Natural Recovery Dynamics of Alfalfa Field Soils under Different Degrees of Mechanical Compaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Site Overview
2.2. Experimental Equipment
2.3. Methods
2.3.1. Experimental Site Preparation
2.3.2. Data Recorded
3. Results
3.1. Recovery Dynamics of Soil Bulk Density in Compacted Alfalfa Fields
3.1.1. Dynamics of Soil Bulk Density Recovery in the 0~10 cm Soil Layer
3.1.2. Dynamics of Soil Bulk Density Recovery in the 10~20 cm Soil Layer
3.1.3. Dynamics of Soil Bulk Density Recovery in the 20~30 cm Soil Layer
3.2. Recovery Dynamics of Cone Index in Soils with Different Degrees of Compaction
3.3. Recovery Dynamics of Saturated Hydraulic Conductivity in Soils with Different Degrees of Compaction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frene, J.P.; Pandey, B.K.; Castrillo, G. Under pressure: Elucidating soil compaction and its effect on soil functions. Plant Soil 2024, 502, 267–278. [Google Scholar] [CrossRef]
- Sonderegger, T.; Pfister, S. Global Assessment of Agricultural Productivity Losses from Soil Compaction and Water Erosion. Environ. Sci. Technol. 2021, 55, 12162–12171. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.F.; Rodrigues, D.; Pellegrini, A.; Pocojeski, E. Gradual increase in the intensity of machine traffic in timber harvesting: Effects on soil composition and functionality. South. For. J. For. Sci. 2022, 84, 148–163. [Google Scholar] [CrossRef]
- Ramineh, A.; Jourgholami, M.; Etemad, V.; Jafari, M.; Picchio, R. Effect of Different Vegetation Restoration on Recovery of Compaction-Induced Soil Degradation in Hyrcanian Mixed Forests: Influence on Soil C and N Pools and Enzyme Activities. Forests 2023, 14, 603. [Google Scholar] [CrossRef]
- Kodikara, J.; Islam, T.; Sounthararajah, A. Review of soil compaction: History and recent developments. Transp. Geotech. 2018, 17, 24–34. [Google Scholar] [CrossRef]
- Huntenburg, K.; Dodd, I.C.; Stalham, M. Agronomic and physiological responses of potato subjected to soil compaction and/or drying. Ann. Appl. Biol. 2021, 178, 328–340. [Google Scholar] [CrossRef]
- Busman, N.A.; Maie, N.; Ishak, C.F.; Sulaiman, M.F.; Melling, L. Effect of compaction on soil CO2 and CH4 fluxes from tropical peatland in Sarawak, Malaysia. Environ. Dev. Sustain. 2021, 23, 11646–11659. [Google Scholar] [CrossRef]
- Nawaz, M.M.; Noor, M.A.; Latifmanesh, H.; Wang, X.; Ma, W.; Zhang, W. Field traffic-induced soil compaction under moderate machine-field conditions affects soil properties and maize yield on sandy loam soil. Front. Plant Sci. 2023, 14, 1002943. [Google Scholar] [CrossRef]
- Yin, C.; Jiang, L.; Sun, K.; Sun, W.; Liang, B. Influence of degree of compaction on electrokinetic remediation of unsaturated soil. Korean J. Chem. Eng. 2022, 39, 963–972. [Google Scholar] [CrossRef]
- Changey, F.; Aissaoui, G.; Plain, C.; Ranger, J.; Legout, A.; Zeller, B.; Epron, D.; Lerch, T.Z. Prolonged Effect of Forest Soil Compaction on Methanogen and Methanotroph Seasonal Dynamics. Microb. Ecol. 2022, 86, 1447–1452. [Google Scholar] [CrossRef]
- Ngo-Cong, D.; Antille, D.L.; Th. van Genuchten, M.; Nguyen, H.Q.; Tekeste, M.Z.; Baillie, C.P.; Godwin, R.J. A modeling framework to quantify the effects of compaction on soil water retention and infiltration. Soil Sci. Soc. Am. J. 2021, 85, 1931–1945. [Google Scholar] [CrossRef]
