Comprehensive Study on the Potential of Domesticated Clones of Rosemary (Salvia rosmarinus Spenn.): Implications for Large-Scale Production and Waste Recovery in the Development of Plant-Based Agrochemicals
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemicals and Reagents
2.2. Vegetal Material Collection
2.3. Vegetal Material Extraction and Characterization
2.4. Chemical Characterization of the EOs (GC)
2.5. Phenolic Characterization of the EEs
2.5.1. Total Phenol Content (TPC)
2.5.2. Phenolic Profile (HPLC)
2.6. Evaluation of the Potential of EEs for Agrochemical Development
2.6.1. Antifungal Capacity
2.6.2. Antioxidant Potential
- –
- Radical Scavenging Activity (DPPH): In 96-well microplates, 50 µL of each S. rosmarinus EE at a concentration ranging from 10 to 200 µg/mL was mixed with 200 µL of 0.005% DPPH radical [29]. After incubating the plates for 1 h at room temperature, absorbance was recorded at 517 nm. The inhibition capacity (%) was estimated as [(C − T)/C × 100], with C being the absorbance of the negative control (water) and T that of each EE. The analyses were carried out twice with two repetitions each, and the dose inhibiting 50% of the DPPH radical (IC50) was calculated from the linear regression equation between concentration and inhibition.
- –
- Ferric Reducing Antioxidant Power (FRAP): Similarly, 50 µL of EE (10–200 µg/mL) was mixed in 96-well plates with 50 µL of 0.2 M sodium phosphate buffer pH 6.6 and50 µL of 1% potassium ferricyanide (III) [29]. After incubating at 50 °C for 20 min and cooling, 100 µL of 5% trichloroacetic acid and 10 µL of 0.1% iron (III) chloride were added. Following another 10 min incubation at 50 °C, the plates were measured at 700 nm. The linear regression equation between concentration and absorbance was obtained from duplicate analyses with 2 replicates for each EE, determining the dose required to achieve 0.5 absorbance units (AU0.5).
2.6.3. Chelating Agent Properties
- –
- Fe2+ Chelating Agent Capacity (Fe2+-CA): In 96-well plates, 50 µL of EE at a concentration between 100 and 500 µg/mL was mixed with 200 µL of 0.1 M sodium acetate buffer pH 4.9 and 10 µL of 1 mM iron (II) chloride [29]. The mixture was incubated for 1 h at room temperature, and the absorbance of the medium was measured at 562 nm. Additionally, 20 μL of 5 mM ferrozine was added, and the absorbance was immediately recorded at the same wavelength. Chelating activity (%) was calculated as [(C − ΔT)/C × 100], where C represents the absorbance of water, and ΔT was the absorbance before and after the incorporation of ferrozine. The analyses were carried out twice with 2 replicates each, and, from the linear regression equation between concentration and inhibition, the dose necessary to chelate 50% of the Fe2+ ions (IC50) was estimated.
- –
- Cu2+ Chelating Agent Capacity (Cu2+-CA): 50 µL of the EEs (100–500 µg/mL) were mixed with 200 µL of 0.05 M sodium acetate buffer pH 6.0 and 10 µL of 5.5 mM copper (II) sulphate in 96-well plates [29]. The mixture was incubated for 1 h at room temperature. After measuring the absorbance at 632 nm, 10 µL of 2 mM pyrocatechol violet was added, and the absorbance was immediately recorded. Chelating activity (%) was calculated as [(C − ΔT)/C × 100], where C was the absorbance of water, and ΔT was the absorbance before and after the incorporation of pyrocatechol violet. The analyses were performed in duplicate with 2 replicates each, and the dose necessary to chelate 50% of the Cu2+ ions (IC50) was estimated from the linear regression equation between concentration and inhibition.
2.6.4. Biostimulant Effects
2.7. Statistical Analysis
3. Results
3.1. Agronomic Perspective
3.2. Chemical Characterization of the EOs
3.3. Phenolic Characterization of the EEs
3.4. Biological Potential of EEs for Agrochemical Development
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morales, R. 16. Rosmarinus L. In Flora Ibérica; Morales, R., Quintanar, A., Cabezas, F.J., Eds.; Real Jardín Botánico, CSIC: Madrid, Spain, 2007; pp. 1–3. [Google Scholar]
- European Parliament and Council Commission Regulation (EU) No 723/2013 of 26 July 2013 Amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council as Regards the Use of Extracts of Rosemary (E 392) in Certain Low Fat Meat and Fish Products. Off. J. Eur. Union 2013, 202, 8–10.
