Industrial Agglomeration, Land Consolidation, and Agricultural Energy Inefficiency in China: An Analysis Using By-Production Technology and Simultaneous Equations Model
Abstract
:1. Introduction
2. The Literature Review and Hypotheses
2.1. Industrial Agglomeration and Agricultural Energy Inefficiency
2.2. Moderating Effect of Land Consolidation
3. Methodology and Data
3.1. Methodology
3.1.1. Measurement Methods of Agricultural Energy Inefficiency
3.1.2. Simultaneous Equations Model
3.2. Data
3.2.1. Variable Selection
3.2.2. Data Source
4. Results
4.1. The Spatiotemporal Variation in Agricultural Energy Inefficiency
4.2. The Estimation Results of the Simultaneous Equations Model
4.2.1. Baseline Regression Results
4.2.2. Heterogeneity Analysis
4.2.3. Estimation Results of the Extended Simultaneous Equations Model
5. Conclusions and Policy Implications
- (1)
- The results obtained from the by-production technology model indicate that agricultural energy inefficiency is increasing, and the growth trend of economic inefficiency is greater than that of environmental inefficiency. Moreover, there exist regional disparities in both economic and environmental inefficiencies across the eastern, central, and western regions as well as between major grain-producing areas and non-major grain-producing areas.
- (2)
- There is a significant interaction effect between industrial agglomeration and agricultural energy inefficiency in China. Industrial agglomeration exacerbates both economic and environmental inefficiencies in agricultural energy use. Conversely, economic inefficiency in agricultural energy diminishes the level of industrial agglomeration and exacerbates environmental inefficiency. Similarly, environmental inefficiency in agricultural energy promotes industrial agglomeration while exacerbating economic inefficiency.
- (3)
- The relationship between industrial agglomeration and agricultural energy inefficiency varies by region. The eastern region exhibits greater variability, where industrial agglomeration helps to mitigate both economic and environmental inefficiencies in agricultural energy use. Economic inefficiency further suppresses environmental inefficiency, while environmental inefficiency exacerbates economic inefficiency. In non-major grain-producing areas, economic inefficiency also predicts environmental inefficiency. The estimated coefficients in other regions generally align with those found in the national sample.
- (4)
- The moderating effects of land consolidation on the relationship between industrial agglomeration and agricultural energy inefficiency are different depending on the level of economic development and the type of agricultural functional zones. In the whole country, central regions, major grain production areas, and non-major grain production areas, land consolidation can reduce the deterioration of agricultural energy inefficiency caused by industrial agglomeration; in the eastern region, land consolidation strengthens the inhibitory effect of industrial agglomeration on energy inefficiency. At the same time, the marginal effects of the interaction terms of land consolidation in major grain production areas on economic inefficiency and environmental inefficiency are greater than those in non-major grain production areas.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Manioudis, M.; Meramveliotakis, G. Broad strokes towards a grand theory in the analysis of sustainable development: A return to the classical political economy. New Political Econ. 2022, 27, 866–878. [Google Scholar] [CrossRef]
- Feng, D.; Xu, T. The historical retrospect and logical evolution of China’s agricultural green development. Issues Agric. Econ. 2021, 10, 90–99. [Google Scholar]
- Tomislav, K. The concept of sustainable development: From its beginning to the contemporary issues. Zagreb Int. Rev. Econ. Bus. 2018, 21, 67–94. [Google Scholar]
