A Geographically Weighted Regression–Compute Unified Device Architecture Approach to Explore the Spatial Agglomeration and Heterogeneity in Arable Land Consumption in Southwest China
Abstract
:1. Introduction
2. Study Area
3. Methods
3.1. Data Acquisition and Preprocessing
3.2. GWR-CUDA
3.3. Grid-Distributed Computing
3.4. Statistical Analysis of Spatial Results
4. Results
4.1. Arable Land Loss in China between 2000 and 2020
4.2. Statistics of the Model Results
4.3. Spatial Distribution and Visualization of the GWR-CUDA Results
4.3.1. Spatial Distribution and Visualization of High R-Squared Values
4.3.2. Spatial Distribution and Visualization of High Residual
4.4. Coefficient Ranges and Weights of Variables under the Well-Fitted GWR Results
5. Discussion
5.1. The Factor Effect and Spatial Distribution of Good GWR-CUDA Fitting Results
5.1.1. Factor Effect of the High R2 Value Clusters
5.1.2. Reasons behind Different Periods of the Same High R2 Spatial Agglomeration Area
5.2. Limitations of the Model
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ye, S.; Ren, S.; Song, C.; Cheng, C.; Shen, S.; Yang, J.; Zhu, D. Spatial patterns of county-level arable land productive-capacity and its coordination with land-use intensity in mainland China. Agric. Ecosyst. Environ. 2022, 326, 107757. [Google Scholar] [CrossRef]
- Liu, X.; Wang, S.; Zhuang, Q.; Jin, X.; Bian, Z.; Zhou, M.; Meng, Z.; Han, C.; Guo, X.; Jin, W.; et al. A Review on Carbon Source and Sink in Arable Land Ecosystems. Land 2022, 11, 580. [Google Scholar] [CrossRef]
- Prăvălie, R.; Patriche, C.; Borrelli, P.; Panagos, P.; Roșca, B.; Dumitraşcu, M.; Nita, I.-A.; Săvulescu, I.; Birsan, M.-V.; Bandoc, G. Arable lands under the pressure of multiple land degradation processes. A global perspective. Environ. Res. 2021, 194, 110697. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Cai, Y.; Yang, Y.; Dai, E. Research on the relationship of cultivated land change and food security in China. J. Nat. Resour. 2001, 16, 313–319. [Google Scholar]
- Larson, C. Losing Arable Land, China Faces Stark Choice: Adapt or Go Hungry. Science 2013, 339, 644–645. [Google Scholar] [CrossRef] [PubMed]
- Long, H.; Li, Y.; Liu, Y.; Woods, M.; Zou, J. Accelerated restructuring in rural China fueled by ‘increasing vs. decreasing balance’ land-use policy for dealing with hollowed villages. Land Use Policy 2012, 29, 11–22. [Google Scholar] [CrossRef]
- Qu, Q.-Y.; Yang, H.; Zhao, Y.-H.; Han, L. Temporal and spatial changes and its characteristics of cultivated land and grain yield in China from 2009 to 2017. Hubei Agric. Sci. 2022, 61, 29–34. [Google Scholar]
- Liu, J.; Guo, Q. A spatial panel statistical analysis on cultivated land conversion and chinese economic growth. Ecol. Indic. 2015, 51, 20–24. [Google Scholar] [CrossRef]
