Assessment of the Antioxidative Properties of Extracts from the Fruits of Pyrus pyraster (L.) Burgsd and Pyrus ×myloslavensis Czarna & Antkowiak Grown under Natural Environmental Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Extracts
2.3. Preparation of the Linoleic Acid Emulsion
2.4. Analytical Methods
2.4.1. Determination of Total Phenolic Compound Content
2.4.2. Analysis of Phenolic Compound Content
2.4.3. Determination of Dietary Fiber Content
2.5. Antioxidative Activity of the Extract
2.5.1. Scavenging of DPPH Radicals
2.5.2. Scavenging of ABTS Radicals
2.5.3. Ferric Reducing Antioxidant Power (FRAP)
2.5.4. Emulsion System
3. Statistical Analysis
4. Results and Discussion
4.1. Extraction Efficiency and Total Phenolic Content
4.2. Determination of the Content of Phenolic Compounds and Organic Acids Using HPLC
4.3. DPPH Radical Scavenging Capacity
4.4. ABTS Cation Radical Scavenging Capacity
4.5. FRAP Reducing Potential
4.6. Antioxidative Activity in Linoleic Acid Emulsion
4.7. Dietary Fiber Content
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Medina-Vera, I.; Gómez-de-Regil, L.; Gutiérrez-Solis, A.L.; Lugo, R.; Guevara-Cruz, M.; Pedraza-Chaverri, J.; Avila-Nava, A. Dietary strategies by foods with antioxidant effect on nutritional management of dyslipidemias: A systematic review. Antioxidants 2021, 10, 225. [Google Scholar] [CrossRef] [PubMed]
- Arias, A.; Feijoo, G.; Moreira, M.T. Exploring the potential of antioxidants from fruits and vegetables and strategies for their recovery. Innow. Food Sci. Emerg. Technol. 2022, 77, 102974. [Google Scholar] [CrossRef]
- Davinelli, S.; Scapagnini, G. The Pharma-Nutritional Role of Antioxidant Phytochemicals in Health and Disease. Antioxidants 2022, 11, 1081. [Google Scholar] [CrossRef]
- Meitha, K.; Pramesti, Y.; Suhandono, S. Reactive oxygen species and antioxidants in postharvest vegetables and fruits. Int. J. Food Sci. 2020, 2020, 8817778. [Google Scholar] [CrossRef]
- Heydari, A.; Parvini, F.; Fard, N.A. Functional foods and antioxidant effects: Emphasizing the role of probiotics. In Current Topics in Functional Food; Shiomi, N., Savitskaya, A., Eds.; IntechOpen: London, UK, 2022; p. 280. [Google Scholar] [CrossRef]
- Hong, S.Y.; Lansky, E.; Kang, S.S.; Yang, M. A review of pears (Pyrus spp.), ancient functional food for modern times. BMC Complement. Med. Ther. 2021, 21, 219. [Google Scholar] [CrossRef]
- Li, X.; Wang, T.; Zhou, B.; Gao, W.; Cao, J.; Huang, L. Chemical composition and antioxidant and anti-inflammatory potential of peels and flesh from 10 different pear varieties (Pyrus spp.). Food Chem. 2014, 152, 531–538. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.Y.; Gao, W.Y.; Wang, Y.; Wang, H.Y.; Cao, J.G.; Huang, L.Q. Chemical composition and anti-inflammatory and antioxidant activities of eight pear cultivars. J. Agric. Food Chem. 2012, 60, 8738–8744. [Google Scholar] [CrossRef]
- Beliveau, R.; Gingras, D. Dieta w walce z rakiem. Profilaktyka i wspomaganie terapii przez odżywianie [Diet in the fight against cancer. In Prevention and Support of Therapy through Nutrition; Wydawnicza Delta WZ: Warsaw, Poland, 2010; pp. 140–143. (In Polish) [Google Scholar]
- Kopera, M.; Mitek, M.; Świeca, E. Zawartość substancji pektynowych w owocach trzech odmian gruszy azjatyckiej (Pyrus pyrifolia). [The content of pectin substances in fruit of three asian pear cultivars (Pyrus pyrifolia)]. Żywn. Nauka Technol. Jakość/Food. Sci. Technol. Quality. Suplement 2004, 3, 133. (In Polish) [Google Scholar]
