Biochemical Parameters of Fallow Light Soil Enriched with Sewage Sludge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Field Experiment
2.2. Sampling and Analyses
2.3. Statistical Analysis
3. Results and Discussion
3.1. Content of TOC, TN in the Soil and C/N
3.2. Heavy Metal Content in Soil
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kumm, K.I.; Hessle, A. Economic Comparison between Pasture-Based Beef Production and Afforestation of Abandoned Land in Swedish Forest Districts. Land 2020, 9, 42. [Google Scholar] [CrossRef]
- Leal Filho, W.; Mandel, M.; Al-Amin, A.Q.; Feher, A.; Chiappetta Jabbour, C.J. An Assessment of the Causes and Consequences of Agricultural Land Abandonment in Europe. Int. J. Sustain. Dev. World Ecol. 2017, 24, 554–560. [Google Scholar] [CrossRef]
- Subedi, Y.R.; Kristiansen, P.; Cacho, O. Drivers and consequences of agricultural land abandonment and its reutilisation pathways: A systematic review. Environ. Dev. 2021, 3, 100681. [Google Scholar] [CrossRef]
- Anguiano, E.; Bamps, C.; Terres, J.; Pointereau, P.; Coulon, F.; Girard, P.; Lambotte, M.; Stuczynski, T.; Sanchez Ortega, V.; Del Rio, A. Analysis of Farmland Abandonment and the Extent and Location of Agricultural Areas That Are Actually Abandoned or Are in Risk to Be Abandoned; EUR 23411 EN, JRC46185; OPOCE: Luxembourg, 2008; Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC46185 (accessed on 31 July 2024).
- García-Ruiz, J.M.; Lana-Renault, N. Hydrological and erosive consequences of farmland abandonment in Europe, with special reference to the Mediterranean region—A review. Agric. Ecosyst. Environ. 2011, 140, 317–338. [Google Scholar] [CrossRef]
- Han, Z.; Song, W. Abandoned Cropland: Patterns and Determinants within the Guangxi Karst Mountainous Area, China. Appl. Geogr. 2020, 122, 102245. [Google Scholar] [CrossRef]
- Leirpoll, M.E.; Naess, J.S.; Cavalett, O.; Dorber, M.; Hu, X.; Cherubini, F. Optimal combination of bioenergy and solar photovoltaic for renewable energy production on abandoned cropland. Renew. Energy 2021, 168, 45–56. [Google Scholar]
- Valujeva, K.; Debernardini, M.; Freed, E.K.; Nipers, A.; Schulte, R.P.O. Abandoned farmland: Past failures or future opportunities for Europe’s Green Deal? A Baltic case-study. Environ. Sci. Policy 2022, 125, 175–184. [Google Scholar] [CrossRef]
- Sienkiewicz, S.; Żarczyński, P.J.; Krzebietke, S.J.; Wierzbowska, J.; Mackiewicz-Walec, E.; Jankowski, K.J. Effect of land conservation on content of organic carbon and total nitrogen in soil. Fresenius Environ. Bull. 2017, 26, 6517–6524. [Google Scholar]
- Kozak, M.; Pudełko, R. Impact Assessment of the Long-Term Fallowed Land on Agricultural Soils and the Possibility of Their Return to Agriculture. Agriculture 2021, 11, 148. [Google Scholar] [CrossRef]
- Hannam, I.; Boer, B. Legal and Institutional Frameworks for Sustainable Soils: A Preliminary Report; IUCN Environmental Policy and Law Paper No. 45; IUCN—The World Conservation Union: Gland, Switzerland; Cambridge, UK, 2001. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, EU Soil Strategy for 2030—Reaping the Benefits of Healthy Soils for People, Food, Nature and Climate; COM (2021) 699 Final of 17.11.2021, 1; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Frei, T.; Derks, J.; Fernández-Blanco, C.R.; Winkel, G. Narrating abandoned land: Perceptions of natural forest regrowth in Southwestern Europe. Land Use Policy 2020, 99, 105034. [Google Scholar] [CrossRef]
- Burland, A.; von Cossel, M. Towards Managing Biodiversity of European Marginal Agricultural Land for Biodiversity-Friendly Biomass Production. Agronomy 2023, 13, 1651. [Google Scholar] [CrossRef]
- Shortall, O.K.; Anker, H.T.; Sandøe, P.; Gamborg, C. Room at the margins for energy-crops? A qualitative analysis of stakeholder views on the use of marginal land for biomass production in Denmark. Biomass Bioenergy 2019, 123, 51–58. [Google Scholar] [CrossRef]