- Tu, Y.; Chen, B.; Yu, L.; Xin, Q.; Gong, P.; Xu, B. How does urban expansion interact with cropland loss? A comparison of 14 Chinese cities from 1980 to 2015. Landsc. Ecol. 2021, 36, 243–263. [Google Scholar] [CrossRef]
- Tu, Y.; Chen, B.; Yu, L.; Song, Y.; Wu, S.; Li, M.; Wei, H.; Chen, T.; Lang, W.; Gong, P.; et al. Raveling the nexus between urban expansion and cropland loss in China. Landsc. Ecol. 2023, 38, 1869–1884. [Google Scholar] [CrossRef]
- Alexander, P.; Rounsevell, M.D.A.; Dislich, C.; Dodson, J.R.; Engström, K.; Moran, D. Drivers for global agricultural land use change: The nexus of diet, population, yield and bioenergy. Glob. Environ. Chang. 2015, 35, 138–147. [Google Scholar] [CrossRef]
- Song, W.; Pijanowski, B.C.; Tayyebi, A. Urban expansion and its consumption of high-quality farmland in Beijing, China. Ecol. Indic. 2015, 54, 60–70. [Google Scholar] [CrossRef]
- Saturday, A. Restoration of Degraded Agricultural Land: A Review. J. Environ. Health Sci. 2018, 4, 44–51. [Google Scholar]
- Mansour, S.; Al Kindi, A.; Al-Said, A.; Al-Said, A.; Atkinson, P. Sociodemographic determinants of COVID-19 incidence rates in Oman: Geospatial modelling using multiscale geographically weighted regression (MGWR). Sustain. Cities Soc. 2021, 65, 102627. [Google Scholar] [CrossRef]
- Tasyurek, M.; Celik, M. 4D-GWR: Geographically, altitudinal, and temporally weighted regression. Neural Comput. Appl. 2022, 34, 14777–14791. [Google Scholar] [CrossRef]
- Khalid, S.; Zameer, F. Revisiting Urban Immovable Property Valuation: An Appraisal of Spatial Heterogeneities in Punjab Using Big Data. Pak. Dev. Rev. 2023, 62, 493–520. [Google Scholar] [CrossRef]
- Lu, C.; Ma, L.; Liu, T.-X.; Huang, X. Temporal and spatial variations of annual precipitation and meteorological drought in China during 1951–2018. Chin. J. Appl. Ecol. 2022, 33, 1572–1580. [Google Scholar]
- Liu, C.; Wu, X.; Wang, L. Analysis on land ecological security change and affect factors using RS and GWR in the Danjiangkou Reservoir area, China. Appl. Geogr. 2019, 105, 1–14. [Google Scholar] [CrossRef]
- Yu, H.; Gong, H.; Chen, B.; Liu, K.; Gao, M. Analysis of the influence of groundwater on land subsidence in Beijing based on the geographical weighted regression (GWR) model. Sci. Total Environ. 2020, 738, 139405. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Hu, Y.; Murakami, D.; Brunsdon, C.; Comber, A.; Charlton, M.; Harris, P. High-performance solutions of geographically weighted regression in R. Geo-Spat. Inf. Sci. 2022, 25, 536–549. [Google Scholar] [CrossRef]
- Tian, A.; Xu, T.; Gao, J.; Liu, C.; Han, L. Multi-scale spatiotemporal wetland loss and its critical influencing factors in China determined using innovative grid-based GWR. Ecol. Indic. 2023, 149, 110144. [Google Scholar] [CrossRef]
- Wang, C.; Li, S.; Shan, J. Non-Stationary Modeling of Microlevel Road-Curve Crash Frequency with Geographically Weighted Regression. ISPRS Int. J. Geo-Inf. 2021, 10, 286. [Google Scholar] [CrossRef]