- Zhang, L.; Pang, J.; Chen, X.; Lu, Z. Carbon emissions, energy consumption and economic growth: Evidence from the agricultural sector of China’s main grain-producing areas. Sci. Total Environ. 2019, 665, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Liu, X.; Lu, S.; Cheng, G.; Hu, Y.; Liu, J.; Liu, G. China’s food loss and waste embodies increasing environmental impacts. Nat. Food 2021, 2, 519–528. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, X.; Chen, B.; Shang, Y.; Song, M. Challenges toward carbon neutrality in China: Strategies and countermeasures. Resour. Conserv. Recycl. 2022, 176, 105959. [Google Scholar] [CrossRef]
- Cherni, A.; Jouini, S.E. An ARDL approach to the CO2 emissions, renewable energy and economic growth nexus: Tunisian evidence. Int. J. Hydrogen Energy 2017, 42, 29056–29066. [Google Scholar] [CrossRef]
- Patterson, M.G. What is energy efficiency?: Concepts, indicators and methodological issues. Energy Policy 1996, 24, 377–390. [Google Scholar] [CrossRef]
- Rahman, S.; Hasan, M.K. Energy productivity and efficiency of wheat farming in Bangladesh. Energy 2014, 66, 107–114. [Google Scholar] [CrossRef]
- Houshyar, E.; Zareifard, H.R.; Grundmann, P.; Smith, P. Determining efficiency of energy input for silage corn production: An econometric approach. Energy 2015, 93, 2166–2174. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, D.; Du, T.; Zhang, A.; Zhou, Y. Total-factor energy efficiency in China’s agricultural sector: Trends, disparities and potentials. Energies 2018, 11, 853. [Google Scholar] [CrossRef]
- Fei, R.; Lin, B. Energy efficiency and production technology heterogeneity in China’s agricultural sector: A meta-frontier approach. Technol. Forecast. Soc. Change 2016, 109, 25–34. [Google Scholar] [CrossRef]
- Li, N.; Jiang, Y.; Yu, Z.; Shang, L. Analysis of agriculture total-factor energy efficiency in China based on DEA and Malmquist indices. Energy Procedia 2017, 142, 2397–2402. [Google Scholar] [CrossRef]
- Adom, P.K. Global energy efficiency transition tendencies: Development phenomenon or not? Energy Strategy Rev. 2024, 55, 101524. [Google Scholar] [CrossRef]
- Akorli, C.D.; Adom, P.K. The role of corruption control and regulatory quality in energy efficiency transition tendencies in Africa. Iscience 2023, 26, 106262. [Google Scholar] [CrossRef]
- Murty, S.; Russell, R.R.; Levkoff, S.B. On modeling pollution-generating technologies. J. Environ. Econ. Manag. 2012, 64, 117–135. [Google Scholar] [CrossRef]
- Dakpo, K.H.; Lansink, A.O. Dynamic pollution-adjusted inefficiency under the by-production of bad outputs. Eur. J. Oper. Res. 2019, 276, 202–211. [Google Scholar] [CrossRef]
- Engida, T.G.; Rao, X.; Lansink, A.G.O. A dynamic by-production framework for analyzing inefficiency associated with corporate social responsibility. Eur. J. Oper. Res. 2020, 287, 1170–1179. [Google Scholar] [CrossRef]
- Kumbhakar, S.C.; Tsionas, E.G. The good, the bad and the technology: Endogeneity in environmental production models. J. Econom. 2016, 190, 315–327. [Google Scholar] [CrossRef]
- Jiang, M.; Hu, X.; Chunga, J.; Lin, Z.; Fei, R. Does the popularization of agricultural mechanization improve energy-environment performance in China’s agricultural sector? J. Clean. Prod. 2020, 276, 124210. [Google Scholar] [CrossRef]
- Abbas, A.; Waseem, M.; Yang, M. An ensemble approach for assessment of energy efficiency of agriculture system in Pakistan. Energy Effic. 2020, 13, 683–696. [Google Scholar] [CrossRef]
- Pellegrini, P.; Fernández, R.J. Crop intensification, land use, and on-farm energy-use efficiency during the worldwide spread of the green revolution. Proc. Natl. Acad. Sci. 2018, 115, 2335–2340. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Ge, Z.; Han, S.; Xing, L.; Zhu, M.; Zhang, J.; Liu, J. Impacts of agricultural industrial agglomeration on China’s agricultural energy efficiency: A spatial econometrics analysis. J. Clean. Prod. 2020, 260, 121011. [Google Scholar] [CrossRef]
- Shen, N.; Peng, H. Can industrial agglomeration achieve the emission-reduction effect? Socio Econ. Plan. Sci. 2021, 75, 100867. [Google Scholar] [CrossRef]
- Barkley, D.L.; Henry, M.S.; Kim, Y. Industry agglomerations and employment change in non-metropolitan areas. Rev. Urban Reg. Dev. Stud. 1999, 11, 168–186. [Google Scholar] [CrossRef]