- Żarczyński, P.J.; Krzebietke, S.J.; Sienkiewicz, S.; Wierzbowska, J. The Role of Fallows in Sustainable Development. Agriculture 2023, 13, 2174. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Mayer, M.; Krause, H.M.; Fliessbach, A.; Mäder, P.; Steffens, M. Fertilizer quality and labile soil organic matter fractions are vital for organic carbon sequestration in temperate arable soils within a long-term trial in Switzerland. Geoderma 2022, 426, 116080. [Google Scholar] [CrossRef]
- Moinard, V.; Levavasseur, F.; Houot, S. Current and potential recycling of exogenous organic matter as fertilizers and amendments in a French peri-urban territory. Resour. Conserv. Recycl. 2021, 169, 105523. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Frattarola, A.; Miino, M.C.; Padovani, S.; Katsoyiannis, I.; Torretta, V. Legislation for the reuse of biosolids on agricultural land in Europe: Overview. Sustainability 2019, 11, 6015. [Google Scholar] [CrossRef]
- Kacprzak, M.; Neczaj, E.; Fijałkowski, K.; Grobelak, A.; Grosser, A.; Worwag, M.; Rorat, A.; Brattebo, H.; Almås, Å.; Singh, B.R. Sewage sludge disposal strategies for sustainable development. Environ. Res. 2017, 156, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Deviatkin, I.; Lyu, L.; Chen, S.; Havukainen, J.; Wang, F.; Horttanainen, M.; Mänttäri, M. Technical implications and global warming potential of recovering nitrogen released during continuous thermal drying of sewage sludge. Waste Manag. 2019, 90, 132–140. [Google Scholar] [CrossRef]
- El Moussaoui, T.; Belloulid, M.O.; Elharbili, R.; El Ass, K.; Ouazzani, N. Simultaneous assessment of purification performances and wastewater byproducts management plans towards a circular economy: Case of Marrakesh WWTP Case Stud. Chem. Environ. Eng. 2022, 6, 100228. [Google Scholar] [CrossRef]
- Dhanker, R.; Chaudhary, S.; Goyal, S.; Garg, V.K. Influence of urban sewage sludge amendment on agricultural soil parameters. Environ. Technol. Innov. 2021, 23, 101642. [Google Scholar] [CrossRef]
- Mattana, S.; Petrovičová, B.; Landi, L.; Gelsomino, A.; Cortés, P.; Ortiz, O.; Renella, G. Sewage sludge processing determines its impact on soil microbial community structure and function. Appl. Soil Ecol. 2014, 75, 150–161. [Google Scholar] [CrossRef]
- Alvarenga, P.; Palma, P.; Mourinha, C.; Farto, M.; Dôres, J.; Patanita, M.; Cunha-Queda, C.; Natal-da-Luz, T.; Renaud, M.; Sousa, J.P. Recycling organic wastes to agricultural land as a way to improve its quality: A field study to evaluate benefits and risks. Waste Manag. 2017, 61, 582–592. [Google Scholar] [CrossRef] [PubMed]
- Scotti, R.; Pane, C.; Spaccini, R.; Palese, A.M.; Piccolo, A.; Celano, G.; Zaccardelli, M. On-farm compost: A useful tool toimprove soil quality under intensive farming systems. Appl. Soil Ecol. 2016, 107, 13–23. [Google Scholar] [CrossRef]
- Melo, W.; Delarica, D.; Guedes, A.; Lavezzo, L.; Donha, R.; de Araújo, A.; de Melo, G.; Macedo, F. Ten years of application of sewage sludge on tropical soil. A balance sheet on agricultural crops and environmental quality. Sci. Total Environ. 2018, 643, 1493–1501. [Google Scholar] [CrossRef] [PubMed]
- Lasaridi, K.E.; Manios, T.; Stamatiadis, S.; Chroni, C.; Kyriacou, A. The evaluation of hazards to man and the environment during the composting of sewage sludge. Sustainability 2018, 10, 2618. [Google Scholar] [CrossRef]
- Duan, B.; Feng, Q. Comparison of the Potential Ecological and Human Health Risks of Heavy Metals from Sewage Sludge and Livestock Manure for Agricultural Use. Toxics 2021, 9, 145. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, T.; Ge, Y.; Jia, Y. Studies on land application of sewage sludge and its limiting factors. J. Hazard. Mater. 2008, 160, 554–558. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Levavasseur, F.; Montenach, D.; Lollier, M.; Morel, C.; Houot, S. An 18-year field experiment to assess how various types of organic waste used at European regulatory rates sustain crop yields and C, N, P, and K dynamics in a French calcareous soil. Soil Tillage Res. 2022, 221, 105415. [Google Scholar] [CrossRef]