- Nieto, G.; Ros, G.; Castillo, J. Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis, L.): A Review. Medicines 2018, 5, 98. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, J.R.; de Jesus, D.; Figueira, L.W.; de Oliveira, F.E.; Pacheco Soares, C.; Camargo, S.E.A.; Jorge, A.O.C.; de Oliveira, L.D. Biological Activities of Rosmarinus officinalis L. (Rosemary) Extract as Analyzed in Microorganisms and Cells. Exp. Biol. Med. 2017, 242, 625–634. [Google Scholar] [CrossRef]
- Cattaneo, L.; Cicconi, R.; Mignogna, G.; Giorgi, A.; Mattei, M.; Graziani, G.; Ferracane, R.; Grosso, A.; Aducci, P.; Schininà, M.E.; et al. Anti-Proliferative Effect of Rosmarinus officinalis L. Extract on Human Melanoma A375 Cells. PLoS ONE 2015, 10, e0132439. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Peng, S.; Chen, B.; Ni, G.; Liao, H. Allelopathic Potential and Volatile Compounds of Rosmarinus officinalis L. against Weeds. Allelopath. J. 2013, 32, 57–66. [Google Scholar]
- Sánchez-Vioque, R.; Izquierdo-Melero, M.E.; Polissiou, M.; Astraka, K.; Tarantilis, P.A.; Herraiz-Peñalver, D.; Martín-Bejerano, M.; Santana-Méridas, O. Comparative Chemistry and Biological Properties of the Solid Residues from Hydrodistillation of Spanish Populations of Rosmarinus officinalis L. Grasas Aceites 2015, 66, e079. [Google Scholar] [CrossRef]
- Adouane, S.; Bouatrous, Y.; Mehaoua, M.S.; Tudela, J.; Mechaala, S.; Tomas, V. Rosemary Essential Oil Potential as a Bio-Insecticide for Protecting Stored Dates against the Date Moth Ectomyelois Ceratoniae (Lepidoptera: Pyralidae). J. Crop Prot. 2022, 11, 173–184. [Google Scholar]
- Douiri, L.F.; Boughdad, A.; Alaoui, M.H.; Moumni, M. Biological Activity of Rosmarinus officinalis Essential Oils against Callosobruchus Maculatus, (Coleoptera, Bruchinae). J. Biol. Agric. Healthc. 2014, 4, 5–14. [Google Scholar]
- Cutillas, A.B.; Carrasco, A.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Rosmarinus officinalis L. Essential Oils from Spain: Composition, Antioxidant Capacity, Lipoxygenase and Acetylcholinesterase Inhibitory Capacities, and Antimicrobial Activities. Plant Biosyst. 2018, 152, 1282–1292. [Google Scholar] [CrossRef]
- Kadri, A.; Zarai, Z.; Chobba, I.B.; Békir, A.; Gharsallah, N.; Damak, M.; Gdoura, R. Chemical Constituents and Antioxidant Properties of Rosmarinus officinalis L. Essential Oil Cultivated from South-Western Tunisia. J. Med. Plant Res. 2011, 5, 5999–6004. [Google Scholar] [CrossRef]
- Celiktas, O.Y.; Kocabas, E.E.H.; Bedir, E.; Sukan, F.V.; Ozek, T.; Baser, K.H.C. Antimicrobial Activities of Methanol Extracts and Essential Oils of Rosmarinus officinalis, Depending on Location and Seasonal Variations. Food Chem. 2007, 100, 553–559. [Google Scholar] [CrossRef]
- Sharma, Y.; Velamuri, R.; Fagan, J.; Schaefer, J. Full-Spectrum Analysis of Bioactive Compounds in Rosemary (Rosmarinus officinalis L.) as Influenced by Different Extraction Methods. Molecules 2020, 25, 4599. [Google Scholar] [CrossRef] [PubMed]
- Mazaud, A.; Lebeuf, R.; Laguerre, M.; Nardello-Rataj, V. Improved Hydrotropic Extraction of Carnosic Acid from Rosemary and Sage with Short-Chain Monoalkyl Glycerol Ethers. ACS Sustain. Chem. Eng. 2022, 10, 3673–3681. [Google Scholar] [CrossRef]
- Jordán, M.J.; Lax, V.; Rota, M.C.; Lorán, S.; Sotomayor, J.A. Effect of the Phenological Stage on the Chemical Composition, and Antimicrobial and Antioxidant Properties of Rosmarinus officinalis L. Essential Oil and Its Polyphenolic Extract. Ind. Crops Prod. 2013, 48, 144–152. [Google Scholar] [CrossRef]