- Guo, Y.; Tong, L.; Mei, L. The effect of industrial agglomeration on green development efficiency in Northeast China since the revitalization. J. Clean. Prod. 2020, 258, 120584. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Song, J. Analysis of the threshold effect of agricultural industrial agglomeration and industrial structure upgrading on sustainable agricultural development in China. J. Clean. Prod. 2022, 341, 130818. [Google Scholar] [CrossRef]
- Bennetzen, E.H.; Smith, P.; Porter, J.R. Agricultural production and greenhouse gas emissions from world regions—The major trends over 40 years. Glob. Environ. Change 2016, 37, 43–55. [Google Scholar] [CrossRef]
- Ren, Y.; Tian, Y.; Zhang, C. Investigating the mechanisms among industrial agglomeration, environmental pollution and sustainable industrial efficiency: A case study in China. Environ. Dev. Sustain. 2022, 24, 12467–12493. [Google Scholar] [CrossRef]
- Chen, X.; Shuai, C.; Zhang, Y.; Wu, Y. Decomposition of energy consumption and its decoupling with economic growth in the global agricultural industry. Environ. Impact Assess. Rev. 2020, 81, 106364. [Google Scholar] [CrossRef]
- Van Ruijven, B.J.; De Cian, E.; Sue Wing, I. Amplification of future energy demand growth due to climate change. Nat. Commun. 2019, 10, 2762. [Google Scholar] [CrossRef] [PubMed]
- Bacior, S.; Prus, B. Infrastructure development and its influence on agricultural land and regional sustainable development. Ecol. Inform. 2018, 44, 82–93. [Google Scholar] [CrossRef]
- Wang, H.; Liu, C.; Xiong, L.; Wang, F. The spatial spillover effect and impact paths of agricultural industry agglomeration on agricultural non-point source pollution: A case study in Yangtze River Delta, China. J. Clean. Prod. 2023, 401, 136600. [Google Scholar] [CrossRef]
- Liu, H.; Wen, S.; Wang, Z. Agricultural production agglomeration and total factor carbon productivity: Based on NDDF–MML index analysis. China Agric. Econ. Rev. 2022, 14, 709–740. [Google Scholar] [CrossRef]
- Lu, H.; Chen, Y.; Luo, J. Development of green and low-carbon agriculture through grain production agglomeration and agricultural environmental efficiency improvement in China. J. Clean. Prod. 2024, 442, 141128. [Google Scholar] [CrossRef]
- Yao, R.; Ma, Z.; Wu, H.; Xie, Y. Mechanism and Measurement of the Effects of Industrial Agglomeration on Agricultural Economic Resilience. Agriculture 2024, 14, 337. [Google Scholar] [CrossRef]
- Liu, D.; Bai, L.; Li, X.; Zhang, Y.; Qiao, Q.; Lu, Z.; Liu, J. Spatial characteristics and driving forces of anthropogenic phosphorus emissions in the Yangtze River Economic Belt, China. Resour. Conserv. Recycl. 2022, 176, 105937. [Google Scholar] [CrossRef]
- McKay, D.I.A.; Dearing, J.A.; Dyke, J.G.; Poppy, G.M.; Firbank, L.G. To what extent has sustainable intensification in England been achieved? Sci. Total Environ. 2019, 648, 1560–1569. [Google Scholar] [CrossRef]
- Suárez, R.P.; Goijman, A.P.; Cappelletti, S.; Solari, L.M.; Cristos, D.; Rojas, D.; Gavier-Pizarro, G.I. Combined effects of agrochemical contamination and forest loss on anuran diversity in agroecosystems of east-central Argentina. Sci. Total Environ. 2021, 759, 143435. [Google Scholar] [CrossRef]
- Kanter, D.R.; Musumba, M.; Wood, S.L.; Palm, C.; Antle, J.; Balvanera, P.; Andelman, S. Evaluating agricultural trade-offs in the age of sustainable development. Agric. Syst. 2018, 163, 73–88. [Google Scholar] [CrossRef]
- Li, J.; Huang, J.; Li, B. Do command-and-control environmental regulations realize the win-win of “pollution reduction” and “efficiency improvement” for enterprises? Evidence from China. Sustain. Dev. 2024, 32, 3271–3292. [Google Scholar] [CrossRef]
- Popov, O.; Iatsyshyn, A.; Kovach, V.; Artemchuk, V.; Kameneva, I.; Taraduda, D.; Yatsyshyn, T. Risk assessment for the population of Kyiv, Ukraine as a result of atmospheric air pollution. J. Health Pollut. 2020, 10, 200303. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z. The spatial correlation and interaction between manufacturing agglomeration and environmental pollution. Ecol. Indic. 2016, 61, 1024–1032. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, F. A study on the relationships among green finance, environmental pollution and economic development. Energy Strategy Rev. 2024, 51, 101290. [Google Scholar] [CrossRef]