- Sainju, U.M.; Liptzin, D.; Dangi, S.M. Enzyme activities as soil health indicators in relation to soil characteristics and crop production. Agrosyst. Geosci. Environ. 2022, 5, e20297. [Google Scholar] [CrossRef]
- Kang, H.; Kim, S.Y.; Freeman, C. Enzyme activities. In Methods in Biogeochemistry of Wetlands; SSSA Book Series; Delaune, R.D., Reddy, K.R., Richardson, C.J., Megonigal, J.P., Eds.; Wiley: Hoboken, NJ, USA, 2013; Volume 10, pp. 373–384. [Google Scholar]
- Kompała-Bąba, A.; Bierza, W.; Sierka, E.; Błońska, A.; Besenyei, L.; Woźniak, G. The role of plants and soil properties in the enzyme activities of substrates on hard coal mine spoil heaps. Sci. Rep. 2021, 11, 5155. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, G.; Shahzad, T.; Andanson, L.; Bahn, M.; Wallenstein, M.D.; Fontaine, S. Catalytic power of enzymes decreases with temperature: New insights for understanding soil C cycling and microbial ecology under warming. Glob. Change Biol. 2018, 24, 4238–4250. [Google Scholar] [CrossRef] [PubMed]
- Kobierski, M.; Lemanowicz, J.; Wojewódzki, P.; Kondratowicz-Maciejewska, K. The effect of organic and conventional farming systems with different tillage on soil properties and enzymatic activity. Agronomy 2020, 10, 1809. [Google Scholar] [CrossRef]
- Lemanowicz, J.; Bartkowiak, A.; Lamparski, R.; Wojewódzki, P.; Pobereżny, J.; Wszelaczyńska, E.; Szczepanek, M. Physicochemical and enzymatic soil properties influenced by cropping of primary wheat under organic and conventional farming systems. Agronomy 2020, 10, 1652. [Google Scholar] [CrossRef]
- Futa, B.; Myszura-Dymek, M.; Wesołowska, S. Integrated assessment of the impact of conventional and organic farming systems on soil biochemical indicators. Int. Agrophys. 2024, 38, 177–185. [Google Scholar] [CrossRef]
- Karimi, B.; Masson, V.; Guilland, C.; Leroy, E.; Pellegrinelli, S.; Giboulot, E.; Maron, P.-A.; Ranjard, L. Ecotoxicity of copper input and accumulation for soil biodiversity in vineyards. Environ. Chem. Lett. 2021, 19, 2013–2030. [Google Scholar] [CrossRef]
- Hassan, A.; Hamid, F.S.; Ossai, I.C.; Auta, H.S.; Jeffrey, A.P.; Barasarathi, J.; Ahmed, A. Microbial Enzymes: Role in Soil Fertility. In Ecological Interplays in Microbial Enzymology; Environmental and Microbial Biotechnology; Maddela, N.R., Abiodun, A.S., Prasad, R., Eds.; Springer: Singapore, 2022. [Google Scholar]
- Utobo, E.B.; Tewari, L. Soil enzymes as bioindicators of soil ecosystem status. Appl. Ecol. Environ. Res. 2015, 13, 147–169. [Google Scholar]
- Perez-Guzman, L.; Phillips, L.A.; Acevedo, M.A.; Acosta-Martinez, V. Comparing biological methods for soil health assessments: EL-FAME, enzyme activities, and qPCR. Soil Sci. Soc. Am. J. 2020, 85, 636–653. [Google Scholar] [CrossRef]
- Bastida, F.; Zsolnay, A.; Hernández, T.; García, C. Past, present and future of soil quality indices: A biological perspective. Geoderma 2008, 147, 159–171. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports no. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Żukowska, G.; Flis-Bujak, M.; Baran, S. Influence of fertilization with sewage sludge on organic matter in light soil used for wicker growing. Acta Agrophys. 2002, 73, 357–367. [Google Scholar]
- ISO 18400:1998; International Organization for Standardization. Soil Quality. Sampling. International Organization for Standardization: Geneva, Switzerland, 2018.
- ISO 14235:1998; Soil Quality. Determination of Organic Carbon by Sulfochromic Oxidation. International Organization for Standardization: Geneva, Switzerland, 1998.
- ISO 13878:1998; Soil Quality. Determination of Total Nitrogen Content by Dry Combustion. International Organization for Standardization: Geneva, Switzerland, 1998.
- PN-EN 16170:2017-02; Sewage Sludge, Treated Bio-Waste and Soil—Determination of Elements by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Polish Standardization Committee: Warsaw, Poland, 2017.