- San-Martín-Hernández, C.; Martínez-Téllez, M.A.; Valenzuela-Amavizca, O.N.; Aispuro-Hernández, E.; Sánchez-Sánchez, M.; Hernández-Camarillo, E.; López-Martínez, L.X.; Eber Addí Quintana-Obregón, E.A. Byrsonima crassifolia L. Kunth a bio-resource with potential: Overview and opportunities. Folia Hort. 2023, 35, 61–75. [Google Scholar] [CrossRef]
- Cortiella, M.G.; Castro, R.I.; Parra-Palma, C.; Méndez-Yáñez, A.; Ramos, P.; Morales-Quintana, L. Analysis of the contents of Ugni molinae Turcz fruits across the ripening stages. Folia Hort. 2024, 36, 119–134. [Google Scholar] [CrossRef]
- Antkowiak, W.; Cedro, A.; Prajs, B.; Wolko, Ł.; Michalak, M. Success of wild pear Pyrus pyraster (L.) Burgsd. in colonization of steep sunny slopes: An interdisciplinary study in the Bielinek Reserve (NW Poland). Pol. J. Ecol. 2012, 60, 57–76. [Google Scholar]
- Antkowiak, W.; Czarna, A.; Wawrzyńska, M. Pyrus ×myloslavensis (P. communis L. × P. salicifolia Pall.)-A new spontaneons pear hybrid. Dendrobiology 2008, 60, 45–49. [Google Scholar]
- Antkowiak, W.; Maciejewska-Rutkowska, I.; Jędrzejczyk, I.; Wojciechowski, A. Morphological, anatomical and cytological characteristics of spontaneous hybrid Pyrus ×myloslavensis. Dendrobiology 2016, 75, 23–30. [Google Scholar] [CrossRef]
- Lingnert, H.; Vallentin, K.; Eriksson, C.E. Measurement of antioxidative effect in model system. J. Food Process. Preserv. 1979, 3, 87–103. [Google Scholar] [CrossRef]
- Horwitz, W. Official Methods of Analysis of the Association of Official Analytical Chemists; Association of Official Analytical Chemists: Washington, DC, USA, 1970; pp. 15.049–15.055. [Google Scholar]
- Telichowska, A.; Kobus-Cisowska, J.; Szulc, P.; Liga, j.M.; Stuper-Szablewska, K.; Szwajgier, D.; Bujak, H. Comparative analysis of infusions with the addtion P. padus bark: Assessment of the antioxidant potential and their inhibitory effect on enzymes associated with oxidative stress. Sustainability 2021, 13, 3913. [Google Scholar] [CrossRef]
- Przybylska-Balcerek, A.; Szablewski, T.; Szwajkowska-Michałek, L.; Świerk, D.; Cegielska-Radziejewska, R.; Krejpcio, Z.; Suchowilska, E.; Tomczyk, Ł.; Stuper-Szablewska, K. Sambucus nigra extracts-natural antioxidants and antimicrobial compounds. Molecules 2021, 26, 2910. [Google Scholar] [CrossRef]
- Helrich, K. Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed.; Association of Official Analytical Chemists United States: Arlington, VA, USA, 1990; ISBN 0-935584-42-0. [Google Scholar]
- Sanchez-Moreno, C.; Larrauri, J.A.; Saura-Calixto, F. A procedure to measure the antiradical efficiency of polyphenols. J. Sci. Food Agric. 1998, 76, 270–276. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Fernandes, R.P.P.; Trindade, M.A.; Tonin, F.G. Evaluation of antioxidant capacity of 13 plant extracts by three different methods: Luster analyses applied for selection of the natural extracts with high er to replace synthetic antioxidant in lambburgers. J. Food Sci. Technol. 2016, 53, 451–460. [Google Scholar] [CrossRef]
- Liaudanskas, M.; Zymonė, K.; Viškelis, J.; Klevinskas, A.; Janulis, V. Determination of the phenolic composition and antioxidant activity of pear extracts. J. Chem. 2017, 2017, 7856521. [Google Scholar] [CrossRef]
