Linear Discriminant Analysis for Predicting Net Blotch Severity in Spring Barley with Meteorological Data in Finland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
- Atmospheric pressure (kPa);
- Relative humidity (RH%);
- Outdoor temperature (°C);
- Dew point temperature (°C).
2.2. Classification Procedure
2.2.1. Feature Generation
2.2.2. Linear Discriminant Classifiers
2.2.3. Classification Model Structures
2.2.4. Performance Assessment
3. Results
- 100%, 82% and 100% (precision);
- 100%, 100% and 75% (recall).
- 100%, 75% and 75% (precision);
- 50%, 75% and 85.7% (recall).
4. Discussion
- The results strongly suggest that meteorological data contain sufficient information for the classification of net blotch occurrence in advance during the two weeks from the start of the growing season in Finland.
- It can be further supposed that the three severity levels of net blotch studied here are linearly separable when the classification is based on mathematical features derived from meteorological data applying linear discriminant analysis.
- Based on the analyzed data, the ensemble of discriminant classifiers generally outperformed the single multiclass classifier in terms of overall accuracy.
- In ensemble classification and with the considered predictors, the suggested aggregation method for this purpose is the geometric mean.
- By utilizing linear discriminant analysis, an early warning system for barley net blotch severity can be implemented using public weather data as the input.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Data Sources
Appendix B
Feature Basis Functions
Appendix C
Training Data | Test Data | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Precision | Recall | Precision | Recall | ||||||||
Category 1 | Category 2 | Category 3 | Category 1 | Category 2 | Category 3 | Category 1 | Category 2 | Category 3 | Category 1 | Category 2 | Category 3 |
0.80 | 0.60 | 0.38 | 0.67 | 0.67 | 0.38 | 1.00 | 0.29 | 0.40 | 0.50 | 0.50 | 0.29 |
0.83 | 0.78 | 0.63 | 0.83 | 0.78 | 0.63 | 1.00 | 0.00 | 0.44 | 0.50 | 0.00 | 0.57 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.33 | 0.63 | 1.00 | 0.25 | 0.71 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.36 | 1.00 | 0.50 | 1.00 | 0.14 |
0.60 | 0.90 | 0.75 | 0.50 | 1.00 | 0.75 | 1.00 | 0.50 | 0.71 | 1.00 | 0.50 | 0.71 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.75 | 0.86 | 1.00 | 0.75 | 0.86 |
1.00 | 0.90 | 1.00 | 1.00 | 1.00 | 0.88 | 1.00 | 0.33 | 0.56 | 0.50 | 0.25 | 0.71 |
1.00 | 0.90 | 1.00 | 1.00 | 1.00 | 0.88 | 1.00 | 0.25 | 0.63 | 0.50 | 0.25 | 0.71 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.38 | 0.50 | 0.50 | 0.75 | 0.29 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.29 | 0.60 | 0.50 | 0.50 | 0.43 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.64 | 0.50 | 0.25 | 1.00 |
1.00 | 0.90 | 1.00 | 1.00 | 1.00 | 0.88 | 1.00 | 0.40 | 1.00 | 0.50 | 1.00 | 0.29 |
1.00 | 0.82 | 1.00 | 1.00 | 1.00 | 0.75 | 1.00 | 0.75 | 0.75 | 0.50 | 0.75 | 0.86 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.80 | 1.00 | 0.50 | 1.00 | 1.00 |
1.00 | 1.00 | 0.80 | 1.00 | 0.78 | 1.00 | 1.00 | 0.33 | 0.67 | 0.50 | 0.50 | 0.57 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.33 | 0.67 | 0.50 | 0.25 | 0.86 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.60 | 0.71 | 0.50 | 0.75 | 0.71 |
1.00 | 0.80 | 0.86 | 1.00 | 0.89 | 0.75 | 1.00 | 0.40 | 1.00 | 1.00 | 1.00 | 0.14 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.57 |
0.83 | 0.71 | 0.50 | 0.83 | 0.56 | 0.63 | 1.00 | 0.38 | 0.75 | 0.50 | 0.75 | 0.43 |
1.00 | 0.71 | 0.55 | 0.83 | 0.56 | 0.75 | 1.00 | 0.22 | 0.33 | 0.50 | 0.50 | 0.14 |