- Schinner, F.; Ohlinger, R.; Kandeler, E.; Margesin, R. Methods in Soil Biology; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Van Leeuwena, C.C.E.; Cammeraata, E.L.H.; De Venteb, J.; Boix-Fayosb, C. The evolution of soil conservation policies targeting land abandonment and soil erosion in Spain: A review. Land Use Policy 2019, 83, 174–186. [Google Scholar] [CrossRef]
- Gerke, J. The Central Role of Soil Organic Matter in Soil Fertility and Carbon Storage. Soil Syst. 2022, 6, 33. [Google Scholar] [CrossRef]
- Cotrufo, M.; Lavallee, J.M. Chapter One—Soil Organic Matter Formation, Persistence, and Functioning: A Synthesis of Current Understanding to Inform Its Conservation and Regeneration. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2022; Volume 172, pp. 1–66. [Google Scholar]
- Gryta, A.; Frąc, M.; Oszust, K. Genetic and Metabolic Diversity of Soil Microbiome in Response to Exogenous Organic Matter Amendments. Agronomy 2020, 10, 546. [Google Scholar] [CrossRef]
- Latare, A.M.; Kumar, O.; Singh, S.K.; Gupta, A. Direct and residual effect of sewage sludge on yield, heavy metals content and soil fertility under rice–wheat system. Ecol. Eng. 2014, 69, 17–24. [Google Scholar] [CrossRef]
- Zoghlami, R.I.; Hamdi, H.; Mokni-Tlili, S.; Khelil, M.N.; Aissa, M.B.; Jedidi, N. Changes in light-textured soil parameters following two successive annual amendments with urban sewage sludge. Ecol. Eng. 2016, 95, 604–611. [Google Scholar] [CrossRef]
- Mohammad, A.O. Assessing changes in soil microbial population with some soil physical and chemical properties. Int. J. Plant Anim. Environ. Sci. 2015, 5, 117–123. [Google Scholar]
- Achkir, A.; Aouragh, A.; El Mahi, M.; Lotfi, E.M.; Kabriti, M.; Abid, A.; El Moussaoui, T.; Yagoubi, M. Benefits and Risks of Liquid Sewage Sludge Recycling in Agricultural Spreading—A Case Study of WWTP of Skhirat, Morocco. J. Ecol. Eng. 2023, 24, 277–288. [Google Scholar] [CrossRef]
- Myszura-Dymek, M.; Żukowska, G. The Influence of Sewage Sludge Composts on the Enzymatic Activity of Reclaimed Post-Mining Soil. Sustainability 2023, 15, 4749. [Google Scholar] [CrossRef]
- Dubis, B.; Jankowski, K.J.; Załuski, D.; Sokólski, M. The effect of sewage sludge fertilization on the biomass yield of giant miscanthus and the energy balance of the production process. Energy 2020, 206, 118189. [Google Scholar] [CrossRef]
- Shaddel, S.; Bakhtiary-Davijany, H.; Kabbe, C.; Dadgar, F.; Østerhu, S.W. Sustainable sewage sludge management: From current practices to emerging nutrient recovery technologies. Sustainability 2019, 11, 3435. [Google Scholar] [CrossRef]
- Andreoli, C.V.; Pegorini, E.S.; Fernandes, F.; Santos, H.F. Land application of sewage sludge. In Sludge Treatment and Disposal; IWA Publishing: London, UK, 2007; pp. 162–206. [Google Scholar]
- Nicolas, C.; Kennedy, J.N.; Hernandez, T.; Garcia, C.; Six, J. Soil aggregation in a semiarid soil amended with composted and non-composted sewage sludge. A field experiment. Geoderma 2014, 219–220, 24–31. [Google Scholar] [CrossRef]
- Hamdi, H.; Hechmi, S.; Khelil, M.N.; Zoghlami, I.R.; Benzarti, S.; Mokni-Tlili, S.; Hassen, A.; Jedidi, N. Repetitive land application of urban sewage sludge: Effect of amendment rates and soil texture on fertility and degradation parameters. Catena 2019, 172, 11–20. [Google Scholar] [CrossRef]
- Roig, N.; Sierra, J.; Martí, E.; Nada, M.; Schuhmacher, M.; Domingo, J.L. Long-term amendment of Spanish soils with sewage sludge: Effects on soil functioning. Agric. Ecosyst. Environ. 2012, 158, 41–48. [Google Scholar] [CrossRef]
- Mañas, P.; Castro, E.; Vila, P.; de las Heras, J. Use of waste materials as nursery growing media for Pinus halepensis production. Eur. J. For. Res. 2010, 129, 521–530. [Google Scholar] [CrossRef]
- Egiarte, G.; Camps Arbestain, M.; Alonso, A.; Ruiz-Romera, E.; Pinto, M. Effect of repeated applications of sewage sludge on the fate of N in soils under Monterey pine stands. For. Ecol. Manag. 2005, 216, 257–269. [Google Scholar] [CrossRef]
- Regulation of the Minister of the Environment of 6 February 2015 on municipal sewage sludge (Journal of Laws of 2015, Item 257). Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20150000257/O/D20150257.pdf (accessed on 15 August 2024).
- Baran, S.; Urban, D.; Wójcikowska-Kapusta, A.; Bik-Małodzińska, M.; Żukowska, G.; Wesołowska-Dobruk, S.; Kwiatkowski, Z. Phytoindicative evaluation of habitat conditions of soilless formations reclaimed with flotation sludge, sewage sludge and used mineral wool under the influence of the Jeziórko Sulphur Mine. J. Elem. 2015, 20, 7–18. [Google Scholar]
- European Union. Council Directive of 12 June 1986 on the Protection of the Environment, and in Particular of the Soil, When Sewage Sludge Is Used in Agriculture (86/278/EEC). 1986. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A01986L0278-20220101 (accessed on 3 August 2024).
- Regulation of the Minister of the Environment of 1 September 2016 on the Method of Conducting the Assessment of Ground Surface Contamination. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20160001395/O/D20161395.pdf (accessed on 15 August 2024).
