Multivariate Analysis of Grain Yield and Main Agronomic Traits in Different Maize Hybrids Grown in Mountainous Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Site
2.3. Experimental Design
2.4. Determination of Agronomic and Yield Traits
2.5. Data Analysis
3. Results
3.1. Descriptive Statistical Analysis
3.2. Correlation Analysis
3.3. Path Coefficient Analysis
3.4. Grey Relational Analysis
3.5. Principal Component Analysis
3.6. Cluster Analysis
4. Discussion
4.1. Influence of Different Agronomic Traits on Maize Yield
4.2. Characteristics of High-Yielding Maize Varieties in Mountainous Areas
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shiferaw, B.; Prasanna, B.M.; Hellin, J.; Bänziger, M. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur. 2011, 3, 307–327. [Google Scholar] [CrossRef]
- Yaheliuk, S.; Fomych, M.; Rechun, O. Global market trends of grain and industrial crops. Commod. Bull. 2024, 1, 134–145. [Google Scholar] [CrossRef]
- Zhao, Y.; Su, C. Mapping quantitative trait loci for yield-related traits and predicting candidate genes for grain weight in maize. Sci. Rep. 2019, 9, 16112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Lu, Y.; Ma, Y.; Fu, J.; Wang, G. Genetic and molecular control of grain yield in maize. Mol. Breed. 2021, 41, 18. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.S.; Ullah, H.; Shahwar, D.; Fahad, S.; Khan, N.; Yasir, M.; Wahid, F.; Adnan, M.; Noor, M. Heritability and correlation analysis of morphological and yield traits in Maize. J. Plant Biol. Crop Res. 2018, 2, 1–8. [Google Scholar] [CrossRef]
- Yahaya, M.; Bello, I.; Unguwanrimi, A. Correlation and path-coefficient analysis for grain yield and agronomic traits of maize (Zea mays L.). Sci. World J. 2021, 16, 10–13. [Google Scholar]
- Roy, P.R.; Haque, M.A.; Ferdausi, A.; Al Bari, M.A. Genetic variability, correlation and path co-efficients analyses of selected maize (Zea mays L.) genotypes. Fundam. Appl. Agric. 2018, 3, 382–389. [Google Scholar] [CrossRef]
- Wang, J.-H.; Yan, J.-B.; Wang, R.G. Comprehensive evaluation of super sweet maize cross combinations based on principal component analysis, cluster analysis and gray correlation analysis. J. South. Agric. 2020, 51, 1108–1114. [Google Scholar] [CrossRef]
- Singh, D.; Swapnil, N.K.; Mohanty, T.A.; Kumar, A.; Kumar, R.; Singh, M.K. Multivariate analysis for yield and its component traits in Quality Protein Maize (QPM). Int. J. Adv. Biochem. Res. 2024, 8, 736–741. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, X. Spatial patterns of yield-based cropping suitability and its driving factors in the three main maize-growing regions in China. Int. J. Biometeorol. 2019, 63, 1659–1668. [Google Scholar] [CrossRef]
- Chen, J.; Ren, B.; Zhao, B.; Liu, P.; Zhang, J. The environment, especially the minimum temperature, affects summer maize grain yield by regulating ear differentiation and grain development. J. Integr. Agric. 2024, 23, 2227–2241. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Ye, W.; Bornman, J.F.; Yan, X. Effects of climate change on maize production, and potential adaptation measures: A case study in Jilin Province, China. Clim. Res. 2011, 46, 223–242. [Google Scholar] [CrossRef]
- GB/T 19557.24; Guidelines for Testing the Distinctness, Uniformity, and Stability of New Varieties Plants: Corn. Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2018.