1.00 | 0.78 | 0.67 | 0.83 | 0.78 | 0.75 | 1.00 | 0.40 | 0.67 | 1.00 | 0.50 | 0.57 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.17 | 0.40 | 1.00 | 0.25 | 0.29 |
1.00 | 1.00 | 0.89 | 1.00 | 0.89 | 1.00 | 1.00 | 0.33 | 0.67 | 0.50 | 0.25 | 0.86 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.36 | 1.00 | 0.50 | 1.00 | 0.14 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.44 | 1.00 | 0.50 | 1.00 | 0.43 |
0.86 | 0.71 | 0.67 | 1.00 | 0.56 | 0.75 | 1.00 | 0.36 | 1.00 | 0.50 | 1.00 | 0.14 |
0.33 | 0.50 | 0.60 | 0.17 | 0.56 | 0.75 | 1.00 | 0.33 | 0.33 | 0.50 | 0.75 | 0.14 |
1.00 | 1.00 | 0.89 | 1.00 | 0.89 | 1.00 | 1.00 | 0.25 | 0.25 | 0.50 | 0.50 | 0.14 |
1.00 | 1.00 | 0.80 | 1.00 | 0.78 | 1.00 | 1.00 | 0.36 | 1.00 | 0.50 | 1.00 | 0.14 |
1.00 | 1.00 | 0.89 | 1.00 | 0.89 | 1.00 | 1.00 | 0.33 | 0.67 | 0.50 | 0.75 | 0.29 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 0.50 | 0.50 | 0.00 | 0.71 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 0.60 | 0.50 | 0.00 | 0.86 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 0.55 | 0.50 | 0.00 | 0.86 |
0.80 | 1.00 | 0.78 | 0.67 | 1.00 | 0.88 | 1.00 | 0.00 | 0.55 | 0.50 | 0.00 | 0.86 |
0.80 | 1.00 | 0.78 | 0.67 | 1.00 | 0.88 | 1.00 | 0.00 | 0.50 | 0.50 | 0.00 | 0.71 |
0.75 | 1.00 | 0.70 | 0.50 | 1.00 | 0.88 | 1.00 | 0.00 | 0.44 | 0.50 | 0.00 | 0.57 |
0.71 | 1.00 | 0.75 | 0.83 | 0.89 | 0.75 | 1.00 | 0.29 | 0.60 | 0.50 | 0.50 | 0.43 |
1.00 | 1.00 | 0.89 | 1.00 | 0.89 | 1.00 | 1.00 | 0.00 | 0.33 | 0.50 | 0.00 | 0.29 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 0.50 | 0.50 | 0.00 | 0.71 |
0.80 | 0.75 | 0.83 | 0.67 | 1.00 | 0.63 | 1.00 | 1.00 | 0.78 | 0.50 | 0.75 | 1.00 |
0.25 | 0.64 | 0.25 | 0.17 | 0.78 | 0.25 | 1.00 | 0.50 | 0.67 | 0.50 | 0.75 | 0.57 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.50 | 0.67 | 0.50 | 0.75 | 0.57 |
1.00 | 0.64 | 0.57 | 0.83 | 0.78 | 0.50 | 1.00 | 0.00 | 0.17 | 0.50 | 0.00 | 0.14 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.33 | 0.33 | 0.50 | 0.75 | 0.14 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.22 | 0.00 | 1.00 | 0.50 | 0.00 |
0.83 | 0.90 | 1.00 | 0.83 | 1.00 | 0.88 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.57 |
1.00 | 0.90 | 1.00 | 0.83 | 1.00 | 1.00 | 1.00 | 0.29 | 0.40 | 0.50 | 0.50 | 0.29 |
0.83 | 0.88 | 0.67 | 0.83 | 0.78 | 0.75 | 1.00 | 0.22 | 0.00 | 0.50 | 0.50 | 0.00 |
1.00 | 0.90 | 1.00 | 1.00 | 1.00 | 0.88 | 1.00 | 0.11 | 0.00 | 0.50 | 0.25 | 0.00 |
Appendix D
Training Data | Test Data | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Precision | Recall | Precision | Recall | ||||||||
Category 1 | Category 2 | Category 3 | Category 1 | Category 2 | Category 3 | Category 1 | Category 2 | Category 3 | Category 1 | Category 2 | Category 3 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
1.00 | 1.00 | 0.89 | 0.83 | 1.00 | 1.00 | 1.00 | 0.80 | 1.00 | 1.00 | 1.00 | 0.86 |
1.00 | 1.00 | 0.73 | 0.67 | 0.89 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
1.00 | 1.00 | 0.89 | 1.00 | 0.89 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 0.90 | 0.89 | 0.67 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 0.90 | 1.00 | 1.00 | 1.00 | 0.88 | 1.00 | 0.80 | 0.86 | 0.50 | 1.00 | 0.86 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.80 | 1.00 | 1.00 | 1.00 | 0.86 |
1.00 | 0.90 | 1.00 | 1.00 | 1.00 | 0.88 | 1.00 | 0.80 | 1.00 | 0.50 | 1.00 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.80 | 1.00 | 1.00 | 1.00 | 0.86 |
1.00 | 0.90 | 1.00 | 0.83 | 1.00 | 1.00 | 1.00 | 0.75 | 0.88 | 0.50 | 0.75 | 1.00 |
1.00 | 1.00 | 0.89 | 1.00 | 0.89 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 0.89 | 1.00 | 0.89 | 1.00 | 1.00 | 0.80 | 1.00 | 1.00 | 1.00 | 0.86 |
1.00 | 0.89 | 0.88 | 1.00 | 0.89 | 0.88 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 0.89 | 0.83 | 1.00 | 1.00 | 1.00 | 0.57 | 1.00 | 1.00 | 1.00 | 0.57 |