- Licinio, A.; Laur, J.; Pitre, F.E.; Labrecque, M. Willow and Herbaceous Species’ Phytoremediation Potential in Zn-Contaminated Farm Field Soil in Eastern Québec, Canada: A Greenhouse Feasibility Study. Plants 2023, 12, 167. [Google Scholar] [CrossRef]
- Dickinson, N.M.; Pulford, I.D. Cadmium phytoextraction usingshort-rotation coppice Salix: The evidence trail. Environ. Int. 2005, 31, 609–613. [Google Scholar] [CrossRef]
- Cosio, C.; Vollenweider, P.; Keller, C. Localization and effects ofcadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.) I. Macrolocalization and phytotoxic effects ofcadmium. Environ. Exp. Bot. 2006, 58, 64–74. [Google Scholar] [CrossRef]
- Mleczek, M.; Rutkowski, P.; Rissmann, I.; Kaczmarek, Z.; Golinski, P.; Szentner, K.; Strażyńska, K.; Stachowiak, A. Biomass productivity and phytoremediation potential of Salix alba and Salix viminalis. Biomass Bioenergy 2010, 34, 1410–1418. [Google Scholar] [CrossRef]
- Kubier, A.; Wilkin, R.T.; Pichler, T. Cadmium in soils and groundwater: A review. Appl. Geochem. 2019, 108, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Burns, R.G.; DeForest, J.L.; Marxsen, J.; Sinsabaugh, R.L.; Stromberger, M.E.; Wallenstein, M.D.; Weintraub, M.N.; Zoppini, A. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biol. Biochem. 2013, 58, 216–234. [Google Scholar] [CrossRef]
- Tiemann, L.K.; Billings, S.A. Indirect effects of nitrogen amendments on organic substrate quality increase enzymatic activity driving decomposition in a mesic grassland. Ecosystems 2011, 14, 234–247. [Google Scholar] [CrossRef]
- Siebielec, S.; Siebielec, G.; Ukalska-Jaruga, A.; Urbaniak, M. Enzymatic activity in soil treated with exogenous organic matter. Pol. J. Agron. 2021, 47, 87–94. [Google Scholar]
- Frąc, M.; Jezierska-Tys, S. Agricultural utilisation of dairy sewage sludge: Its effect on enzymatic activity and microorganisms of the soil environment. Afric. J. Microb. Res. 2011, 5, 1755. [Google Scholar]
- Franco-Otero, V.G.; Soler-Rovira, P.; Hernández, D.; López-De-Sá, E.G.; Plaza, C. Short-term effects of organic municipal wastes on wheat yield, microbial biomass, microbial activity, and chemical properties of soil. Biol. Fertil. Soils 2012, 48, 205. [Google Scholar] [CrossRef]
- Medina, J.; Monreal, C.; Barea, J.M.; Arriagada, C.; Borie, F.; Cornejo, P. Crop residue stabilization and application to agricultural and degraded soils: A review. Waste Manag. 2015, 42, 41–54. [Google Scholar] [CrossRef]
- Joniec, J. Enzymatic activity as an indicator of regeneration processes in degraded soil reclaimed with various types of waste. Int. J. Environ. Sci. Technol. 2018, 15, 2241–2252. [Google Scholar] [CrossRef]
- Skowrońska, M.; Bielińska, E.J.; Szymański, K.; Futa, B.; Antonkiewicz, J.; Kołodziej, B. An integrated assessment of the long-619 term impact of municipal sewage sludge on the chemical and biological properties of soil. Catena 2020, 189, 104484. [Google Scholar] [CrossRef]
- Jezierska-Tys, S.; Frąc, M. Impact of dairy sewage sludge on enzymatic activity and inorganic nitrogen concentrations in the soils. Int. Agrophysics 2009, 23, 31–37. [Google Scholar]