- Pulido-Moncada, M.; Petersen, S.O.; Munkholm, L.J. Soil compaction raises nitrous oxide emissions in managed agroecosystems. A review. Agron. Sustain. Dev. 2022, 42, 38. [Google Scholar] [CrossRef]
- Malongweni, S.O.; van Tol, J. Effects of herbivory, fire, and vegetation type on soil compaction and aggregate stability in a semi-arid savanna. Environ. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
- Guo, L.; Yu, Q.-H.; Yin, N.; Zhang, D.-M.; Zhang, D.-P.; Ren, X.-L.; You, Y.-H.; Zhang, Z.-Y.; Bing, H.; Chen, S.-J. Effect of freeze—Thaw cycle on hydraulic conductivity of compacted clayey soil. J. Mt. Sci. 2022, 19, 606–614. [Google Scholar] [CrossRef]
- Longepierre, M.; Feola Conz, R.; Barthel, M.; Bru, D.; Philippot, L.; Six, J.; Hartmann, M. Mixed Effects of Soil Compaction on the Nitrogen Cycle Under Pea and Wheat. Front. Microbiol. 2022, 12, 822487. [Google Scholar] [CrossRef]
- Nawaz, M.F.; Bourrié, G.; Trolard, F. Soil compaction impact and modelling. A review. Agron. Sustain. Dev. 2012, 33, 291–309. [Google Scholar] [CrossRef]
- Song, C.; Du, H. Effects of corn straw cover years on soil organic matter and compactness in typical black soil areas of Songnen Plain. Arab. J. Geosci. 2022, 16, 44. [Google Scholar] [CrossRef]
- Nazari, M.; Eteghadipour, M.; Zarebanadkouki, M.; Ghorbani, M.; Dippold, M.A.; Bilyera, N.; Zamanian, K. Impacts of Logging-Associated Compaction on Forest Soils: A Meta-Analysis. Front. For. Glob. Chang. 2021, 4, 780074. [Google Scholar] [CrossRef]
- Yue, L.; Wang, Y.; Wang, L.; Yao, S.; Cong, C.; Ren, L.; Zhang, B. Impacts of soil compaction and historical soybean variety growth on soil macropore structure. Soil Tillage Res. 2021, 214, 105166. [Google Scholar] [CrossRef]
- Schneider, H.M.; Strock, C.F.; Hanlon, M.T.; Vanhees, D.J.; Perkins, A.C.; Ajmera, I.B.; Sidhu, J.S.; Mooney, S.J.; Brown, K.M.; Lynch, J.P. Multiseriate cortical sclerenchyma enhance root penetration in compacted soils. Proc. Natl. Acad. Sci. USA 2021, 118, e2012087118. [Google Scholar] [CrossRef]
- Pandey, B.K.; Huang, G.; Bhosale, R.; Hartman, S.; Sturrock, C.J.; Jose, L.; Martin, O.C.; Karady, M.; Voesenek, L.A.C.J.; Ljung, K.; et al. Plant roots sense soil compaction through restricted ethylene diffusion. Science 2021, 371, 276–280. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Zeng, D.; Tian, X.; Duwal, K.B. Soil Compaction Mechanism and Improvement in Farmland. Sustainability 2023, 15, 6801. [Google Scholar] [CrossRef]
- Tekeste, M.Z.; Way, T.R.; Birkenholz, W.; Brodbeck, S. Effect of Increased Deflection Tire Technology on Soil Compaction. J. Asabe. 2023, 66, 75–84. [Google Scholar] [CrossRef]
- Bello-Bello, E.; López-Arredondo, D.; Rico-Chambrón, T.Y.; Herrera-Estrella, L. Conquering compacted soils: Uncovering the molecular components of root soil penetration. Trends Plant Sci. 2022, 27, 814–827. [Google Scholar] [CrossRef]
- Capobiango, N.P.; Bessa, G.B.; de Oliveira Peris, G.C.; da Silva, F.L.; dos Santos Dias, D.C.F.; Fernandes, R.B.A.; da Silva, M.F.; da Silva, L. Evaluation of soybean genotypes grown under soil compaction. J. Agron. Crop Sci. 2023, 209, 517–531. [Google Scholar] [CrossRef]
- Gao, A.; Wu, J.; Dai, F.; Zhang, F.; Han, Z. Correlation study of soil compaction by mowing machine and Alfalfa yield. Acta Pratacult. Sin. 2014, 23, 59–65. [Google Scholar]
- Cresswell, H.; Kirkegaard, J. Subsoil amelioration by plant-roots—The process and the evidence. Aust. J. Soil Res. 1995, 33, 221–229. [Google Scholar] [CrossRef]