0.80 | 0.80 | 0.88 | 0.67 | 0.89 | 0.88 | 1.00 | 0.80 | 1.00 | 1.00 | 1.00 | 0.86 |
1.00 | 0.90 | 1.00 | 0.83 | 1.00 | 1.00 | 1.00 | 1.00 | 0.88 | 1.00 | 0.75 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 0.82 | 1.00 | 0.83 | 1.00 | 0.88 | 1.00 | 0.75 | 0.88 | 0.50 | 0.75 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.50 | 0.40 | 0.83 | 0.50 | 0.50 | 0.71 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.67 | 1.00 | 1.00 | 1.00 | 0.75 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.67 | 1.00 | 1.00 | 1.00 | 0.71 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.75 | 0.88 | 0.50 | 0.75 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.67 | 1.00 | 1.00 | 1.00 | 0.75 | 1.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 0.89 | 0.83 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 0.89 | 1.00 | 0.89 | 1.00 | 1.00 | 0.75 | 0.86 | 1.00 | 0.75 | 0.86 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.80 | 1.00 | 1.00 | 1.00 | 0.86 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 0.80 | 0.83 | 0.89 | 1.00 | 0.67 | 0.75 | 0.83 | 1.00 | 0.75 | 0.71 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 0.90 | 0.89 | 0.67 | 1.00 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 0.86 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.50 | 0.80 | 1.00 | 0.50 | 1.00 | 0.86 |
1.00 | 1.00 | 0.73 | 0.67 | 0.89 | 1.00 | 1.00 | 1.00 | 0.88 | 1.00 | 0.75 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
1.00 | 1.00 | 0.89 | 1.00 | 0.89 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Appendix E
Training Data | Test Data | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Precision | Recall | Precision | Recall | ||||||||
Category 1 | Category 2 | Category 3 | Category 1 | Category 2 | Category 3 | Category 1 | Category 2 | Category 3 | Category 1 | Category 2 | Category 3 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
1.00 | 1.00 | 0.89 | 0.83 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 0.73 | 0.67 | 0.89 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
1.00 | 1.00 | 0.89 | 1.00 | 0.89 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 0.90 | 0.89 | 0.67 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 0.90 | 1.00 | 1.00 | 1.00 | 0.88 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 0.89 | 0.83 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 0.90 | 1.00 | 0.83 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 0.89 | 0.88 | 1.00 | 0.89 | 0.88 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 0.90 | 1.00 | 1.00 | 1.00 | 0.88 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 0.89 | 0.83 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
0.80 | 0.89 | 0.89 | 0.67 | 0.89 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 0.90 | 1.00 | 0.83 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 0.90 | 1.00 | 0.83 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 0.82 | 1.00 | 0.83 | 1.00 | 0.88 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 0.89 | 0.83 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 0.89 | 1.00 | 0.89 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 0.89 | 1.00 | 0.89 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 0.89 | 0.83 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 0.90 | 1.00 | 0.83 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 0.73 | 0.67 | 0.89 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
1.00 | 1.00 | 0.80 | 1.00 | 0.78 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
References
- European Commission. The Farm to Fork Strategy. Available online: https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en (accessed on 1 July 2024).