- Wolna-Maruwka, A.; Sulewska, H.; Niewiadomska, A.; Panasiewicz, K.; Borowiak, K.; Ratajczak, K. The Influence of Sewage Sludge and a Consortium of Aerobic Microorganisms Added to the Soil under a Willow Plantation on the Biological Indicators of Transformation of Organic Nitrogen Compounds. Pol. J. Environ. Stud. 2018, 27, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Nannipieri, P.; Giagnoni, L.; Landi, L.; Renella, G. Role of Phosphatase Enzymes in Soil. In Soil Biology, 26. Phosphorus in Action; Bünemann, E., Oberson, A., Frossard, A.E., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 2011; pp. 230–243. [Google Scholar]
- Margalef, O.; Sardans, J.; Fernández-Martínez, M.; Molowny-Horas, R.; Janssens, I.A.; Ciais, P.; Goll, D.; Richter, A.; Obersteiner, M.; Asensio, D.; et al. Global patterns of phosphatase activity in natural soils. Sci. Rep. 2017, 7, 1337. [Google Scholar] [CrossRef] [PubMed]
- Joniec, J.; Furczak, J.; Kwiatkowska, E. Application of biological indicators for estimation of remediation of soil degraded by sulphur industry. Ecol. Chem. Eng. S 2015, 22, 269–283. [Google Scholar] [CrossRef]
- Kandziora-Ciupa, M.; Ciepał, R.; Nadgórska-Socha, A. Assessment of Heavy Metals Contamination and Enzymatic Activity in Pine Forest Soils under Different Levels of Anthropogenic Stress. Pol. J. Environ. Stud. 2016, 25, 1045–1051. [Google Scholar] [CrossRef] [PubMed]
- Zawierucha, E.; Zawierucha, M.; Futa, B.; Mocek-Płóciniak, A. Impact of COVID-19 Pandemic Constraints on the Ecobiochemical Status of Cultivated Soils along Transportation Routes. Toxics 2013, 11, 329. [Google Scholar] [CrossRef] [PubMed]
- Aziza, K.; Naïma, E.G.; Naoual, R.; Khalid, D.; Mustapha, I.; Wifak, B. Leaching of heavy metals and enzymatic activities in un-inoculated and inoculated soils with Yeast Strains. Soil Sediment Contam. Int. J. 2020, 29, 860–879. [Google Scholar] [CrossRef]
- Lemanowicz, J.; Bartkowiak, A.; Zielińska, A.; Jaskulska, I.; Rydlewska, M.; Klunek, K.; Polkowska, M. The Effect of Enzyme Activity on Carbon Sequestration and the Cycle of Available Macro- (P, K, Mg) and Microelements (Zn, Cu) in Phaeozems. Agriculture 2023, 13, 172. [Google Scholar] [CrossRef]
- Kwiatkowska-Malina, J. Qualitative and quantitative soil organic matter estimation for sustainable soil management. J. Soils Sediment 2018, 18, 2801–2812. [Google Scholar] [CrossRef]
- García-Ruiz, R.; Ochoa, V.; Hinojosa, M.B.; Carreira, J.A. Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems. Soil Biol. Biochem. 2008, 40, 2137–2145. [Google Scholar] [CrossRef]
- Paz-Ferreiro, J.; Gascó, G.; Gutiérrez, B.; Mendez, A. Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil. Biol. Fertil. Soils 2012, 48, 511–517. [Google Scholar] [CrossRef]
- Lemanowicz, J. Activity of selected enzymes as markers of ecotoxicity in technogenic salinization soils. Environ. Sci. Pollut. Res. 2019, 26, 13014–13024. [Google Scholar] [CrossRef] [PubMed]
- Ghaemi, M.; Astaraei, A.R.; Emami, H.; Mahalati, M.N.; Sanaeinejad, S.H. Determining soil indicators for soil sustainability assessment using principal component analysis of Astan Quds-east of Mashhad-Iran. J. Soil Sci. Plant Nutr. 2014, 14, 987–1004. [Google Scholar] [CrossRef]
- Makó, A.; Tóth, G.; Máté, F.; Hermann, T. Soil productivity assessment based on the genetic soil subtypes. In Proceedings of the Conference Land Quality Assessment, Land Economic Evaluation and Land Use Information, Budapest-Keszthely, Hungary; Tóth, G., Németh, T., Gaál, Z., Eds.; MTA TAKI: Budapest, Hungary, 2007; pp. 39–44. [Google Scholar]
Properties | Units | Fallow Soil | Sewage Sludge | |
---|---|---|---|---|
Particle size composition | % (weight) fraction | Sand | 86.0 | - |
