitrogen (%) | 9.06 a | 12.46 b | 7.99 a | 9.57 a | 0.21 | <0.001 |
VFAtot (mmol/L) | 102.99 | 98.63 | 99.66 | 97.27 | 1.52 | 0.54 |
Acetate (mmol/L) | 79.98 | 74.69 | 75.41 | 74.88 | 1.16 | 0.25 |
Propionate (mmol/L) | 14.47 | 14.59 | 15.71 | 12.06 | 0.44 | 0.06 |
Butyrate (mmol/L) | 8.52 | 9.17 | 10.48 | 8.96 | 0.64 | 0.4 |
Acetate/Propionate | 5.67 | 5.28 | 4.85 | 6.31 | 0.18 | 0.77 |
Item | H0 | H50 | H100 | H200 | SEM | p-Value |
---|---|---|---|---|---|---|
Total protozoa count (104/mL) | 26.07 | 27.04 | 25.02 | 24.26 | 0.54 | 0.32 |
Holotrich protozoa | 29.8 a | 18.1 b | 28.4 a | 24.8 a | 0.77 | <0.001 |
Entodiniomorphid protozoa | 61.4 a | 76.5 b | 66.7 ad | 69.3 cd | 0.83 | <0.001 |
Isotricha | 6.17 a | 4.06 b | 7.5 ac | 8.8 ad | 0.44 | 0.003 |
Dasytricha | 15.47 | 9.7 | 13.9 | 10.9 | 0.72 | 0.17 |
Charonina | 5.7 ac | 3.7 b | 4.2 abc | 3.8 b | 0.2 | 0.001 |
Buetschlia | 2.42 a | 0.58 b | 2.71 ac | 1.65 ad | 0.1 | <0.001 |
Entodinium | 53.1 a | 70.1 b | 61.6 cd | 62.5 cd | 0.8 | <0.001 |
Diplodinium | 8.69 a | 5.13 b | 5.25 bc | 5.77 bd | 0.24 | <0.001 |
Epidinium | 1.89 a | 1.23 ac | 1.39 abc | 0.75 bc | 0.1 | 0.002 |
Ophryoscolex | 2.73 a | 1.57 b | 2.28 ab | 2.19 ab | 0.13 | 0.01 |
Ostracodinium | 3.18 a | 3.67 a | 1.45 b | 3.52 a | 0.1 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malyugina, S.; Horky, P. The Effect of Humic Acid Supplementation on Selected Ruminal Fermentation Parameters and Protozoal Generic Distribution in Cows. Agriculture 2024, 14, 1663. https://doi.org/10.3390/agriculture14101663
Malyugina S, Horky P. The Effect of Humic Acid Supplementation on Selected Ruminal Fermentation Parameters and Protozoal Generic Distribution in Cows. Agriculture. 2024; 14(10):1663. https://doi.org/10.3390/agriculture14101663
Chicago/Turabian StyleMalyugina, Svetlana, and Pavel Horky. 2024. "The Effect of Humic Acid Supplementation on Selected Ruminal Fermentation Parameters and Protozoal Generic Distribution in Cows" Agriculture 14, no. 10: 1663. https://doi.org/10.3390/agriculture14101663
APA StyleMalyugina, S., & Horky, P. (2024). The Effect of Humic Acid Supplementation on Selected Ruminal Fermentation Parameters and Protozoal Generic Distribution in Cows. Agriculture, 14(10), 1663. https://doi.org/10.3390/agriculture14101663