- Jalli, M.; Kaseva, J.; Andersson, B.; Ficke, A.; Nistrup-Jørgensen, L.; Ronis, A.; Kaukoranta, T.; Ørum, J.-E.; Djurle, A. Yield increases due to fungicide control of leaf blotch diseases in wheat and barley as a basis for IPM decision-making in the Nordic-Baltic region. Eur. J. Plant Pathol. 2020, 158, 315–333. [Google Scholar] [CrossRef]
- Argüeso, D.; Picon, A.; Irusta, U.; Medela, A.; San-Emeterio, M.G.; Bereciartua, A.; Alvarez-Gila, A. Few-Shot Learning approach for plant disease classification using images taken in the field. Comput. Electron. Agric. 2020, 175, 105542. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Zhang, D.; Sun, Y.; Nanehkaran, Y. Using deep transfer learning for image-based plant disease identification. Comput. Electron. Agric. 2020, 173, 105393. [Google Scholar] [CrossRef]
- Ferentinos, K.P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 2018, 145, 311–318. [Google Scholar] [CrossRef]
- Tiwari, V.; Joshi, R.C.; Dutta, M.K. Dense convolutional neural networks based multiclass plant disease detection and classification using leaf images. Ecol. Inform. 2021, 63, 101289. [Google Scholar] [CrossRef]
- Golhani, K.; Balasundram, S.K.; Vadamalai, G.; Pradhan, B. A review of neural networks in plant disease detection using hyperspectral data. Inf. Process. Agric. 2018, 5, 354–371. [Google Scholar] [CrossRef]
- Whetton, R.L.; Hassall, K.L.; Waine, T.W.; Mouazen, A.M. Hyperspectral measurements of yellow rust and fusarium head blight in cereal crops: Part 1: Laboratory study. Biosyst. Eng. 2018, 166, 101–115. [Google Scholar] [CrossRef]
- Whetton, R.L.; Waine, T.W.; Mouazen, A.M. Hyperspectral measurements of yellow rust and fusarium head blight in cereal crops: Part 2: On-line field measurement. Biosyst. Eng. 2018, 167, 144–158. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef]
- Keceli, A.S.; Kaya, A.; Catal, C.; Tekinerdogan, B. Deep learning-based multi-task prediction system for plant disease and species detection. Ecol. Inform. 2022, 69, 101679. [Google Scholar] [CrossRef]
- Reddy, S.R.; Varma, G.S.; Davuluri, R.L. Resnet-based modified red deer optimization with DLCNN classifier for plant disease identification and classification. Comput. Electr. Eng. 2023, 105, 108492. [Google Scholar] [CrossRef]
- Sharma, V.; Tripathi, A.K.; Mittal, H. DLMC-Net: Deeper lightweight multi-class classification model for plant leaf disease detection. Ecol. Inform. 2023, 75, 102025. [Google Scholar] [CrossRef]
- Jackulin, C.; Murugavalli, S. A comprehensive review on detection of plant disease using machine learning and deep learning approaches. Meas. Sens. 2022, 24, 100441. [Google Scholar] [CrossRef]
- Sutaji, D.; Yıldız, O. LEMOXINET: Lite ensemble MobileNetV2 and Xception models to predict plant disease. Ecol. Inform. 2022, 70, 101698. [Google Scholar] [CrossRef]
- Iqbal, Z.; Khan, M.A.; Sharif, M.; Shah, J.H.; ur Rehman, M.H.; Javed, K. An automated detection and classification of citrus plant diseases using image processing techniques: A review. Comput. Electron. Agric. 2018, 153, 12–32. [Google Scholar] [CrossRef]
- Mäyrä, O.; Ruusunen, M.; Jalli, M.; Jauhiainen, L.; Leiviskä, K. Plant Disease Outbreak—Prediction by Advanced Data Analysis. SNE Simul. Notes Eur. 2018, 28, 113–115. [Google Scholar] [CrossRef]
- Ruusunen, O.; Jalli, M.; Jauhiainen, L.; Ruusunen, M.; Leiviskä, K. Advanced Data Analysis as a Tool for Net Blotch Density Estimation in Spring Barley. Agriculture 2020, 10, 179. [Google Scholar] [CrossRef]