Silt | 7.0 | - | ||
Clay | 7.0 | - | ||
Reaction (pH unit) | H2O | 5.3 | 6.2 | |
KCl | 4.3 | 6.0 | ||
Hydrolytic acidity | cmol(+) kg−1 | 4.7 | 4.7 | |
Exchangeable cations | 1.3 | 50.0 | ||
Cation exchange capacity (CEC) of the soil | 6.0 | 54.7 | ||
Degree of saturation of the sorption complex | % | 21.7 | 91.4 | |
Available phosphorus (P) | mg kg−1 | 47 | 645.0 | |
Available potassium (K) | 35 | 192.0 | ||
Available magnesium (Mg) | 43 | 120.0 | ||
Total organic carbon (TOC) | g kg−1 | 11.2 | 210.0 | |
Total nitrogen (TN) | 1.4 | 17.8 | ||
TOC/NT | 7.9 | 11.8 | ||
Copper (Cu) | mg kg−1 | 3.5 | 86.0 | |
Zinc (Zn) | 33.0 | 2300.0 | ||
Lead (Pb) | 8.4 | 125.0 | ||
Cadmium (Cd) | 0.5 | 5.0 |
Enzymes | EC | Acronym | Substrate Name | Product Name | Unit Name |
---|---|---|---|---|---|
Neutral Phosphatase | 3.1.3 | APh | p-nitrophenyl phosphate disodium | p-nitrophenol (PNP) | mmol PNP kg−1 h−1 |
Urease | 3.5.1.5 | AU | urea | N-NH4+ | mg N-NH4+ kg−1 h−1 |
Proteases | 3.4.4 | APr | sodium caseinate | tyrosine | mg tyrosine kg−1 h−1 |
Dehydrogenses | 1.1 | ADh | 2.3.5-triphenyltetrazolium chloride (TTC) | triphenyl formazane (TPF) | mg TPF kg−1 24 h−1 |
Date of Sampling | Dose of EOM | Average for the Term | ||||
---|---|---|---|---|---|---|
g kg−1 | ||||||
S0 | S30 | S75 | S150 | S300 | ||
I | 10.65 ± 0.02 | 12.95 ± 0.02 | 13.42 ± 0.02 | 23.00 ± 0.08 | 33.40 ± 0.22 | 18.68 A |
II | 10.90 ± 0.08 | 13.91 ± 0.01 | 15.82 ± 0.02 | 26.17 ± 0.17 | 30.30 ± 0.50 | 19.42 B |
III | 11.17 ± 0.02 | 14.01 ± 0.02 | 21.82 ± 0.02 | 29.27 ± 0.26 | 37.40 ± 0.22 | 22.57 C |
IV | 12.67 ± 0.24 | 15.70 ± 0.24 | 22.17 ± 0.25 | 20.30 ± 0.50 | 42.03 ± 0.12 | 22.74 C |
Average for the variant | 11.35 a | 14.14 ab | 18.31 b | 24.68 c | 35.78 d |
Date of Sampling | Dose of EOM | Average for the Term | ||||
---|---|---|---|---|---|---|
g kg−1 | ||||||
S0 | S30 | S75 | S150 | S300 | ||
I | 0.92 ± 0.02 | 1.37 ± 0.00 | 2.07 ± 0.12 | 1.96 ± 0.02 | 2.26 ± 0.01 | 1.71 A |
II | 1.25 ± 0.02 | 1.60 ± 0.01 | 2.17 ± 0.02 | 2.44 ± 0.04 | 3.14 ± 0.02 | 2.13 A |
III | 1.35 ± 0.03 | 1.70 ± 0.02 | 2.27 ± 0.02 | 2.63 ± 0.02 | 3.43 ± 0.01 | 2.28 AB |
IV | 2.22 ± 0.02 | 1.74 ± 0.02 | 2.62 ± 0.01 | 2.72 ± 0.01 | 6.09 ± 0.02 | 3.08 B |
Average for the variant | 1.44 a | 1.61 a | 2.28 b | 2.44 b | 3.79 c |
Date of Sampling | Dose of Sewage Sludge | ||||
---|---|---|---|---|---|
S0 | S30 | S75 | S150 | S300 | |
I | 11.6 | 9.5 | 6.5 | 11.8 | 10.4 |
II | 8.7 | 8.7 | 7.3 | 10.7 | 9.7 |
III | 8.3 | 8.3 | 9.6 | 11.1 | 10.9 |
IV | 5.7 | 9.0 | 8.5 | 7.5 | 6.9 |
Date of Sampling | Dose of EOM | Average for the Term | ||||
---|---|---|---|---|---|---|
mmol PNP kg−1 h−1 | ||||||
S0 | S30 | S75 | S150 | S300 | ||
I | 14.96 ± 0.32 | 19.76 ± 0.14 | 31.28 ± 1.06 | 82.83 ± 0.07 | 94.68 ± 0.70 | 48.70 A |
II | 17.91 ± 0.70 | 37.82 ± 0.40 | 47.03 ± 0.11 | 78.50 ± 0.04 | 78.76 ± 1.06 | 52.01 B |
III | 16.12 ±0.07 | 70.94 ± 0.14 | 79.90 ± 1.06 | 77.98 ± 0.45 | 77.62 ± 0.70 | 55.34 C |
IV | 22.26 ± 0.07 | 58.54 ± 0.38 | 59.40 ± 0.38 | 64.26 ± 1.06 | 72.25 ± 0.78 | 64.52 C |
Average for the variant | 17.81 a | 46.77 b | 54.40 c | 75.90 d | 80.83 e |
Date of Sampling | Dose of EOM | Average for the Term | ||||
---|---|---|---|---|---|---|
mg N-NH4+ kg−1 h−1 | ||||||
S0 | S30 | S75 | S150 | S300 | ||
I | 18.44 ± 0.04 | 36.48 ± 0.06 | 41.33 ± 0.40 | 51.80 ± 0.08 | 56.41 ± 0.30 | 40.89 D |