- Deng, J.-L. Control problems of grey systems. Syst. Control Lett. 1982, 1, 288–294. [Google Scholar] [CrossRef]
- Abadassi, J. Maize agronomic traits needed in tropical zone. Int. J. Sci. Environ. Technol. 2015, 4, 371–392. [Google Scholar]
- Setimela, P.S.; Gasura, E.; Tarekegne, A.T. Evaluation of grain yield and related agronomic traits of quality protein maize hybrids in Southern Africa. Euphytica 2017, 213, 289. [Google Scholar] [CrossRef]
- Naggar, A.A.; Shafik, M.; Musa, R.Y.; Younis, A.S.; Anany, A.H. Genetic variability of maize hybrids and populations and interrelationships among grain yield and its related traits under drought and low N using multivariate analysis. Asian J. Biochem. Genet. Mol. Biol. 2020, 4, 26–44. [Google Scholar] [CrossRef]
- Shahrokhi, M.; Khavarikhorasani, S. Study of morphological traits, yield and yield components on 28 commercial corn hybrids (Zea mays L.). Int. J. Agron. Plant Prod. 2013, 4, 2649–2655. [Google Scholar]
- Rajasekar, A.; Kumar, A.; Narayan, A.; Niranjana; Singh, S.K. Combining ability studies for grain yield and its component traits in sweet corn (Zea mays var. saccharata). J. Adv. Biol. Biotechnol. 2024, 27, 1070–1082. [Google Scholar] [CrossRef]
- Prakash, R.; Ravikesavan, R.; Vinodhana, N.K.; Senthil, A. Genetic variability, character association and path analysis for yield and yield component traits in maize (Zea mays L.). Electron. J. Plant Breed. 2019, 10, 518–524. [Google Scholar] [CrossRef]
- Ma, X.; Wang, P.; Wu, X.; Jin, X.; Wang, H.; Chen, S. Grey correlation degree and path analysis of agronomic traits and yield per plant of maize. J. Henan Inst. Sci. Technol. (Nat. Sci. Ed.) 2023, 51, 7–13. [Google Scholar]
- Ghimire, B.; Timsina, D. Analysis of yield and yield attributing traits of maize genotypes in Chitwan, Nepal. World J. Agric. Res. 2015, 3, 153–162. [Google Scholar] [CrossRef]
- Ahmed, N.; Chowdhury, A.K.; Uddin, M.S.; Rashad, M.M.I. Genetic variability, correlation and path analysis of exotic and local hybrid maize (Zea mays L.) genotypes. Asian J. Med. Biol. Res. 2020, 6, 8–15. [Google Scholar] [CrossRef]
- Anderson, J.T.; Wagner, M.R.; Rushworth, C.A.; Prasad, K.V.; Mitchell-Olds, T. The evolution of quantitative traits in complex environments. Heredity 2014, 112, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Yue, H.; Gauch, H.G.; Wei, J.; Xie, J.; Chen, S.; Peng, H.; Bu, J.; Jiang, X. Genotype by environment interaction analysis for grain yield and yield components of summer maize hybrids across the Huanghuaihai region in China. Agriculture 2022, 12, 602. [Google Scholar] [CrossRef]
- Pepin, N.C.; Arnone, E.; Gobiet, A.; Haslinger, K.; Kotlarski, S.; Notarnicola, C.; Palazzi, E.; Seibert, P.; Serafin, S.; Schöner, W.; et al. Climate changes and their elevational patterns in the mountains of the world. Rev. Geophys. 2022, 60, e2020RG000730. [Google Scholar] [CrossRef]
- Hewitt, K.; Mehta, M. Rethinking risk and disasters in mountain areas. J. Alp. Res. Rev. Geogr. Alp. 2012, 100-1. [Google Scholar] [CrossRef]
- Wang, Y.H.; Li, X.B.; Xin, L.J. Characteristics of cropland fragmentation and its impact on agricultural production costs in mountainous areas. J. Nat. Resour. 2019, 34, 2658–2672. [Google Scholar] [CrossRef]