- Mattazi, N.; Farah, A.; Fadil, M.; Chraibi, M.; Benbrahim, K.F. Essential Oils Analysis and Antibacterial Activity of the Leaves of Rosmarinus officinalis, Salvia officinalis and Mentha piperita Cultivated in Agadir (Morocco). Int. J. Pharm. Pharm. Sci. 2015, 7, 73–79. [Google Scholar]
- Okoh, O.O.; Sadimenko, A.P.; Afolayan, A.J. Comparative Evaluation of the Antibacterial Activities of the Essential Oils of Rosmarinus officinalis L. Obtained by Hydrodistillation and Solvent Free Microwave Extraction Methods. Food Chem. 2010, 120, 308–312. [Google Scholar] [CrossRef]
- Santana-Méridas, O.; Polissiou, M.; Izquierdo-Melero, M.E.; Astraka, K.; Tarantilis, P.A.; Herraiz-Peñalver, D.; Sánchez-Vioque, R. Polyphenol Composition, Antioxidant and Bioplaguicide Activities of the Solid Residue from Hydrodistillation of Rosmarinus officinalis L. Ind. Crops Prod. 2014, 59, 125–134. [Google Scholar] [CrossRef]
- Almela, L.; Sánchez-Muñoz, B.; Fernández-López, J.A.; Roca, M.J.; Rabe, V. Liquid Chromatograpic-Mass Spectrometric Analysis of Phenolics and Free Radical Scavenging Activity of Rosemary Extract from Different Raw Material. J. Chromatogr. A 2006, 1120, 221–229. [Google Scholar] [CrossRef]
- Ortiz de Elguea-Culebras, G.; Bravo, E.M.; Sánchez-Vioque, R. Potential Sources and Methodologies for the Recovery of Phenolic Compounds from Distillation Residues of Mediterranean Aromatic Plants: An Approach to the Valuation of by-Products of the Essential Oil Market—A Review. Ind. Crops Prod. 2022, 175, 114261. [Google Scholar] [CrossRef]
- Sánchez-Vioque, R.; Polissiou, M.; Astraka, K.; de los Mozos-Pascual, M.; Tarantilis, P.; Herraiz-Peñalver, D.; Santana-Méridas, O. Polyphenol Composition and Antioxidant and Metal Chelating Activities of the Solid Residues from the Essential Oil Industry. Ind. Crops Prod. 2013, 49, 150–159. [Google Scholar] [CrossRef]
- Flamini, G.; Cioni, P.L.; Morelli, I.; Macchia, M.; Ceccarini, L. Main Agronomic-Productive Characteristics of Two Ecotypes of Rosmarinus officinalis L. and Chemical Composition of Their Essential Oils. J. Agric. Food Chem. 2002, 50, 3512–3517. [Google Scholar] [CrossRef] [PubMed]
- Ferrando-Beneyto, T.; Sánchez-Vioque, R.; Melero-Bravo, E.; Ortiz de Elguea-Culebras, G. Enhancing the Eco-Friendly Extraction of Plant Metabolites from the Distilled Biomass of Salvia Rosmarinus for Agricultural Applications. In Proceedings of the XV Congreso Internacional de Agricultura Ecológica, Cáceres, Spain, 24–27 April 2024. [Google Scholar] [CrossRef]
- Melero-Bravo, E.; Ortiz de Elguea-Culebras, G.; Sánchez-Vioque, R.; Fernández-Sestelo, M.; Herraiz-Peñalver, D. Variability of Essential Oil in Cultivated Populations of Rosmarinus officinalis L. in Spain. Euphytica 2022, 218, 65. [Google Scholar] [CrossRef]
- Ortiz de Elguea-Culebras, G.; Panamá-Tapia, L.A.; Melero-Bravo, E.; Cerro-Ibáñez, N.; Calvo-Martínez, A.; Sánchez-Vioque, R. Comparison of the Phenolic Composition and Biological Capacities of Wastewater from Origanum vulgare L., Rosmarinus officinalis L., Salvia lavandulifolia Vahl. and Thymus mastichina L. Resulting from Two Hydrodistillation Systems: Clevenger and MAE. J. Appl. Res. Med. Aromat. Plants 2023, 34, 100480. [Google Scholar] [CrossRef]
- Borrás-Linares, I.; Arráez-Román, D.; Herrero, M.; Ibáñez, E.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Comparison of Different Extraction Procedures for the Comprehensive Characterization of Bioactive Phenolic Compounds in Rosmarinus officinalis by Reversed-Phase High-Performance Liquid Chromatography with Diode Array Detection Coupled to Electrospray Time. J. Chromatogr. A 2011, 1218, 7682–7690. [Google Scholar] [CrossRef]
- Zheng, X.; Gong, X.; Li, Q.; Qu, H. Application of Multivariate Curve Resolution Method in the Quantitative Monitoring Transformation of Salvianolic Acid A Using Online UV Spectroscopy and Mass Spectroscopy. Ind. Eng. Chem. Res. 2012, 51, 3238–3245. [Google Scholar] [CrossRef]