- Wang, D.; Yang, Y.; Qiu, A.; Kang, X.; Han, J.; Chai, Z. A CUDA-Based Parallel Geographically Weighted Regression for Large-Scale Geographic Data. ISPRS Int. J. Geo-Inf. 2020, 9, 653. [Google Scholar] [CrossRef]
- Tian, M.; Wang, X.; Wang, Q.; Qiao, Y.; Wu, H.; Hu, Q. Geographically weighted regression (GWR) and Prediction-area (P-A) plot to generate enhanced geochemical signatures for mineral exploration targeting. Appl. Geochem. 2023, 150, 105590. [Google Scholar] [CrossRef]
- Li, M.; Zhang, C.; Xu, B.; Xue, Y.; Ren, Y. A comparison of GAM and GWR in modelling spatial distribution of Japanese mantis shrimp (Oratosquilla oratoria) in coastal waters. Estuar. Coast. Shelf Sci. 2020, 244, 106928. [Google Scholar] [CrossRef]
- Getayeneh Antehunegn, T.; Lemma Derseh, G.; Solomon Gedlu, N. Spatial distribution of stillbirth and associated factors in Ethiopia: A spatial and multilevel analysis. BMJ Open 2020, 10, e034562. [Google Scholar]
- Tu, J.; Xia, Z.-G. Examining spatially varying relationships between land use and water quality using geographically weighted regression I: Model design and evaluation. Sci. Total Environ. 2008, 407, 358–378. [Google Scholar] [CrossRef]
- Wang, L.; Anna, H.; Zhang, L.; Xiao, Y.; Wang, Y.; Xiao, Y.; Liu, J.; Ouyang, Z. Spatial and Temporal Changes of Arable Land Driven by Urbanization and Ecological Restoration in China. Chin. Geogr. Sci. 2019, 29, 809–819. [Google Scholar] [CrossRef]
- Liu, N.; Strobl, J. Impact of neighborhood features on housing resale prices in Zhuhai (China) based on an (M)GWR model. Big Earth Data 2023, 7, 146–169. [Google Scholar] [CrossRef]
- Nazeer, M.; Bilal, M. Evaluation of Ordinary Least Square (OLS) and Geographically Weighted Regression (GWR) for Water Quality Monitoring: A Case Study for the Estimation of Salinity. J. Ocean Univ. China 2018, 17, 305–310. [Google Scholar] [CrossRef]
- Mahara, D.; Fauzan, A. Impacts of Human Development Index and Percentage of Total Population on Poverty using OLS and GWR models in Central Java, Indonesia. EKSAKTA J. Sci. Data Anal. 2021, 2, 142–154. [Google Scholar] [CrossRef]
- Dong, W.; Ge, W.-C.; Chen, K.-L. Application Research of CUDA Parallel Computing. Inf. Technol. 2010, 34, 11–15. [Google Scholar]
- Liu, Y.; Xie, Y.; Yang, W.; Zuo, X.; Ge, Q.; Zhou, B. Target Classification and Recognition for High-Resolution Remote Sensing Images: Using the Parallel Cross-Model Neural Cognitive Computing Algorithm. IEEE Geosci. Remote Sens. Mag. 2020, 8, 50–62. [Google Scholar] [CrossRef]
- Owens, J.D.; Houston, M.; Luebke, D.; Green, S.; Stone, J.E.; Phillips, J.C. GPU Computing. Proc. IEEE 2008, 96, 879–899. [Google Scholar] [CrossRef]
- Li, Z.; He, W.; Cheng, M.; Hu, J.; Yang, G.; Zhang, H. SinoLC-1: The first 1 m resolution national-scale land-cover map of China created with a deep learning framework and open-access data. Earth Syst. Sci. Data 2023, 15, 4749–4780. [Google Scholar] [CrossRef]