II | 17.96 ± 0.04 | 26.35 ± 0.25 | 27.68 ± 0.09 | 29.57 ± 0.29 | 33.36 ± 0.26 | 26.99 C |
III | 13.70 ± 0.01 | 14.49 ± 0.13 | 15.53 ± 0.05 | 15.10 ± 0.08 | 26.06 ± 0.04 | 16.98 B |
IV | 11.05 ± 0.00 | 11.09 ± 0.08 | 12.86 ± 0.04 | 13.40 ± 0.02 | 16.90 ± 0.07 | 13.06 A |
Average for the variant | 15.29 a | 22.10 b | 24.35 b | 27.47 c | 33.18 d |
Date of Sampling | Dose of EOM | Average for the Term | ||||
---|---|---|---|---|---|---|
mg Tyrosine kg−1 h−1 | ||||||
S0 | S30 | S75 | S150 | S300 | ||
I | 15.89 ± 0.01 | 23.12 ± 0.02 | 26.17 ± 0.05 | 26.30 ± 0.01 | 32.09 ± 0.07 | 24.71 A |
II | 16.88 ± 0.03 | 24.40 ± 0.01 | 26.43 ± 0.09 | 38.22 ± 0.02 | 41.52 ± 0.06 | 29.49 B |
III | 20.85 ± 0.18 | 33.16 ± 0.20 | 40.73 ± 0.02 | 39.19 ± 0.02 | 48.12 ± 0.06 | 36.42 C |
IV | 38.64 ± 0.18 | 48.70 ± 0.02 | 67.28 ± 0.02 | 64.26 ± 0.04 | 5120 ± 0.02 | 54.02 D |
Average for the variant | 23.06 a | 32.34 b | 40.15 c | 41.99 c | 43.24 c |
Date of Sampling | Dose of EOM | Average for the Term | ||||
---|---|---|---|---|---|---|
mg TPF kg−1 24 h−1 | ||||||
S0 | S30 | S75 | S150 | S300 | ||
I | 1.86 ± 0.01 | 1.88 ± 0.00 | 3.62 ± 0.01 | 8.67 ± 0.03 | 2.49 ± 0.00 | 3.62 D |
II | 1.25 ± 0.00 | 1.41 ± 0.01 | 2.88 ± 0.02 | 3.62 ± 0.03 | 2.35 ± 0.00 | 2.30 C |
III | 1.28 ± 0.01 | 1.40 ± 0.01 | 2.09 ± 0.02 | 2.20 ± 0.01 | 2.25 ± 0.02 | 1.80 B |
IV | 1.22 ± 0.01 | 1.26 ± 0.01 | 1.97 ± 0.01 | 1.97 ± 0.02 | 2.13 ± 0.04 | 1.71 A |
Average for the variant | 1.40 a | 1.49 a | 2.64 b | 4.12 c | 2.31 b |
TOC | TN | Zn | Cu | Pb | Cd | APh | AU | APr | GMea | |
---|---|---|---|---|---|---|---|---|---|---|
TOC | 0.945 | 0.989 | 0.924 | 0.969 | 0.955 | 0.932 | 0.952 | ns | 0.921 | |
TN | * | 0.978 | 0.993 | ns | 0.934 | ns | 0.934 | ns | ns | |
Zn | ** | ** | 0.955 | 0.924 | 0.968 | 0.916 | 0.96 | ns | 0.908 | |
Cu | * | ** | * | ns | 0.896 | ns | 0.903 | ns | ns | |
Pb | ** | - | * | - | 0.906 | 0.931 | 0.912 | ns | 0.907 | |
Cd | * | * | ** | * | * | 0.974 | 0.996 | 0.951 | 0.950 | |
APh | * | - | * | - | * | ** | 0.971 | 0.96 | 0.981 | |
AU | * | * | * | * | * | ** | ** | 0.93 | 0.93 | |
APr | - | - | - | - | - | * | * | * | 0.969 | |
GMea | * | - | * | - | * | * | ** | * | ** |
Date of Sampling | Dose of EOM | Average for the Term | ||||
---|---|---|---|---|---|---|
S0 | S30 | S75 | S150 | S300 | ||
I | 8.88 | 13.31 | 18.70 | 31.45 | 25.55 | 19.58 B |
II | 9.08 | 13.61 | 17.74 | 23.80 | 22.50 | 17.35 A |
III | 8.77 | 14.78 | 17.77 | 17.85 | 21.34 | 16.10 A |
IV | 11.53 | 14.13 | 18.10 | 18.17 | 19.37 | 16.26 A |
Average for the variant | 9.56 a | 13.96 b | 18.08 c | 22.82 d | 22.19 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żukowska, G.; Futa, B.; Myszura-Dymek, M. Biochemical Parameters of Fallow Light Soil Enriched with Sewage Sludge. Agriculture 2024, 14, 1810. https://doi.org/10.3390/agriculture14101810
Żukowska G, Futa B, Myszura-Dymek M. Biochemical Parameters of Fallow Light Soil Enriched with Sewage Sludge. Agriculture. 2024; 14(10):1810. https://doi.org/10.3390/agriculture14101810
Chicago/Turabian StyleŻukowska, Grażyna, Barbara Futa, and Magdalena Myszura-Dymek. 2024. "Biochemical Parameters of Fallow Light Soil Enriched with Sewage Sludge" Agriculture 14, no. 10: 1810. https://doi.org/10.3390/agriculture14101810
APA StyleŻukowska, G., Futa, B., & Myszura-Dymek, M. (2024). Biochemical Parameters of Fallow Light Soil Enriched with Sewage Sludge. Agriculture, 14(10), 1810. https://doi.org/10.3390/agriculture14101810