- Ortiz de Elguea-Culebras, G.; Bourbon, A.I.; Costa, M.J.; Muñoz-Tebar, N.; Carmona, M.; Molina, A.; Sánchez-Vioque, R.; Berruga, M.I.; Vicente, A.A. Optimization of a Chitosan Solution as Potential Carrier for the Incorporation of Santolina chamaecyparissus L. Solid by-Product in an Edible Vegetal Coating on “Manchego” Cheese. Food Hydrocoll. 2019, 89, 272–282. [Google Scholar] [CrossRef]
- Ortiz de Elguea-Culebras, G.; Melero-bravo, E.; Jordán, M.J.; Calvo-Martinez, A.; Caceres-Cevallos, G.; Quílez-Simón, M.; Sánchez-Vioque, R. Selection of Populations of Salvia lavandulifolia Vahl. Based on Crop Adaptations, Phenolic Chemotypes and Biological Capacities of the Distillation by-Products. Ind. Crops Prod. 2024, 213, 118337. [Google Scholar] [CrossRef]
- UNE 84306:2015; Essential Oils. Essential Oil of Rosemary (Rosmarinus officinalis L.) of Spain. AENOR: Madrid, Spain, 2015.
- La Bella, S.; Virga, G.; Iacuzzi, N.; Licata, M.; Sabatino, L.; Consentino, B.B.; Leto, C.; Tuttolomondo, T. Effects of Irrigation, Peat-Alternative Substrate and Plant Habitus on the Morphological and Production Characteristics of Sicilian Rosemary (Rosmarinus officinalis L.) Biotypes Grown in Pot. Agriculture 2021, 11, 13. [Google Scholar] [CrossRef]
- Ortiz de Elguea-Culebras, G.; Melero-Bravo, E.; Plaza-Brazal, J.M.; Sánchez-Vioque, R. Adaptability of Clones of Populations of Rosemary (Rosmarinus officinalis L.) to the Edaphoclimatic Conditions of Cuenca: A Case Study of the Storm Filomena. In Proceedings of the I Spanish Botanical Congress, Toledo, Spain, 7–11 September 2021. [Google Scholar] [CrossRef]
- Sánchez-Vioque, R.; Herraiz-Peñalver, D.; Melero Bravo, E.; Ortiz de Elguea-Culebras, G.; Herrero, B.; Santiago, Y.; Bueno, M.; Pérez-Magarino, S.; del Carmen Asensio, S.; Manzanera, M.; et al. Variability of the Essential Oil Composition of Cultivated Populations of Salvia lavandulifolia Vahl. Crop Sci. 2022, 62, 744–752. [Google Scholar] [CrossRef]
- Ojeda-Sana, A.M.; van Baren, C.M.; Elechosa, M.A.; Juárez, M.A.; Moreno, S. New Insights into Antibacterial and Antioxidant Activities of Rosemary Essential Oils and Their Main Components. Food Control 2013, 31, 189–195. [Google Scholar] [CrossRef]
- Oreopoulou, A.; Papavassilopoulou, E.; Bardouki, H.; Vamvakias, M.; Bimpilas, A.; Oreopoulou, V. Antioxidant Recovery from Hydrodistillation Residues of Selected Lamiaceae Species by Alkaline Extraction. J. Appl. Res. Med. Aromat. Plants 2018, 8, 83–89. [Google Scholar] [CrossRef]
- Dorman, H.; Peltoketo, A.; Hiltunen, R.; Tikkanen, M.J. Characterisation of the Antioxidant Properties of de-Odourised Aqueous Extracts from Selected Lamiaceae Herbs. Food Chem. 2003, 83, 255–262. [Google Scholar] [CrossRef]
- Jordán, M.J.; Lax, V.; Rota, M.C.; Lorán, S.; Sotomayor, J.A. Relevance of Carnosic Acid, Carnosol, and Rosmarinic Acid Concentrations in the in Vitro Antioxidant and Antimicrobial Activities of Rosmarinus officinalis (L.) Methanolic Extracts. J. Agric. Food Chem. 2012, 60, 9603–9608. [Google Scholar] [CrossRef] [PubMed]
- Appiah, K.S.; Omari, R.A.; Onwona-Agyeman, S.; Amoatey, C.A.; Ofosu-Anim, J.; Smaoui, A.; Arfa, A.B.; Suzuki, Y.; Oikawa, Y.; Okazaki, S.; et al. Seasonal Changes in the Plant Growth-Inhibitory Effects of Rosemary Leaves on Lettuce Seedlings. Plants 2022, 11, 673. [Google Scholar] [CrossRef]
Almorox | Lorca | Moratalla | Lliria | Pina de Ebro | S. rosmarinus | ||
---|---|---|---|---|---|---|---|
Adaptability (%) | 2018 | 46.67 ± 47.3 (10.00–100.00) | 23.33 ± 40.4 (0.00–70.00) | 93.33 ± 5.8 (90.00–100.00) *** | 46.67 ± 20.8 (30.00–70.00) | 53.33 ± 23.1 (40.00–80.00) | 52.67 ± 35.3 (0.00–100.00) |