- Ruusunen, O.; Jalli, M.; Jauhiainen, L.; Ruusunen, M.; Leiviskä, K. Identification of Optimal Starting Time Instance to Forecast Net Blotch Density in Spring Barley with Meteorological Data in Finland. Agriculture 2022, 12, 1939. [Google Scholar] [CrossRef]
- Ruusunen, O.; Jalli, M.; Jauhiainen, L.; Ruusunen, M.; Leiviskä, K. Data analysis in moving windows for optimizing barley net blotch prediction. J. Adv. Agric. Technol. 2020, 7, 38–42. [Google Scholar] [CrossRef]
- Deepika, C.; Gnanamalar, R.P.; Thangaraj, K.; Revathy, N.; Karthikeyan, A. Linear Discriminant Analysis of Grain Quality Traits in Rice (Oryza sativa L.) Using the Digital Imaging Technique. J. Cereal Sci. 2023, 109, 103609. [Google Scholar] [CrossRef]
- Sampaio, S.L.; Barreira, J.C.; Fernandes, Â.; Petropoulos, S.A.; Alexopoulos, A.; Santos-Buelga, C.; Ferreira, I.C.; Barros, L. Potato Biodiversity: A Linear Discriminant Analysis on the Nutritional and Physicochemical Composition of Fifty Genotypes. Food Chem. 2021, 345, 128853. [Google Scholar] [CrossRef]
- Esteki, M.; Shahsavari, Z.; Simal-Gandara, J. Use of Spectroscopic Methods in Combination with Linear Discriminant Analysis for Authentication of Food Products. Food Control 2018, 91, 100–112. [Google Scholar] [CrossRef]
- Laine, A.; Högnäsbacka, M.; Niskanen, M.; Ohralahti, K.; Jauhiainen, L.; Kaseva, J.; Nikander, H. Virallisten Lajikekokeiden Tulokset 2009–2016 (Results of the Official Variety Trials 2009–2016). Luonnonvara-ja Biotalouden Tutkimus 1/2017, 271p. Natural Resources Institute Finland (Luke). 2017. Available online: http://urn.fi/URN:ISBN:978-952-326-346-8 (accessed on 15 June 2024).
- Saari, E.E.; Prescott, M. A scale for appraising the foliar intensity of wheat diseases. Plant Dis. Rep. 1975, 59, 377–379. [Google Scholar]
- Finnish Meteorological Institute. Open Database. Available online: https://www.ilmatieteenlaitos.fi/havaintojen-lataus (accessed on 5 September 2023).
- Dash, M.; Liu, H. Feature selection for classification. Intell. Data Anal. 1997, 1, 131–156. [Google Scholar] [CrossRef]
- Blum, A.L.; Langley, P. Selection of relevant features and examples in machine learning. Artif. Intell. 1997, 97, 245–271. [Google Scholar] [CrossRef]
- García-Torres, M.; Gómez-Vela, F.; Melián-Batista, B.; Moreno-Vega, J.M. High-dimensional feature selection via feature grouping: A Variable Neighborhood Search approach. Inf. Sci. 2016, 326, 102–118. [Google Scholar] [CrossRef]
- Uncu, Ö.; Türk¸sen, I.B. A novel feature selection approach: Combining feature wrappers and filters. Inf. Sci. 2007, 177, 449–466. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, J.; Arroyo-Peña, A.G.; García-Pedrajas, N. Simultaneous instance and feature selection and weighting using evolutionary computation: Proposal and study. Appl. Soft Comput. 2015, 37, 416–443. [Google Scholar] [CrossRef]
- Ruusunen, M. Signal Correlations in Biomass Combustion—An Information Theoretic Analysis. Ph.D. Thesis, University of Oulu, Oulu, Finland, 2013. [Google Scholar]
- Fisher, R.A. The Use of Multiple Measurements in Taxonomic Problems. Ann. Eugen. 1936, 7, 179–188. [Google Scholar] [CrossRef]
- Theodoridis, S. Chapter 7—Classification: A Tour of the Classics. In Machine Learning, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 301–350. [Google Scholar] [CrossRef]
- The MathWorks, Inc. Statistics and Machine Learning Toolbox Documentation. Available online: https://www.mathworks.com/help/stats/index.html (accessed on 7 February 2023).