- Kumari, M.; Sarma, K.; Sharma, R. Using Moran’s I and GIS to study the spatial pattern of land surface temperature in relation to land use/cover around a thermal power plant in Singrauli district, Madhya Pradesh, India. Remote Sens. Appl. Soc. Environ. 2019, 15, 100239. [Google Scholar] [CrossRef]
- Nakagawa, S.; Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar] [CrossRef]
- Getis, A. Reflections on spatial autocorrelation. Reg. Sci. Urban Econ. 2007, 37, 491–496. [Google Scholar] [CrossRef]
- Tang, J.-L.; Cheng, X.-Q.; Zhu, B.; Gao, M.; Wang, T.; Zhang, X.-F.; Zhao, P.; You, X. Rainfall and tillage impacts on soil erosion of sloping cropland with subtropical monsoon climate—A case study in hilly purple soil area, China. J. Mt. Sci. 2015, 12, 134–144. [Google Scholar] [CrossRef]
- He, P.; Wang, Q.-C.; Shen, G.Q. The Carbon Emission Implications of Intensive Urban Land Use in Emerging Regions: Insights from Chinese Cities. Urban Sci. 2024, 8, 75. [Google Scholar] [CrossRef]
Regions | Climate Type | Annual Precipitation Fall (mm) | Annual Temperature (°C) | DEM Range (m) | Slope Range (°C) |
---|---|---|---|---|---|
Chongqing | Subtropical–temperate monsoon | 1000–1300 | 6–19 | 84–2495 | 0–60.03 |
Guizhou | Subtropical–temperate monsoon | 1000–1600 | 8–21 | 170–2832 | 0–61.71 |
Yunnan | Subtropical–temperate monsoon | 600–2000 | −3~25 | 84–5452 | 0–74.89 |
Independent Variable | Detailed Meaning | Data Source |
---|---|---|
rain | Annual precipitation | https://www.resdc.cn |
evaporation | Annual evaporation | https://www.resdc.cn |
GDP | Annual Gross Domestic Product | https://www.resdc.cn |
pop | Population size | CAS Data Center |
DEM | Digital elevation model | CAS Data Center |
slope | Gradient | CAS Data Center |
dis2u | Distance to nearest urban area | Processed Globeland30 data with ArcGIS |
dis2r | Distance to traffic lanes | Processed Globeland30 data with ArcGIS |
Time Period | R-Squared | Chongqing | Yunnan | Guizhou |
---|---|---|---|---|
2000–2010 | 0.0–0.2 | 56,096 | 162,704 | 167,148 |
0.2–0.4 | 149,538 | 735,266 | 466,861 | |
0.4–0.6 | 91,719 | 370,194 | 85,423 | |
0.6–0.8 | 43,525 | 140,658 | 32,250 | |
0.8–1.0 | 16,450 | 63,028 | 5444 | |
2010–2020 | 0.0–0.2 | 43,874 | 242,017 | 67,042 |
0.2–0.4 | 187,401 | 700,244 | 377,587 | |
0.4–0.6 | 97,870 | 233,112 | 306,676 | |
0.6–0.8 | 53,758 | 290,381 | 122,793 | |
0.8–1.0 | 28,229 | 175,565 | 27,762 |
2000–2010 | ||||||
---|---|---|---|---|---|---|
R-Squared | Chongqing | Guizhou | Yunnan | |||
Moran’s I | z-score | Moran’s I | z-score | Moran’s I | z-score | |
0–0.2 | 0.94 | 373.89 | 0.92 | 666.10 | 0.86 | 490.10 |
0.2–0.4 | 0.93 | 497.04 | 0.92 | 1000.53 | 0.89 | 1098.24 |
0.4–0.6 | 0.90 | 357.71 | 0.82 | 379.48 | 0.79 | 653.15 |
0.6–0.8 | 0.91 | 245.68 | 0.83 | 182.00 | 0.78 | 392.35 |
0.8–1.0 | 0.97 | 158.95 | 0.94 | 78.31 | 0.94 | 357.72 |
2010–2020 | ||||||