2019 | 63.33 ± 35.1 (30.00–100.00) | 50.00 ± 10.0 (40.00–60.00) ** | 90.00 ± 17.3 (70.00–100.00) ** | 83.33 ± 15.3 (70.00–100.00) ** | 63.33 ± 25.2 (40.00–90.00) | 70.00 ± 24.2 (30.00–100.00) | |
2020 | 100.00 ± 0.0 (100.00–100.00) *** | 100.00 ± 0.0 (100.00–100.00) *** | 93.33 ± 11.5 (80.00–100.00) ** | 90.00 ± 17.3 (70.00–100.00) ** | 93.33 ± 5.8 (90.00–100.00) *** | 95.33 ± 9.2 (70.00–100.00) *** | |
Fresh Plant (kg/plant) 1 | 0.55 ± 0.4 b (0.27–1.04) | 0.29 ± 0.2 b (0.08–0.46) | 0.46 ± 0.2 b (0.42–0.48) | 0.66 ± 0.2 b (0.52–0.78) * | 1.15 ± 0.5 a (0.83–1.37) | 0.61 ± 0.4 (0.08–1.37) | |
Moisture (%) | 60.20 ± 13.0 (58.09–61.50) ** | 60.29 ± 5.1 (56.84–66.87) *** | 60.21 ± 4.0 (58.96–62.05) *** | 61.90 ± 3.0 (60.26–63.21) *** | 61.56 ± 3.2 (60.90–61.94) *** | 60.72 ± 7.0 (56.84–66.87) ** | |
Dry Plant (kg/plant) 1 | 0.22 ± 0.2 b (0.12–0.41) | 0.13 ± 0.1 b (0.03–0.19) | 0.18 ± 0.1 b (0.16–0.20) | 0.25 ± 0.1 b (0.19–0.30) * | 0.44 ± 0.2 a (0.32–0.52) | 0.24 ± 0.2 (0.03–0.52) | |
Essential Oil (EO) 2 | 4.26 ± 0.4 ab (4.03–4.55) *** | 3.86 ± 0.5 b (3.65–4.03) ** | 3.16 ± 0.8 c (2.73–3.46) ** | 3.63 ± 0.6 bc (3.13–4.28) ** | 4.71 ± 0.6 a (4.36–4.96) ** | 3.95 ± 0.7 (2.73–4.96) ** | |
Ethanolic Extract (EE) 3 | 25.73 ± 1.7 ab (25.30–26.29) *** | 23.56 ± 2.9 bc (20.16–25.89) ** | 23.07 ± 0.9 c (22.69–23.69) *** | 25.45 ± 2.2 b (23.66–27.39) *** | 27.80 ± 0.8 a (27.58–28.06) *** | 25.06 ± 2.5 (20.16–28.06) *** | |
Total Phenol Content (TPC) 4 | 9.31 ± 1.5 (8.60–10.69) ** | 9.68 ± 2.9 (7.74–12.58) * | 8.43 ± 1.5 (7.47–9.37) ** | 10.33 ± 2.3 (9.79–11.52) * | 10.40 ± 2.3 (9.24–11.26) * | 9.58 ± 2.2 (7.47–11.52) * |
Compound | Almorox | Lorca | Moratalla | Lliria | Pina de Ebro | S. rosmarinus |
---|---|---|---|---|---|---|
α-pinene | 9.30 ± 0.7 d (8.96–9.49) *** | 11.58 ± 1.2 c (11.01–12.09) *** | 12.11 ± 0.6 c (11.90–12.36) *** | 20.33 ± 1.9 a (19.22–21.52) *** | 14.55 ± 0.9 b (13.74–14.98) *** | 13.08 ± 3.7 (8.96–21.52) * |
Camphene | 5.01 ± 0.3 d (4.90–5.03) *** | 9.91 ± 1.2 a (9.31–10.80) ** | 7.72 ± 0.4 b (7.60–7.82) *** | 8.22 ± 0.4 b (7.94–8.40) *** | 5.92 ± 0.1 c (5.91–5.93) *** | 7.31 ± 1.9 (4.90–10.80) * |
β-pinene + Myrcene 1 | 37.93 ± 1.4 b (37.25–38.91) *** | 7.57 ± 0.5 d (7.15–8.08) *** | 7.01 ± 0.6 d (6.68–7.46) *** | 25.16 ± 3.7 c (22.41–26.60) ** | 43.46 ± 1.0 a (43.07–43.75) *** | 24.12 ± 15.7 (6.68–43.75) |
Limonene | 3.47 ± 0.2 b (3.42–3.52) *** | 3.30 ± 0.2 bc (3.14–3.42) *** | 3.09 ± 0.2 c (3.00–3.19) *** | 3.39 ± 0.4 b (3.04–3.59) ** | 3.82 ± 0.1 a (3.75–3.90) *** | 3.42 ± 0.3 (3.00–3.90) *** |
1,8-cineole | 13.14 ± 1.0 c (12.25–13.91) *** | 22.13 ± 2.8 a (20.84–24.08) ** | 18.70 ± 0.8 b (18.39–18.90) *** | 7.22 ± 0.6 d (6.96–7.95) *** | 4.65 ± 0.3 e (4.35–4.87) *** | 13.67 ± 6.8 (4.35–24.05) |
γ-terpinene | 1.83 ± 0.1 a (1.75–1.88) *** | 1.41 ± 0.2 b (1.35–1.48) ** | 0.93 ± 0.1 d (0.93–0.94) *** | 1.11 ± 0.2 c (0.97–1.17) ** | 1.04 ± 0.1 cd (0.99–1.09) *** | 1.29 ± 0.4 (0.93–1.88) * |
p-cymene | 0.69 ± 0.2 a (0.62–0.77) * | 0.69 ± 0.2 a (0.54–0.77) * | 0.32 ± 0.1 b (0.27–0.39) * | 0.57 ± 0.2 a (0.49–0.70) | 0.75 ± 0.1 a (0.72–0.80) ** | 0.61 ± 0.2 (0.27–0.80) |
Camphor | 9.93 ± 1.7 d (9.21–10.72) ** | 20.17 ± 3.4 b (19.45–21.74) ** | 29.82 ± 1.8 a (28.37–30.80) *** | 17.24 ± 2.9 c (16.08–20.49) ** | 12.44 ± 0.5 d (12.35–12.61) *** | 17.85 ± 7.5 (9.21–30.80) |
Linalool | 2.67 ± 0.4 a (2.33–3.00) ** | 1.07 ± 0.2 c (1.00–1.12) ** | 1.59 ± 0.1 b (1.53–1.63) *** | 0.79 ± 0.1 d (0.69–0.87) ** | 1.53 ± 0.1 b (1.48–1.57) *** | 1.58 ± 0.7 (0.69–3.00) |