- Adom, P.K.; Amuakwa-Mensah, F.; Akorli, C.D. Energy efficiency as a sustainability concern in Africa and financial development: How much bias is involved? Energy Econ. 2023, 120, 106577. [Google Scholar] [CrossRef]
- Shen, Z.; Balezentis, T. Devising evidence-based strategies for progress towards zero-carbon energy at the country level: The by-production approach. J. Environ. Manag. 2023, 340, 117974. [Google Scholar] [CrossRef]
- Lai, H.P.; Kumbhakar, S.C. Panel data stochastic frontier model with determinants of persistent and transient inefficiency. Eur. J. Oper. Res. 2018, 271, 746–755. [Google Scholar] [CrossRef]
- Lien, G.; Kumbhakar, S.C.; Alem, H. Endogeneity, heterogeneity, and determinants of inefficiency in Norwegian crop-producing farms. Int. J. Prod. Econ. 2018, 201, 53–61. [Google Scholar] [CrossRef]
- Asiama, K.O.; Bennett, R.M.; Zevenbergen, J.A. Land consolidation on Ghana’s rural customary lands: Drawing from the Dutch, Lithuanian and Rwandan experiences. J. Rural. Stud. 2017, 56, 87–99. [Google Scholar] [CrossRef]
- Hong, C.; Jin, X.; Fan, Y.; Xiang, X.; Cao, S.; Chen, C.; Zhou, Y. Determining the effect of land consolidation on agricultural production using a novel assessment framework. Land Degrad. Dev. 2020, 31, 356–371. [Google Scholar] [CrossRef]
- Lang, Z.; Rabotyagov, S. Socio-psychological factors influencing intent to adopt conservation practices in the Minnesota River Basin. J. Environ. Manag. 2022, 307, 114466. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Li, X.; Liu, Y. Cultivated land protection and rational use in China. Land Use Policy 2021, 106, 105454. [Google Scholar] [CrossRef]
- Nguyen, H.Q.; Warr, P. Land consolidation as technical change: Economic impacts in rural Vietnam. World Dev. 2020, 127, 104750. [Google Scholar] [CrossRef]
- Duan, J.; Ren, C.; Wang, S.; Zhang, X.; Reis, S.; Xu, J.; Gu, B. Consolidation of agricultural land can contribute to agricultural sustainability in China. Nat. Food 2021, 2, 1014–1022. [Google Scholar] [CrossRef]
- Bahar, S.K.; Kirmikil, M. The evaluation of agricultural landowner inputs before and after land consolidation: The Kesik Village example. Land Use Policy 2021, 109, 105605. [Google Scholar] [CrossRef]
- Xu, R.; Zhan, Y.; Zhang, J.; He, Q.; Zhang, K.; Xu, D.; Deng, X. Does construction of high-standard farmland improve recycle behavior of agricultural film? Evidence from Sichuan, China. Agriculture 2022, 12, 1632. [Google Scholar] [CrossRef]
- Bradfield, T.; Butler, R.; Dillon, E.; Hennessy, T.; Kilgarriff, P. The effect of land fragmentation on the technical inefficiency of dairy farms. J. Agric. Econ. 2021, 72, 486–499. [Google Scholar] [CrossRef]
- Arslan, F.; Sawassi, A.; Derardja, B.; Değirmenci, H.; Lamaddalena, N. The effects of land consolidation projects on pressurized irrigation system design and the cost: A case study from Türkiye. Ecohydrol. Hydrobiol. 2023, 24, 608–616. [Google Scholar] [CrossRef]
- Qian, L.; Lu, H.; Gao, Q.; Lu, H. Household-owned farm machinery vs. outsourced machinery services: The impact of agricultural mechanization on the land leasing behavior of relatively large-scale farmers in China. Land Use Policy 2022, 115, 106008. [Google Scholar] [CrossRef]
- Leonard, B.; Parker, D.P.; Anderson, T.L. Land quality, land rights, and indigenous poverty. J. Dev. Econ. 2020, 143, 102435. [Google Scholar] [CrossRef]
- Janus, J.; Ertunç, E. Impact of land consolidation on agricultural decarbonization: Estimation of changes in carbon dioxide emissions due to farm transport. Sci. Total Environ. 2023, 873, 162391. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Han, J.; Zhu, Y. Does environmental regulation in the form of resource agglomeration decrease agricultural carbon emissions? Quasi-natural experimental on high-standard farmland construction policy. J. Clean. Prod. 2023, 420, 138342. [Google Scholar] [CrossRef]
- He, Q.; Zhang, J.; Wang, L.; Zeng, Y. Impact of agricultural industry agglomeration on income growth: Spatial effects and clustering differences. Transform. Bus. Econ. 2020, 19, 486–507. [Google Scholar]
- Baležentis, T.; Blancard, S.; Shen, Z.; Štreimikienė, D. Analysis of environmental total factor productivity evolution in European agricultural sector. Decis. Sci. 2021, 52, 483–511. [Google Scholar] [CrossRef]