- Gao, A.; Zhang, X.; Wang, Y.; Huang, X.; Han, Z. Experimental Study on Effect of Mechanical Compaction on the Soil Structure in Different Types of Alfalfa Fields. For. Mach. Woodwork. Equip. 2019, 47, 53–58. [Google Scholar]
- McKenzie, N.; Coughlan, K.; Cresswell, H. Soil Physical Measurement and Interpretation for Land Evaluation; CSIRO Publishing: Clayton, Australia, 2002. [Google Scholar]
- Gao, A.; Han, Z.; Wu, J. Experimental research on alfalfa soil compaction by mowing machine. Trans. CSAE 2007, 23, 101–105. [Google Scholar]
- He, T.; Zhang, H.; Zhang, D.; Liu, H.; Kong, M.; Ding, Q. Role of Freeze-thaw Cycle + Macropore Strategy in Restoring Compacted Soils on Agricultural Land. Trans. Chin. Soc. Agric. Mach. 2023, 54, 1–11. [Google Scholar]
- Gorczewska-Langner, W.; Gumuła-Kawecka, A.; Jaworska-Szulc, B.; Angulo-Jaramillo, R.; Szymkiewicz, A. Permeability of sandy soils estimated from particle size distribution and field measurements. Arch. Civ. Eng. 2023, 69, 187–204. [Google Scholar]
- de Souza Almeida, F.P.; Salemi, L.F. Effect of Prescribed Fire on Soil Permeability in a Neotropical Savanna. Environ. Process. 2023, 10, 59. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, J.; Zhao, S.; Mao, Y.; Zhang, J.; Pan, X.; He, F.; van der Ploeg, M. Impact of long-term sub-soiling tillage on soil porosity and soil physical properties in the soil profile. Land Degrad. Dev. 2021, 32, 2892–2905. [Google Scholar] [CrossRef]
- Jocz, M.; Lefik, M. Correlation between Cone Penetration Test parameters, soil type, and soil liquidity index using long short-term memory neural network. Stud. Geotech. Mech. 2023, 45, 405–415. [Google Scholar] [CrossRef]
Soil Type | Depth (cm) | Bulk Density (g·cm−3) | Moisture (%) | Porosity (%) |
---|---|---|---|---|
medium loam | 0~10 | 1.26 | 15.8 | 52.4 |
10~20 | 1.35 | 16.4 | 49.0 | |
20~30 | 1.47 | 19.1 | 44.5 | |
30~40 | 1.48 | 19.3 | 44.1 | |
sandy soil | 0~10 | 1.27 | 18.2 | 52.0 |
10~20 | 1.27 | 19.3 | 52.0 | |
20~30 | 1.26 | 17.1 | 52.4 | |
30~40 | 1.18 | 14.8 | 55.5 |
Type | Power (Hp) | Gross Weight (Kg) | Outline Dimension (mm) | Front Wheel Track (mm) | Rear Wheel Track (mm) |
---|---|---|---|---|---|
HW320 | 108 | 5371 | 6578 × 4500 × 3099 | 3175 | 2286 |
LX750 | 75 | 3720 | 4250 × 2890 × 3160 | 2360 | 2280 |
SE250 | 25 | 1280 | 3320 × 1280 × 1418 | 1020 | 1000 |
Tire Specifications | Tire Section Width (m) | The Outer Diameter (m) | Contact Area (m2) | Contact Pressure (kPa) |
---|---|---|---|---|
16.9–24 | 0.45 | 1.35 | 0.18 | 88 |
14.9–30 | 0.38 | 1.41 | 0.16 | 69 |
9.5–24 | 0.24 | 1.09 | 0.08 | 48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, A.; Sun, W. Natural Recovery Dynamics of Alfalfa Field Soils under Different Degrees of Mechanical Compaction. Agriculture 2024, 14, 1721. https://doi.org/10.3390/agriculture14101721
Gao A, Sun W. Natural Recovery Dynamics of Alfalfa Field Soils under Different Degrees of Mechanical Compaction. Agriculture. 2024; 14(10):1721. https://doi.org/10.3390/agriculture14101721
Chicago/Turabian StyleGao, Aimin, and Wei Sun. 2024. "Natural Recovery Dynamics of Alfalfa Field Soils under Different Degrees of Mechanical Compaction" Agriculture 14, no. 10: 1721. https://doi.org/10.3390/agriculture14101721
APA StyleGao, A., & Sun, W. (2024). Natural Recovery Dynamics of Alfalfa Field Soils under Different Degrees of Mechanical Compaction. Agriculture, 14(10), 1721. https://doi.org/10.3390/agriculture14101721