Bornyl acetate | 0.64 ± 0.1 d (0.57–0.67) *** | 3.58 ± 0.7 b (3.29–4.17) ** | 2.45 ± 0.2 c (2.30–2.55) *** | 4.63 ± 0.8 a (3.86–5.10) ** | 0.65 ± 0.1 d (0.62–0.67) *** | 2.25 ± 1.6 (0.57–5.10) |
Borneol | 0.80 ± 0.7 b (0.59–1.21) | 2.47 ± 0.3 a (2.29–2.66) ** | 2.13 ± 0.1 a (2.07–2.22) *** | 0.72 ± 0.1 b (0.69–0.79) ** | 0.40 ± 0.0 b (0.39–0.41) *** | 1.35 ± 0.9 (0.39–2.66) |
Terpinen 4-ol | 1.36 ± 0.1 a (1.28–1.44) *** | 1.43 ± 0.3 a (1.27–1.54) ** | 0.67 ± 0.0 b (0.65–0.68) *** | 0.64 ± 0.1 b (0.60–0.68) *** | 0.81 ± 0.0 b (0.79–0.83) *** | 1.01 ± 0.4 (0.60–1.54) |
α-terpineol | 1.63 ± 0.1 b (1.58–1.66) *** | 2.03 ± 0.2 a (1.88–2.15) *** | 2.08 ± 0.1 a (2.07–2.10) ** | 1.28 ± 0.1 c (1.25–1.31) *** | 1.00 ± 0.1 d (0.97–1.03) *** | 1.63 ± 0.4 (0.97–2.15) * |
Verbenone | 3.13 ± 0.5 a (2.82–3.32) ** | 2.98 ± 1.0 a (2.39–3.36) | 1.73 ± 0.2 b (1.62–1.93) ** | 0.08 ± 0.0 c (0.06–0.10) | 2.21 ± 0.5 b (2.00–2.38) * | 2.17 ± 1.2 (0.06–3.36) |
t-caryophyllene | 0.97 ± 0.4 b (0.77–1.29) | 0.36 ± 0.2 c (0.31–0.44) | 1.44 ± 0.2 a (1.33–1.57) *** | 0.96 ± 0.2 b (0.65–1.07) * | 0.92 ± 0.2 b (0.89–0.96) ** | 0.92 ± 0.4 (0.31–1.57) |
TOTAL | 92.49 ± 0.6 ab (92.22–92.94) | 90.68 ± 0.6 c (90.65–90.73) | 91.78 ± 1.1 bc (91.11–92.72) | 92.33 ± 3.1 bc (91.15–93.31) | 94.16 ± 1.0 a (93.43–94.64) | 92.26 ± 1.8 (90.65–94.64) |
Compound | Almorox | Lorca | Moratalla | Lliria | Pina de Ebro | S. rosmarinus | Ref. |
---|---|---|---|---|---|---|---|
Gallocatechin | 1.66 ± 0.5 a (1.41–1.95) * | 0.53 ± 0.1 c (0.49–0.56) ** | 0.63 ± 0.2 c (0.46–0.80) | 1.11 ± 0.4 b (0.81–1.36) | 1.80 ± 0.5 a (1.57–1.95) * | 1.14 ± 0.6 (0.46–1.95) | [26] |
6-hydroxyluteolin 7-glucoside | 7.68 ± 1.4 a (7.33–8.31) *** | 1.21 ± 0.4 b (1.12–1.37) | 1.90 ± 0.3 b (1.64–2.18) ** | 7.22 ± 2.2 a (6.22–8.76) * | 6.32 ± 2.2 a (4.10–8.31) | 4.71 ± 3.1 (1.12–8.76) | [19] |
Hesperidin | 1.80 ± 0.6 a (1.70–1.95) | 1.15 ± 0.4 b (0.76–1.56) | 1.13 ± 0.3 b (0.91–1.32) * | 1.54 ± 0.2 ab (1.48–1.61) ** | 1.76 ± 0.5 a (1.50–1.95) * | 1.47 ± 0.5 (0.76–1.95) | Stnd. |
Homoplantaginin | 2.11 ± 1.3 (1.55–2.96) | 1.62 ± 1.1 (1.25–2.31) | 1.81 ± 0.7 (1.25–2.38) | 1.25 ± 0.9 (1.15–1.55) | 1.89 ± 0.9 (1.69–2.08) | 1.76 ± 1.0 (1.15–2.96) | [19] |
Rosmarinic acid | 5.33 ± 2.1 (4.01–6.48) | 6.28 ± 3.1 (3.16–8.03) | 5.54 ± 2.0 (4.28–8.05) | 6.42 ± 2.7 (5.09–8.18) | 6.18 ± 1.8 (5.33–6.94) * | 5.92 ± 2.3 (3.16–8.18) | Stnd. |
Salvianolic acid A | 2.02 ± 0.8 (1.56–2.37) | 3.28 ± 1.4 (1.89–4.40) | 3.18 ± 1.2 (2.15–4.04) | 2.86 ± 1.6 (2.64–3.07) | 2.78 ± 1.4 (2.14–3.55) | 2.82 ± 1.3 (1.56–4.40) | [27] |
Cirsimaritin | 1.82 ± 0.2 bc (1.72–1.96) ** | 2.15 ± 0.3 a (1.96–2.38) ** | 1.45 ± 0.1 d (1.37–1.50) *** | 2.07 ± 0.2 ab (1.88–2.17) *** | 1.81 ± 0.2 a (1.72–1.88) *** | 1.85 ± 0.3 (1.37–2.38) ** | [19] |
Unidentified flavanone | 3.25 ± 0.5 a (2.83–3.53) ** | 1.91 ± 0.2 b (1.85–1.96) ** | 1.17 ± 0.2 c (1.09–1.28) ** | 1.93 ± 0.4 b (1.87–1.99) ** | 3.43 ± 0.9 a (3.22–4.20) * | 2.34 ± 1.0 (1.09–4.20) | - |
Rosmanol | 2.75 ± 1.7 (2.28–3.63) | 3.35 ± 2.6 (1.76–6.09) | 2.40 ± 0.6 (1.89–2.71) * | 4.55 ± 6.5 (2.04–7.60) | 2.31 ± 0.8 (2.16–2.55) * | 3.01 ± 3.0 (1.76–7.60) | Stnd. |
Epirosmanol | 2.04 ± 1.3 (1.41–3.25) | 1.60 ± 0.9 (1.05–2.58) | 1.49 ± 0.5 (1.20–1.81) | 2.80 ± 1.5 (2.00–3.65) | 2.21 ± 1.3 (1.22–3.75) | 1.98 ± 1.2 (1.05–3.75) | [19] |
Genkwanin | 1.56 ± 0.3 bc (1.28–1.76) * | 2.73 ± 0.4 a (2.60–2.87) ** | 1.16 ± 0.1 c (1.10–1.26) ** | 1.86 ± 0.4 b (1.65–1.94) * | 1.15 ± 0.5 c (0.87–1.34) | 1.69 ± 0.7 (0.87–2.87) | Stnd. |
Methoxhycarnosol | 4.90 ± 1.7 ab (3.60–6.26) | 1.18 ± 0.4 c (0.87–1.51) | 0.68 ± 0.2 c (0.58–0.78) * | 6.21 ± 1.8 a (4.96–6.96) * | 4.23 ± 1.5 b (2.98–4.85) | 3.28 ± 2.5 (0.58–6.98) | [26] |