- Patricia, V.M.; Syaputri, F.N. Antioxidant activities from two varieties of pear peel extracts using DPPH and CUPRAC methods. J. Phys. Conf. Ser. 2021, 1764, 012013. [Google Scholar] [CrossRef]
- Guiné, R.P.; Barroca, M.J.; Gonçalves, F.J.; Alves, M.; Oliveira, S.; Correia, P.M. Effect of drying on total phenolic compounds, antioxidant activity, and kinetics decay in pears. Int. J. Fruit Sci. 2015, 15, 173–186. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Cheng, C.; Chen, Y.; Wu, J.; Zhu, F.; Yang, Y.; Peng, F. Phenolic profiles and antioxidant activities of exocarp, endocarp, and hypanthium of three pear cultivars grown in China. J. Food Bioact. 2021, 14, 75–80. [Google Scholar] [CrossRef]
- Öztürk, A.; Demirsoy, L.; Demirsoy, H.; Asan, A.; Gül, O. Phenolic compounds and chemical characteristics of pears (Pyrus communis L.). Int. J. Food Prop. 2015, 18, 536–546. [Google Scholar] [CrossRef]
- Kopera, M.; Mitek, M. Charakterystyka chemiczna owoców wybranych odmian gruszy azjatyckiej (Pyrus pyrifolia). [Chemical characteristics of some selected cultivars of asian pear (Pyrus pyrifolia)]. Żywn. Nauka Technol. Jakość/Food. Sci. Technol. Quality. Suplement 2003, 10, 68–75. (In Polish) [Google Scholar]
- Wang, Z.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A. A comparative investigation on phenolic composition, characterization and antioxidant potentials of five different australian grown pear varieties. Antioxidants 2021, 10, 151. [Google Scholar] [CrossRef] [PubMed]
- Djendoubi, N.; Boudhrioua, N.M.; Kechaou, N.; Courtois, F.; Bonazzi, C. Influence of air drying temperature on kinetics, physicochemical properties, total phenolic content and ascorbic acid of pears. Food Bioprod. Process. 2012, 90, 433–441. [Google Scholar] [CrossRef]
- Carbonaro, M.; Mattera, M.; Nicoli, S.; Bergamo, P.; Cappelloni, M. Modulation of antioxidant compounds in organic vs conventional fruit (peach, Prunus persica L., and pear, Pyrus communis L.). J. Agric. Food Chem. 2002, 50, 5458–5462. [Google Scholar] [CrossRef]
- Ieguchi, T.; Katayama, H.; Nomura, K.; Takaoka, M.; Uematsu, C. Pear (Pyrus L.) genetic resources from Northern Japan: Evaluation of antioxidant capacity. Acta Hortic. 2015, 1094, 539–548. [Google Scholar] [CrossRef]
- Łysiak, G.P.; Rutkowski, K.; Walkowiak-Tomczak, D. Effect of storage conditions on storability and antioxidant potential of pears cv. Conference. Agriculture 2021, 11, 545. [Google Scholar] [CrossRef]
- Manzoor, M.; Anwar, F.; Bhatti, I.A.; Jamil, A. Variation of phenolics and antioxidant activity between peel and pulp parts of pear (Pyrus communis L.) fruit. Pak. J. Bot. 2013, 45, 1521–1525. [Google Scholar]
- Choi, J.J.; Lim, S.H.; Choi, J.H.; Park, J.H.; Nam, S.H.; Lee, H.C. Antioxidant activity of Pyrus pyrifolia fruit in different cultivars and parts. Korean J. Food Preser. 2013, 20, 222–226. [Google Scholar] [CrossRef]
- Batista, S.; Guiné, R.; Barroca, M.J.; Gonçalves, F.; González-SanJosé, M.L.; Rivero-Pérez, M.D. Evaluación de la composición fenólica y de la actividad antioxidante de peras frescas y secadas al sol (Pyrus communis L.). In Proceedings of the III Congreso Nacional de Ciência y Tecnología de los Alimentos, Burgos, Spain, 24–26 May 2005; pp. 947–950. [Google Scholar]
- Erbil, N.; Murathan, Z.T.; Arslan, M.; Ilcim, A.; Sayin, B. Antimicrobial, antioxidant and antimutagenic activities of five Turkish pear cultivars. Erwerbs. Obstbau. 2018, 60, 203–209. [Google Scholar] [CrossRef]