- Grandini, M.; Bagli, E.; Visani, G. Metrics for Multi-Class Classification: An Overview. arXiv 2020. [CrossRef]
Net Blotch Category | Training Data | Test Data | ||
---|---|---|---|---|
Location | Year | Location | Year | |
1 | Hämeenlinna Siikajoki Siikajoki Jokioinen Jokioinen Mynämäki | 1991 1992 1993 2006 2007 2010 | Seinäjoki Seinäjoki | 2000 2007 |
2 | Siikajoki Inkoo Inkoo Siikajoki Mynämäki Seinäjoki Seinäjoki Jokioinen Inkoo | 1991 2002 2005 2010 2011 2011 2013 2013 2017 | Siikajoki Jokioinen Jokioinen Jokioinen | 2006 2009 2010 2011 |
3 | Siikajoki Mynämäki Mynämäki Jokioinen Jokioinen Jokioinen Mynämäki Seinäjoki | 2012 2013 2014 2014 2015 2016 2016 2016 | Inkoo Mynämäki Inkoo Loviisa Siikajoki Siikajoki Inkoo | 2003 2009 2012 2014 2014 2015 2015 |
Category 1 | ||||
---|---|---|---|---|
Mean | Standard Deviation | Minimum | Maximum | |
Daily maximum relative humidity (max RH%) | 83.4 | 16.3 | 33 | 100 |
Daily minimum outdoor temperature (min °C outdoor) | 6.2 | 4.2 | −4.6 | 17.2 |
Daily minimum dew point temperature (min °C dew point) | 3.4 | 4.7 | −11.9 | 14.3 |
Category 2 | ||||
Mean | Standard Deviation | Minimum | Maximum | |
Daily maximum relative humidity (max RH%) | 91.5 | 9.5 | 51 | 100 |
Daily minimum outdoor temperature (min °C outdoor) | 7.5 | 4.4 | −3.7 | 18.2 |
Daily minimum dew point temperature (min °C dew point) | 4.5 | 5.0 | −13.6 | 18.2 |
Category 3 | ||||
Mean | Standard Deviation | Minimum | Maximum | |
Daily maximum relative humidity (max RH%) | 95.3 | 6.0 | 65 | 100 |
Daily minimum outdoor temperature (min °C outdoor) | 7.5 | 4.0 | −4.5 | 19 |
Daily minimum dew point temperature (min °C dew point) | 4.9 | 4.7 | −12.9 | 16.2 |
Model Structure | Binary, Category 1 | Binary, Category 2 | Binary, Category 3 | Multiclass |
---|---|---|---|---|
Selected feature | ln(min °C outdoor) | ln(min °C outdoor) | (min °C outdoor–min °C dewpoint) | ln(min °C outdoor) |
Selected running numbers of days from the start of a data window | 11–14 | 6–14 | 1–11 | 11–14 |
Number of selected predictors | 4 | 9 | 11 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruusunen, O.; Jalli, M.; Jauhiainen, L.; Ruusunen, M.; Leiviskä, K. Linear Discriminant Analysis for Predicting Net Blotch Severity in Spring Barley with Meteorological Data in Finland. Agriculture 2024, 14, 1779. https://doi.org/10.3390/agriculture14101779
Ruusunen O, Jalli M, Jauhiainen L, Ruusunen M, Leiviskä K. Linear Discriminant Analysis for Predicting Net Blotch Severity in Spring Barley with Meteorological Data in Finland. Agriculture. 2024; 14(10):1779. https://doi.org/10.3390/agriculture14101779
Chicago/Turabian StyleRuusunen, Outi, Marja Jalli, Lauri Jauhiainen, Mika Ruusunen, and Kauko Leiviskä. 2024. "Linear Discriminant Analysis for Predicting Net Blotch Severity in Spring Barley with Meteorological Data in Finland" Agriculture 14, no. 10: 1779. https://doi.org/10.3390/agriculture14101779
APA StyleRuusunen, O., Jalli, M., Jauhiainen, L., Ruusunen, M., & Leiviskä, K. (2024). Linear Discriminant Analysis for Predicting Net Blotch Severity in Spring Barley with Meteorological Data in Finland. Agriculture, 14(10), 1779. https://doi.org/10.3390/agriculture14101779