Salvigenin | 1.31 ± 0.3 a (1.03–1.49) * | 1.26 ± 0.3 a (1.10–1.55) * | 0.71 ± 0.1 b (0.66–0.76) ** | 1.20 ± 0.3 a (1.05–1.36) * | 1.23 ± 0.2 a (1.03–1.42) ** | 1.14 ± 0.3 (0.66–1.55) * | Stnd. |
Carnosol | 46.83 ± 11.6 (41.44–52.51) * | 52.90 ± 9.8 (45.60–58.93) ** | 47.39 ± 9.8 (37.46–54.31) * | 47.18 ± 14.6 (41.53–59.21) | 53.90 ± 14.5 (46.53–59.24) * | 49.70 ± 12.0 (37.46–59.24) * | Stnd. |
Rosmadial | 8.09 ± 5.0 (6.03–10.84) | 5.81 ± 2.7 (3.66–8.21) | 4.76 ± 1.4 (3.99–5.48) * | 4.76 ± 3.7 (2.62–6.03) | 5.33 ± 3.9 (3.93–7.40) | 5.81 ± 3.7 (2.62–10.84) | [19] |
4′-Methoxytectochrysin | 1.41 ± 0.7 ab (1.09–1.93) | 1.00 ± 0.6 bc (0.77–1.18) | 0.68 ± 0.3 c (0.66–0.70) | 1.76 ± 0.5 a (1.26–2.07) | 1.21 ± 0.6 abc (0.94–1.56) | 1.18 ± 0.6 (0.66–2.07) | [19] |
Carnosol isomer | 1.26 ± 1.0 (0.85–1.91) | 0.98 ± 0.6 (0.71–1.25) | 0.73 ± 0.2 (0.56–0.83) | 1.62 ± 2.8 (0.38–2.72) | 1.45 ± 0.8 (1.01–1.95) | 1.18 ± 1.3 (0.38–2.72) | Stnd. |
Rosmaridiphenol | 4.69 ± 2.9 (4.02–5.91) | 5.11 ± 1.5 (4.61–6.11) * | 6.07 ± 1.2 (5.03–6.89) ** | 4.91 ± 2.4 (4.14–7.14) | 6.91 ± 3.2 (5.91–8.11) | 5.55 ± 2.4 (4.02–8.11) | [7] |
Carnosic acid | 64.00 ± 20.7 b (49.61–78.26) | 94.52 ± 47.4 ab (35.99–127.33) | 85.80 ± 18.0 ab (78.16–92.14) * | 75.18 ± 31.1 ab (59.10–96.50) | 105.69 ± 24.0 a (78.26–122.76) * | 85.20 ± 32.6 (35.99–127.33) | Stnd. |
Methyl carnosate | 7.55 ± 2.8 bc (6.64–8.59) | 7.69 ± 2.4 bc (7.52–8.01) | 9.86 ± 1.9 b (8.49–10.97) ** | 14.64 ± 1.5 a (14.32–15.78) ** | 6.29 ± 3.0 c (4.72–8.59) | 8.97 ± 3.6 (4.72–15.78) | [7] |
NI | 8.78 ± 1.3 a (8.16–9.99) ** | 3.88 ± 2.8 c (2.13–7.13) | 4.22 ± 0.8 c (3.88–4.49) ** | 4.97 ± 0.7 bc (4.83–5.34) ** | 6.82 ± 2.8 ab (4.89–9.99) | 5.76 ± 2.7 (2.13–9.99) | - |
Salviol | 7.23 ± 0.8 a (6.47–8.00) ** | 3.46 ± 1.3 c (2.75–4.22) | 7.17 ± 1.3 a (6.57–7.98) ** | 5.26 ± 0.6 b (4.68–5.72) ** | 5.56 ± 2.1 b (4.13–8.00) | 5.77 ± 1.9 (2.75–8.00) | [26] |
TOTAL | 188.08 ± 20.5 b (176.38–204.96) ** | 203.60 ± 40.3 ab (156.82–230.47) ** | 189.92 ± 18.0 b (186.58–194.29) *** | 201.31 ± 35.4 ab (187.36–234.87) ** | 230.21 ± 32.0 a (204.96–247.56) *** | 206.78 ± 36.3 (156.82–247.56) ** |
Almorox | Lorca | Moratalla | Lliria | Pina de Ebro | S. rosmarinus | ||
---|---|---|---|---|---|---|---|
Antifungal Capacity 1 | A. flavus (EC50) 1 | 25.91 ± 9.9 (14.30–35.33) | 40.03 ± 39.3 (24.52–69.91) | 29.46 ± 9.2 (21.78–35.77) * | 27.78 ± 11.7 (23.44–32.20) | 23.82 ± 8.9 (19.45–26.39) | 29.59 ± 20.3 (14.30–69.91) |
A. flavus (EC90) 1 | 146.14 ± 32.0 (139.18–153.98) * | 293.36 ± 387.4 (124.11–570.88) | 157.61 ± 54.4 (148.44–165.95) | 151.28 ± 56.2 (108.63–187.67) | 103.01 ± 28.8 (79.67–120.13) * | 172.50 ± 189.3 (79.67–570.88) | |
A. flavus (MIC) 1 | 232.30 ± 68.1 (219.96–251.77) * | 489.14 ± 691.8 (184.85–974.66) | 245.54 ± 106.5 (236.15–259.29) | 234.49 ± 91.9 (164.70–309.42) | 149.35 ± 40.8 (113.40–176.84) * | 274.23 ± 338.3 (113.40–974.66) | |
Antioxidant capacity | DPPH (IC50) 2 | 25.75 ± 6.1 (22.51–28.66) * | 24.49 ± 14.0 (16.66–38.14) | 26.12 ± 8.5 (22.95–29.45) | 23.29 ± 5.4 (20.46–26.85) * | 17.73 ± 3.4 (16.22–18.51) * | 23.59 ± 8.8 (16.22–38.14) |
FRAP (AU0.5) 3 | 60.59 ± 15.8 b (58.54–63.77) * | 52.13 ± 18.7 ab (42.25–70.98) | 54.59 ± 9.7 ab (53.03–55.93) ** | 51.22 ± 13.3 ab (41.78–58.51) * | 42.20 ± 8.1 a (37.78–47.15) ** | 52.37 ± 14.6 (37.78–70.98) * | |
Chelating capacity | Fe2+ CA (IC50) 2 | 282.65 ± 62.7 ab (257.07–300.96) * | 276.31 ± 47.0 ab (252.05–311.67) ** | 366.36 ± 151.3 b (328.97–388.74) | 252.01 ± 57.9 a (229.66–294.55) * | 220.62 ± 51.0 a (149.72–249.27) * | 282.12 ± 96.0 (149.72–388.74) |
Cu2+ CA (IC50) 2 | 339.85 ± 72.6 ab (313.03–371.60) * | 335.79 ± 104.8 ab (258.79–413.65) | 355.84 ± 59.3 b (329.14–405.12) ** | 339.03 ± 50.7 ab (324.39–358.50) ** | 267.04 ± 55.6 a (260.35–271.46) * | 327.97 ± 76.6 (258.79–413.65) * | |