- Hu, T.; Subbiah, V.; Wu, H.; BK, A.; Rauf, A.; Alhumjdhi, F.A.; Suleria, H. Determination and characterization of phenolic compound from Australia-Grown sweet cherries (Prunus avium L.) and their potential antioxidant properties. Am. Chem. Soc. 2021, 6, 34687–34699. [Google Scholar] [CrossRef]
- Nowak, A.; Szatan, D.; Zielonka-Brzezicka, J.; Florkowska, K.; Muzykiewicz, A.; Klimowicz, A. Antioxidant activity of selected parts of Prunus domestica L. harvested at two ripening stages. Pomeranian J. Life Sci. 2020, 66, 65–69. [Google Scholar] [CrossRef]
- Jamuna, K.; Ramesh, C.; Srinivasa, T.; Raghu, R. In vitro antioxidant studies in some common fruit. Int. J. Pharm. Pharm. Sci. 2011, 3, 60–63. [Google Scholar]
- Bahorun, T.; Luximon-Ramma, A.; Crozier, A.; Aruoma, O.I. Total phenol, flavonoid, proanthocyanidin and vitamin C levels and antioxidant activities of Mauritian vegetables. J. Sci. Food Agric. 2004, 84, 1553–1561. [Google Scholar] [CrossRef]
- Dudonne, S.; Vitrac, X.; Coutiere, P.; Woillez, M.; Mérillon, J.M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef] [PubMed]
- Sagbas, H.I.; Ilhan, G.; Ercisli, S.; Anjum, M.A.; Holubec, V. Characterization of oleaster-leafed pear (Pyrus elaeagrifolia Pall. subsp. elaeagrifolia) fruits in Turkey. Agronomy 2021, 11, 430. [Google Scholar] [CrossRef]
- Gouws, C.A.; Georgousopoulou, E.; Mellor, D.D.; Naumovski, N. The effect of juicing methods on the phytochemical and antioxidant characteristics of the purple prickly pear (Opuntia ficus-indica)—Preliminary findings on juice and pomace. Beverages 2019, 5, 28. [Google Scholar] [CrossRef]
- Hęś, M.; Dziedzic, K.; Le Thanh-Blicharz, J.; Kmiecik, D.; Górecka, D. Antioxidant activity of true aloe (Aloe vera) extract in model systems. Nauka Przyr. Technol. 2016, 10, 53. [Google Scholar] [CrossRef]
- Dziedzic, K.; Górecka, D.; Szwengiel, A.; Sulewska, H.; Kreft, I.; Gujska, E.; Walkowiak, J. The Content of Dietary Fiber and Polyphenols in Morphological Parts of Buckwheat (Fagopyrum tataricum). Plant Foods Hum. Nutr. 2018, 73, 82–88. [Google Scholar] [CrossRef]
- Witkowska, A.; Borawska, M.; Lozowska, A.; Siwicka, J. Zawartość błonnika pokarmowego całkowitego w wybranych owocach [Total dietary fiber content in selected fruits]. Brom. Chem. Toks. 1998, 31, 115–118. (In Polish) [Google Scholar]
- Garcia-Amezquita, L.E.; Tejada-Ortigoza, V.; Serna-Saldivar, S.O.; Welti-Chanes, J. Dietary fiber concentrates from fruit and vegetable by-products: Processing, modification, and application as functional ingredients. Food Bioproc. Tech. 2018, 11, 1439–1463. [Google Scholar] [CrossRef]
- Grigelmo-Miguel, N.; Martín-Belloso, O. Comparison of dietary fibre from by-products of processing fruits and greens and from cereals. LWT—Food Sci. Technol. 1999, 32, 503–508. [Google Scholar] [CrossRef]
- Pereira-Netto, A.B. Tropical fruits as natural, exceptionally rich, sources of bioactive compounds. Int. J. Fruit Sci. 2018, 18, 231–242. [Google Scholar] [CrossRef]
- Moreno-Hernández, C.L.; Sáyago-Ayerdi, S.G.; García-Galindo, H.S.; Mata-Montes De Oca, M.; Montalvo-González, E. Effect of the application of 1-methylcyclopropene and wax emulsions on proximate analysis and some antioxidants of soursop (Annona muricata L.). Sci. World J. 2014, 2014, 896853. [Google Scholar] [CrossRef] [PubMed]