R-squared | Chongqing | Guizhou | Yunnan | |||
Moran’s I | z-score | Moran’s I | z-score | Moran’s I | z-score | |
0–0.2 | 0.90 | 264.60 | 0.84 | 203.17 | 0.93 | 674.04 |
0.2–0.4 | 0.94 | 609.55 | 0.88 | 748.42 | 0.94 | 1144.64 |
0.4–0.6 | 0.89 | 400.49 | 0.82 | 667.86 | 0.89 | 623.69 |
0.6–0.8 | 0.89 | 289.35 | 0.80 | 406.28 | 0.89 | 376.03 |
0.8–1.0 | 0.95 | 237.81 | 0.86 | 201.40 | 0.96 | 322.48 |
Chongqing | Guizhou | Yunnan | ||||
---|---|---|---|---|---|---|
Moran’s I | z-Score | Moran’s I | z-Score | Moran’s I | z-Score | |
2000–2010 | 0.20 | 63.11 | 0.24 | 58.45 | 0.17 | 112.58 |
2010–2020 | 0.17 | 70.72 | 0.09 | 49.23 | 0.29 | 158.02 |
City | Clustering Region | Rain | Evaporation | Slope | DEM | Pop | GDP | dis2u | dis2r |
---|---|---|---|---|---|---|---|---|---|
Chongqing | Northeast Yangtze River Basin | −15.1–12.4 | −7.7–4.6 | −2–0.6 | −6.1–0.61 | −469.6–180.2 | −113.4–76 | −8.3–12.4 | −64.7–26 |
Zhong County | −17.1–14.5 | −6.9–11.6 | −1.32–0.58 | −5–3.5 | −262.6–175.6 | −21.8–38.5 | −2.2–3.15 | −15.4–5.2 | |
Southwest Main City | −63.6–66.1 | −32.7–27.1 | −2.55–2 | −23–14.7 | −60.2–54.7 | −4.7–17.6 | −1532.4–3.85 | −18.9–37.1 | |
Guizhou | Guiyang | −57.6–35.6 | −37.9–54.6 | −2.43–3.5 | −17–28.5 | −226.6–176.6 | −273.5–155.1 | −28.9–61.3 | −128.5–52.3 |
Wanfeng Lake | −17.6–22.5 | −24.4–9.1 | −1.76–1.77 | −11.9–3.4 | −8.6–12.8 | −25.3–23.1 | −11.8–7.8 | −18.1–34.3 | |
Yunnan | Lancang River Basin | −213.3–207.7 | −53.7–117.5 | −17.8–26.1 | −17.4–30.7 | −1396.1–1878.6 | −2799.1–9381.6 | −475.4–630.9 | −1762.1–1217 |
Wujiang River Basin | −153.9–168.9 | −4.7–11.2 | −3.07–3.4 | −0.6–1.09 | −17.5–24.3 | −17.9–19.8 | −67.5–84.1 | −28.9–25.7 | |
Nanpan River Basin | −305.1–255.5 | −244.4–193.8 | −2321–153.5 | −9.6–33.2 | −1481.4–1903.2 | −39,085–32,331.3 | −146–193.6 | −333.9–503 |
City | Clustering Region | Rain | Evaporation | Slope | DEM | Pop | GDP | dis2u | dis2r |
---|---|---|---|---|---|---|---|---|---|
Chongqing | Jiangjin District | −29.1–44 | −24.5–32.3 | −2.85–1.75 | −9.4–13.7 | −114,647–37,098.8 | −94,718–243,779 | −57–5.3 | −22.4–69 |
Zhong County | −148.9–27.9 | −110.8–55.9 | −3.7–5 | −75.8–25.9 | −71,138.6–63,840.1 | −173,854–159,045.6 | −187.3–3.96 | −28.1–46.5 | |
Southwest Main City | −70.4–65.1 | −51.7–66.9 | −4.2–4.8 | −25.1–32.2 | −106,774–129,687.5 | −193,994–175,205.3 | −1147.9–12.9 | −59.7–55.8 | |
Guizhou | Guiyang and surrounding counties | −149.9–166.1 | −84.1–88.5 | −42.1–41.9 | −228–181.5 | −25,484.9–21,208.8 | −247,794–198,547.5 | −143,635–148,576.2 | −104.2–39.5 |
Yunnan | Kunming | −166.3–265 | −375–824.8 | −0.9–0.98 | −28.5–28 | −11,840.9–34,753.2 | −30,703–21,047.4 | −153.3–8.5 | −170.2–63.7 |
Honghe Hani and Yi Autonomous Prefecture | −55.4–74.3 | −66.9–73 | −2.64–2.85 | −23–48.8 | −5555–4699.9 | −3920.1–4632.3 | −174.3–12.4 | −50.3–50.2 | |