Biostimulant effects | Ls Germ. 24 h 4 | 94.17 ± 6.2 (92.50–98.13) *** | 92.29 ± 6.8 (89.38–93.75) *** | 95.21 ± 4.1 (93.75–96.25) *** | 98.06 ± 2.1 (96.25–100.00) *** | 95.68 ± 4.8 (94.38–98.33) *** | 94.91 ± 5.3 (89.38–99.38) *** |
Ls Germ. 48 h 4 | 98.96 ± 2.9 (96.88–100.00) *** | 98.75 ± 2.9 (96.25–100.00) *** | 99.17 ± 1.2 (98.75–99.38) *** | 99.44 ± 1.1 (98.75–100.00) *** | 99.55 ± 1.5 (98.75–100.00) *** | 99.15 ± 2.1 (96.25–100.00) *** | |
Ls Growth Roots 5 | 4.22 ± 0.6 (3.97–4.43) ** | 4.54 ± 0.7 (4.14–4.97) ** | 3.91 ± 0.5 (3.57–4.15) ** | 4.54 ± 0.5 (4.04–4.80) *** | 4.21 ± 0.4 (3.90–4.45) *** | 4.27 ± 0.6 (3.57–4.97) ** | |
Lp Germ. 72 h 4 | 81.88 ± 6.5 ab (76.88–85.00) *** | 80.91 ± 5.0 ab (77.50–85.00) *** | 83.54 ± 10.2 a (78.13–93.75) ** | 74.44 ± 8.5 b (67.50–76.67) ** | 75.00 ± 5.8 ab (72.50–79.38) *** | 79.55 ± 8.0 (67.50–93.75) *** | |
Lp Germ. 144 h 4 | 94.79 ± 2.7 (93.13–95.63) *** | 94.09 ± 3.9 (91.88–96.88) *** | 94.38 ± 4.9 (89.38–98.13) *** | 93.61 ± 2.8 (93.33–93.75) *** | 94.55 ± 4.4 (92.50–96.67) *** | 94.29 ± 3.7 (89.38–98.13) *** | |
Lp Germ. 192 h 4 | 96.88 ± 2.7 (95.63–98.75) *** | 97.04 ± 1.0 (95.83–97.50) *** | 94.38 ± 4.9 (92.50–99.38) *** | 96.67 ± 2.5 (95.00–97.50) *** | 96.14 ± 3.0 (94.38–97.50) *** | 96.61 ± 2.8 (92.50–99.38) *** | |
Lp Germ. 240 h 4 | 97.08 ± 2.7 (96.5–98.75) *** | 97.50 ± 1.6 (96.25–98.75) *** | 94.38 ± 4.9 (93.75–99.38) *** | 97.22 ± 2.3 (96.67–98.13) *** | 96.82 ± 2.5 (95.63–98.33) *** | 97.14 ± 2.4 (93.75–99.38) *** | |
Lp Growth Roots 5 | 6.52 ± 0.8 (6.00–7.02) ** | 6.40 ± 0.6 (6.08–6.81) *** | 6.64 ± 0.6 (6.39–6.86) *** | 6.33 ± 0.3 (6.18–6.48) *** | 6.41 ± 0.5 (5.96–6.68) *** | 6.47 ± 0.6 (5.96–7.02) *** | |
Lp Growth Leaves 5 | 4.73 ± 0.3 (4.57–4.86) *** | 4.54 ± 0.2 (4.51–4.58) *** | 4.61 ± 0.3 (4.60–4.63) *** | 4.59 ± 0.2 (4.53–4.63) *** | 4.60 ± 0.2 (4.39–4.77) *** | 4.62 ± 0.2 (4.39–4.86) *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortiz de Elguea-Culebras, G.; Melero-Bravo, E.; Ferrando-Beneyto, T.; Jordán, M.J.; Cáceres-Cevallos, G.; Sánchez-Vioque, R. Comprehensive Study on the Potential of Domesticated Clones of Rosemary (Salvia rosmarinus Spenn.): Implications for Large-Scale Production and Waste Recovery in the Development of Plant-Based Agrochemicals. Agriculture 2024, 14, 1678. https://doi.org/10.3390/agriculture14101678
Ortiz de Elguea-Culebras G, Melero-Bravo E, Ferrando-Beneyto T, Jordán MJ, Cáceres-Cevallos G, Sánchez-Vioque R. Comprehensive Study on the Potential of Domesticated Clones of Rosemary (Salvia rosmarinus Spenn.): Implications for Large-Scale Production and Waste Recovery in the Development of Plant-Based Agrochemicals. Agriculture. 2024; 14(10):1678. https://doi.org/10.3390/agriculture14101678
Chicago/Turabian StyleOrtiz de Elguea-Culebras, Gonzalo, Enrique Melero-Bravo, Tamara Ferrando-Beneyto, María José Jordán, Gustavo Cáceres-Cevallos, and Raúl Sánchez-Vioque. 2024. "Comprehensive Study on the Potential of Domesticated Clones of Rosemary (Salvia rosmarinus Spenn.): Implications for Large-Scale Production and Waste Recovery in the Development of Plant-Based Agrochemicals" Agriculture 14, no. 10: 1678. https://doi.org/10.3390/agriculture14101678
APA StyleOrtiz de Elguea-Culebras, G., Melero-Bravo, E., Ferrando-Beneyto, T., Jordán, M. J., Cáceres-Cevallos, G., & Sánchez-Vioque, R. (2024). Comprehensive Study on the Potential of Domesticated Clones of Rosemary (Salvia rosmarinus Spenn.): Implications for Large-Scale Production and Waste Recovery in the Development of Plant-Based Agrochemicals. Agriculture, 14(10), 1678. https://doi.org/10.3390/agriculture14101678