- Zhu, X.-G.; Long, S.P.; Ort, D.R. Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant Biol. 2010, 61, 235–261. [Google Scholar] [CrossRef]
- Givnish, T.J. Adaptation to sun and shade: A whole-plant perspective. Funct. Plant Biol. 1988, 15, 63–92. [Google Scholar] [CrossRef]
Agronomic Traits | Minimum | Maximum | Mean | SD | KURT | SKEW | CV % |
---|---|---|---|---|---|---|---|
GP (day) | 132.22 | 143.78 | 136.35 | 2.39 | 0.19 | 0.45 | 1.75 |
PH (cm) | 254.07 | 326.31 | 292.55 | 15.07 | −0.02 | −0.25 | 5.15 |
EH (cm) | 108.96 | 151.32 | 126.08 | 9.24 | 0.30 | 0.61 | 7.33 |
EL (cm) | 17.57 | 21.18 | 19.21 | 0.78 | −0.20 | 0.25 | 4.04 |
EG (cm) | 4.92 | 6.78 | 5.65 | 0.54 | −0.98 | 0.58 | 9.61 |
BTL (cm) | 0.35 | 1.88 | 0.87 | 0.33 | 0.52 | 0.65 | 38.19 |
KRE | 14.64 | 19.36 | 16.80 | 1.15 | −0.42 | 0.17 | 6.84 |
KN | 32.39 | 39.87 | 35.89 | 1.67 | −0.25 | 0.29 | 4.66 |
KW (g) | 29.79 | 40.69 | 33.69 | 2.51 | 0.41 | 0.70 | 7.45 |
SP (%) | 79.68 | 86.13 | 82.59 | 1.51 | −0.43 | −0.09 | 1.83 |
YP (g) | 161.17 | 211.13 | 185.56 | 11.33 | −0.48 | 0.02 | 6.11 |
Factor | Pearson Correlation | Direct Path Coefficient | Indirect Path Coefficient | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GP-YP | PH-YP | EH-YP | EL-YP | EG-YP | BTL-YP | KRE-YP | KRN-YP | KW-YP | SP-YP | Total | |||
GP | 0.468 ** | 0.084 | −0.013 | 0.025 | 0.007 | −0.086 | −0.008 | −0.107 | 0.093 | 0.505 | −0.044 | 0.372 | |
PH | 0.092 | −0.064 | 0.017 | 0.072 | 0.010 | 0.064 | −0.048 | −0.165 | 0.070 | 0.249 | 0.003 | 0.272 | |
EH | 0.043 | 0.092 | 0.023 | −0.050 | 0.009 | −0.041 | −0.047 | −0.156 | 0.128 | 0.080 | −0.008 | −0.062 | |
EL | 0.239 | 0.025 | 0.022 | −0.024 | 0.033 | −0.051 | 0.022 | −0.364 | 0.306 | 0.252 | 0.000 | 0.196 | |
EG | 0.090 | 0.191 | −0.038 | 0.022 | −0.020 | −0.007 | −0.038 | 0.185 | −0.029 | −0.171 | 0.010 | −0.086 | |
BTL | −0.189 | 0.169 | −0.004 | 0.018 | −0.026 | 0.003 | −0.042 | 0.064 | −0.131 | −0.230 | −0.009 | −0.357 | |
KRE | −0.095 | 0.782 ** | −0.012 | 0.014 | −0.018 | −0.012 | 0.045 | 0.014 | −0.328 | −0.522 | −0.026 | −0.845 | |
KRN | 0.280 * | 0.576 ** | 0.014 | −0.008 | 0.021 | 0.013 | −0.010 | −0.039 | −0.445 | 0.123 | 0.014 | −0.317 | |
KW | 0.610 ** | 0.967 ** | 0.044 | −0.016 | 0.008 | 0.007 | −0.034 | −0.040 | −0.422 | 0.073 | −0.005 | −0.385 | |
SP | −0.117 | 0.093 | −0.040 | −0.002 | 0.008 | 0.000 | 0.021 | −0.016 | −0.219 | 0.089 | −0.057 | −0.216 |
GP | PH | EH | EL | EG | BTL | KRE | KRN | KW | SP | |
---|---|---|---|---|---|---|---|---|---|---|
YP | 0.778 | 0.714 | 0.722 | 0.748 | 0.717 | 0.668 | 0.684 | 0.743 | 0.791 | 0.710 |
2 | 7 | 5 | 3 | 6 | 10 | 9 | 4 | 1 | 8 | |
GP | 0.742 | 0.757 | 0.743 | 0.674 | 0.728 | 0.696 | 0.741 | 0.776 | 0.680 | |
4 | 2 | 3 | 9 | 6 | 7 | 5 | 1 | 8 | ||
PH | 0.710 | 0.829 | 0.732 | 0.651 | 0.680 | 0.658 | 0.692 | 0.718 | 0.718 | |
5 | 1 | 2 | 9 | 7 | 8 | 6 | 4 | 3 | ||
EH | 0.712 | 0.818 | 0.725 | 0.645 | 0.654 | 0.635 | 0.697 | 0.694 | 0.682 | |
3 | 1 | 2 | 8 | 7 | 9 | 4 | 5 | 6 | ||
EL | 0.712 | 0.733 | 0.739 | 0.657 | 0.721 | 0.666 | 0.746 | 0.704 | 0.706 | |
5 | 3 | 2 | 9 | 4 | 8 | 1 | 7 | 6 | ||
EG | 0.626 | 0.638 | 0.649 | 0.644 | 0.656 | 0.691 | 0.651 | 0.661 | 0.692 | |