Yuanjiang River Basin | −16.8–22.6 | −14.6–8.5 | −0.61–1.63 | −3.2–7.4 | −1555.4–967.8 | −2464–3843.8 | −8.2–16.8 | −42.6–61.1 |
City | Clustering Region | Rain | Evaporation | Slope | DEM | Pop | GDP | dis2u | dis2r | |
---|---|---|---|---|---|---|---|---|---|---|
2000–2010 | Chongqing | Northeast Yangtze River Basin | 0.335 | 0.056 | 0.406 | 0.107 | 0.101 | 0.200 | 0.335 | 0.056 |
Zhong County | 0.324 | 0.039 | 0.363 | 0.107 | 0.102 | 0.200 | 0.324 | 0.039 | ||
Southwest Main City | 0.311 | 0.099 | 0.306 | 0.107 | 0.101 | 0.200 | 0.311 | 0.099 | ||
Guizhou | Guiyang | 0.299 | 0.452 | 0.222 | 0.408 | 0.647 | 0.728 | 0.305 | 0.364 | |
Wanfeng Lake | 0.459 | 0.511 | 0.256 | 0.371 | 0.520 | 0.678 | 0.538 | 0.808 | ||
Yunnan | Lancang River Basin | 0.356 | 0.331 | 0.311 | 0.306 | 0.150 | 1.000 | 0.399 | 0.560 | |
Wujiang River Basin | 0.667 | 0.072 | 0.150 | 0.333 | 0.301 | 0.246 | 0.403 | 0.180 | ||
Nanpan River Basin | 0.322 | 0.330 | 0.323 | 0.307 | 0.360 | 0.980 | 0.004 | 0.346 | ||
2010–2020 | Chongqing | Jiangjin District | 0.107 | 0.107 | 0.107 | 0.107 | 0.294 | 1.000 | 0.107 | 0.107 |
Zhong County | 0.101 | 0.102 | 0.101 | 0.101 | 0.263 | 1.000 | 0.101 | 0.101 | ||
Southwest Main City | 0.200 | 0.200 | 0.200 | 0.200 | 0.744 | 0.667 | 0.198 | 0.200 | ||
Guizhou | Guiyang and surrounding counties | 0.015 | 0.015 | 0.020 | 0.018 | 0.043 | 0.677 | 0.691 | 0.007 | |
Yunnan | Kunming | 0.111 | 0.117 | 0.107 | 0.107 | 0.543 | 1.000 | 0.109 | 0.109 | |
Honghe Hani and Yi Autonomous Prefecture | 0.108 | 0.108 | 0.101 | 0.105 | 0.660 | 0.945 | 0.115 | 0.109 | ||
Yuanjiang River Basin | 0.205 | 0.204 | 0.200 | 0.202 | 0.691 | 0.667 | 0.203 | 0.209 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Xu, T.; Han, L.; Du, S.; Tian, A. A Geographically Weighted Regression–Compute Unified Device Architecture Approach to Explore the Spatial Agglomeration and Heterogeneity in Arable Land Consumption in Southwest China. Agriculture 2024, 14, 1675. https://doi.org/10.3390/agriculture14101675
Liu C, Xu T, Han L, Du S, Tian A. A Geographically Weighted Regression–Compute Unified Device Architecture Approach to Explore the Spatial Agglomeration and Heterogeneity in Arable Land Consumption in Southwest China. Agriculture. 2024; 14(10):1675. https://doi.org/10.3390/agriculture14101675
Chicago/Turabian StyleLiu, Chang, Tingting Xu, Letao Han, Sapu Du, and Aohua Tian. 2024. "A Geographically Weighted Regression–Compute Unified Device Architecture Approach to Explore the Spatial Agglomeration and Heterogeneity in Arable Land Consumption in Southwest China" Agriculture 14, no. 10: 1675. https://doi.org/10.3390/agriculture14101675
APA StyleLiu, C., Xu, T., Han, L., Du, S., & Tian, A. (2024). A Geographically Weighted Regression–Compute Unified Device Architecture Approach to Explore the Spatial Agglomeration and Heterogeneity in Arable Land Consumption in Southwest China. Agriculture, 14(10), 1675. https://doi.org/10.3390/agriculture14101675