Month of Measurement | Air Temperature (°C) | Precipitation (mm) | Soil Characteristics (mg dm−3 Soil) | |
---|---|---|---|---|
January | −0.6 | 80.2 | N-NH4 + N-NO3 | 12 |
February | −0.7 | 33.0 | P | 96 |
March | 3.9 | 30.0 | K | 60 |
April | 6.1 | 65.0 | Ca | 2598 |
May | 12.0 | 66.4 | Mg | 155 |
June | 19.9 | 22.6 | pHH2O | 6.85 |
July | 20.7 | 19.4 | EC (mS cm−1) | 0.11 |
August | 17.5 | 57.2 | ||
September | 15.1 | 32.0 | ||
October | 9.6 | 34.8 | ||
November | 5.5 | 73.8 | ||
December | −0.8 | 29.4 | ||
Average temperature | 9.0 | |||
Total precipitation | 543.8 |
Extract from Pear Fruits | TPC * (mg GAE/g d.m.) | DPPH * (mg Trolox/g d.m.) | ABTS * (mg Trolox/g d.m.) | FRAP * (mmol Fe2+/L) |
---|---|---|---|---|
P. pyraster | 197.15 | 289.81 | 11.33 | 18.20 |
P. ×myloslavensis | 61.71 | 134.39 | 0.69 | 0.60 |
P. pyraster | P. ×myloslavensis | |
---|---|---|
Phenolic compounds (mg/g d.m.) | ||
Chlorogenic acid | 0.1225 ** | 0.0762 ** |
(−) Epicatechin | 0.0235 * | 0.0133 * |
Quercetin | 0.0193 *** | 0.0086 *** |
Synapic acid | 0.0182 ** | 0.0076 ** |
Vanillic acid | 0.0172 *** | 0.0016 *** |
(+) Catechin | 0.0100 * | 0.0075 * |
Ferrulic acid | 0.0090 ** | 0.0018 ** |
Organic acids (mg/g d.m.) | ||
Citric acid | 0.0813 *** | 0.0440 *** |
Maleic acid | 0.0127 ** | 0.0067 ** |
Fumaric acid | 0.0023 *** | 0.0013 *** |
Shikimic acid | 0.0016 * | 0.0008 * |
Extract from Pear Fruits | Content of Conjugated Dienes (10−5 M) | |
---|---|---|
After Emulsion Preparation | After 19 h Emulsion Incubation | |
P. pyraster 0.25% | 1.11 | 1.73 * |
P. pyraster 0.5% | 1.02 | 1.65 *** |
P. ×myloslavensis 0.25% | 0.85 | 4.53 * |
P. ×myloslavensis 0.5% | 0.86 | 2.40 *** |
Control | 1.00 | 5.59 |
P. pyraster | P. ×myloslavensis | |
---|---|---|
TDF | 36.45 *** | 24.74 *** |
IDF | 32.49 *** | 20.86 *** |
SDF | 3.75 * | 3.67 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hęś, M.; Antkowiak, W.; Stuper-Szablewska, K.; Dziedzic, K.; Jessa, M.; Ratajczak, P. Assessment of the Antioxidative Properties of Extracts from the Fruits of Pyrus pyraster (L.) Burgsd and Pyrus ×myloslavensis Czarna & Antkowiak Grown under Natural Environmental Conditions. Agriculture 2024, 14, 1790. https://doi.org/10.3390/agriculture14101790
Hęś M, Antkowiak W, Stuper-Szablewska K, Dziedzic K, Jessa M, Ratajczak P. Assessment of the Antioxidative Properties of Extracts from the Fruits of Pyrus pyraster (L.) Burgsd and Pyrus ×myloslavensis Czarna & Antkowiak Grown under Natural Environmental Conditions. Agriculture. 2024; 14(10):1790. https://doi.org/10.3390/agriculture14101790
Chicago/Turabian StyleHęś, Marzanna, Wojciech Antkowiak, Kinga Stuper-Szablewska, Krzysztof Dziedzic, Marta Jessa, and Paulina Ratajczak. 2024. "Assessment of the Antioxidative Properties of Extracts from the Fruits of Pyrus pyraster (L.) Burgsd and Pyrus ×myloslavensis Czarna & Antkowiak Grown under Natural Environmental Conditions" Agriculture 14, no. 10: 1790. https://doi.org/10.3390/agriculture14101790
APA StyleHęś, M., Antkowiak, W., Stuper-Szablewska, K., Dziedzic, K., Jessa, M., & Ratajczak, P. (2024). Assessment of the Antioxidative Properties of Extracts from the Fruits of Pyrus pyraster (L.) Burgsd and Pyrus ×myloslavensis Czarna & Antkowiak Grown under Natural Environmental Conditions. Agriculture, 14(10), 1790. https://doi.org/10.3390/agriculture14101790