9 | 8 | 6 | 7 | 4 | 2 | 5 | 3 | 1 | ||
BTL | 0.713 | 0.696 | 0.687 | 0.736 | 0.685 | 0.722 | 0.707 | 0.694 | 0.716 | |
4 | 6 | 8 | 1 | 9 | 2 | 5 | 7 | 3 | ||
KRE | 0.676 | 0.673 | 0.666 | 0.679 | 0.716 | 0.719 | 0.674 | 0.665 | 0.663 | |
4 | 6 | 7 | 3 | 2 | 1 | 5 | 8 | 9 | ||
KRN | 0.726 | 0.708 | 0.728 | 0.760 | 0.682 | 0.707 | 0.677 | 0.713 | 0.708 | |
3 | 5 | 2 | 1 | 8 | 7 | 9 | 4 | 6 | ||
KW | 0.758 | 0.730 | 0.722 | 0.717 | 0.686 | 0.691 | 0.665 | 0.709 | 0.691 | |
1 | 2 | 3 | 4 | 8 | 6 | 9 | 5 | 7 | ||
SP | 0.679 | 0.747 | 0.727 | 0.735 | 0.733 | 0.730 | 0.683 | 0.723 | 0.710 | |
9 | 1 | 5 | 2 | 3 | 4 | 8 | 6 | 7 |
Particulars | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
Eigen value (root) | 3.348 | 1.714 | 1.573 | 1.435 |
Percentage of variance (%) | 30.433 | 15.583 | 14.297 | 13.05 |
Cumulative proportion | 30.433 | 46.016 | 60.313 | 73.362 |
GP | 0.618 | 0.648 | −0.134 | −0.063 |
PH | 0.662 | −0.221 | −0.339 | 0.504 |
EH | 0.627 | −0.217 | −0.368 | 0.532 |
EL | 0.69 | −0.249 | −0.096 | −0.324 |
EG | −0.476 | −0.049 | 0.6 | 0.29 |
BTL | −0.219 | 0.048 | −0.468 | −0.704 |
KRE | −0.639 | 0.412 | −0.196 | 0.386 |
KRN | 0.562 | −0.377 | 0.345 | −0.227 |
KW | 0.667 | 0.356 | 0.367 | −0.09 |
SP | −0.067 | −0.654 | 0.363 | −0.014 |
YP | 0.458 | 0.514 | 0.54 | 0.027 |
Ranking | Maize Hybrids | Synthesis Score | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|---|---|
1 | Chuandan 2011 | 1.15 | 2.07 | 0.70 | 1.54 | −0.87 |
2 | Chuandan 2012 | 1.01 | 1.91 | 0.56 | 0.32 | 0.21 |
3 | Le 1918 | 1.01 | 1.37 | 2.10 | −0.42 | 0.41 |
4 | Minyu 202 | 0.96 | 1.60 | 0.83 | −0.80 | 1.58 |
5 | Jinhe 880 | 0.85 | 1.41 | 0.07 | 0.47 | 0.92 |
6 | Jifeng 88 | 0.80 | 1.51 | 0.50 | 1.05 | −0.77 |
7 | Chuanxiyu 7 | 0.75 | 1.57 | 0.20 | 0.87 | −0.63 |
8 | Shanyu 8 | 0.60 | 1.08 | −1.16 | 0.72 | 1.42 |
9 | Yayu 2289 | 0.58 | 0.72 | 0.02 | 0.41 | 1.10 |
10 | Miandan 717 | 0.56 | 1.40 | −0.61 | 0.93 | −0.39 |
11 | Yayu 9698 | 0.52 | 1.14 | 1.14 | 0.62 | −1.80 |
12 | Shengkeyu 202 | 0.46 | 0.60 | 0.70 | 0.52 | −0.19 |
13 | SZ1701 | 0.38 | −0.53 | 1.06 | 0.86 | 1.20 |
14 | Shufeng 616 | 0.37 | 0.68 | 1.41 | −0.07 | −1.13 |
15 | Zhenghong 939 | 0.37 | 1.02 | 0.34 | −0.37 | −0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, Y.; Zeng, Y.; Liu, X.; Yang, Y. Multivariate Analysis of Grain Yield and Main Agronomic Traits in Different Maize Hybrids Grown in Mountainous Areas. Agriculture 2024, 14, 1703. https://doi.org/10.3390/agriculture14101703
Long Y, Zeng Y, Liu X, Yang Y. Multivariate Analysis of Grain Yield and Main Agronomic Traits in Different Maize Hybrids Grown in Mountainous Areas. Agriculture. 2024; 14(10):1703. https://doi.org/10.3390/agriculture14101703
Chicago/Turabian StyleLong, Yun, Youlian Zeng, Xiaohong Liu, and Yun Yang. 2024. "Multivariate Analysis of Grain Yield and Main Agronomic Traits in Different Maize Hybrids Grown in Mountainous Areas" Agriculture 14, no. 10: 1703. https://doi.org/10.3390/agriculture14101703
APA StyleLong, Y., Zeng, Y., Liu, X., & Yang, Y. (2024). Multivariate Analysis of Grain Yield and Main Agronomic Traits in Different Maize Hybrids Grown in Mountainous Areas. Agriculture, 14(10), 1703. https://doi.org/10.3390/agriculture14101703