- Glaeser, E.L.; Kallal, H.D.; Scheinkman, J.A.; Shleifer, A. Growth in cities. J. Political Econ. 1992, 100, 1126–1152. [Google Scholar] [CrossRef]
- He, X.; Jane, B.; Andreas, H.; Jan, L. Recent development of unmanned aerial vehicle for plant protection in East Asia. Int. J. Agric. Biol. Eng. 2017, 10, 18–30. [Google Scholar]
- Yuan, S.; Peng, S. Trends in the economic return on energy use and energy use efficiency in China’s crop production. Renew. Sustain. Energy Rev. 2017, 70, 836–844. [Google Scholar] [CrossRef]
- Gao, Q.; Cheng, C.; Sun, G.; Li, J. The impact of digital inclusive finance on agricultural green total factor productivity: Evidence from China. Front. Ecol. Evol. 2022, 10, 905644. [Google Scholar] [CrossRef]
- West, T.O.; Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- Shen, L.; Sun, R.; Liu, W. Examining the drivers of grain production efficiency for achieving energy transition in China. Environ. Impact Assess. Rev. 2024, 105, 107431. [Google Scholar] [CrossRef]
- Yang, H.; Wang, X.; Bin, P. Agriculture carbon-emission reduction and changing factors behind agricultural eco-efficiency growth in China. J. Clean. Prod. 2022, 334, 130193. [Google Scholar] [CrossRef]
- Yin, Z.; Wu, J. Spatial Dependence Evaluation of Agricultural Technical Efficiency—Based on the Stochastic Frontier and Spatial Econometric Model. Sustainability 2021, 13, 2708. [Google Scholar] [CrossRef]
- Bao, H.; Shan, L.; Wang, Y.; Jiang, Y.; Lee, C.; Cui, X. How does local real estate investment influence neighborhood PM2.5 concentrations? A spatial econometric analysis. Land 2021, 10, 518. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Yu, J.; Yao, X. Toward cleaner production: What drives farmers to adopt eco-friendly agricultural production? J. Clean. Prod. 2018, 184, 550–558. [Google Scholar] [CrossRef]
- Zhou, J.; Cao, X. What is the policy improvement of China’s land consolidation? Evidence from completed land consolidation projects in Shaanxi Province. Land Use Policy 2020, 99, 104847. [Google Scholar] [CrossRef]
- Khatri-Chhetri, A.; Sapkota, T.B.; Maharjan, S.; Konath, N.C.; Shirsath, P. Agricultural emissions reduction potential by improving technical efficiency in crop production. Agric. Syst. 2023, 207, 103620. [Google Scholar] [CrossRef]
Variable | Symbol | Variable Definition | Max | Min | Mean | SD |
---|---|---|---|---|---|---|
Industrial agglomeration | ia | Agglomeration of agricultural industries | 3.270 | 0.032 | 1.190 | 0.608 |
Economic inefficiency | eci | Economic inefficiency of agricultural energy | 1.038 | 0.000 | 0.190 | 0.239 |
Environmental inefficiency | eni | Environmental inefficiency of agricultural energy | 0.451 | 0.000 | 0.241 | 0.135 |
Labor endowment | labe | Proportion of employment in the primary industry to total employment | 0.739 | 0.018 | 0.381 | 0.158 |
Capital endowment | cape | Per capita agricultural labor to capital stock in the primary industry | 38.025 | 0.002 | 1.983 | 3.299 |
Land endowment | lane | Ratio of crop planting area to employment in the primary industry | 2.920 | 0.008 | 0.654 | 0.344 |
Agricultural irrigation rate | irr | Proportion of effective irrigated area to total crop planting area | 1.000 | 0.060 | 0.388 | 0.173 |
Industrial structure | instr | Non-agricultural value added to regional gross domestic product | 0.379 | 0.002 | 0.118 | 0.065 |
Labor mobility | labtr | Ratio of non-agricultural employment to total rural employment | 0.982 | 0.182 | 0.618 | 0.162 |
Agricultural patents | tech | Number of invention patents, logarithmically transformed | 9.554 | 0.000 | 5.982 | 1.738 |
Education level | edu | Average years of education for population aged 6 and above in rural areas with junior high school education or above | 9.732 | 4.344 | 7.379 | 0.771 |
Agricultural planting structure | plstr | Proportion of grain crop planting area to total crop planting area | 0.971 | 0.328 | 0.652 | 0.131 |
Agricultural disaster rate | disr | Proportion of disaster-affected area to total crop planting area | 0.936 | 0.000 | 0.222 | 0.161 |
Environmental regulation | enreg | Investment in environmental pollution control converted by proportion of output value of primary industry to gross domestic product | 22.487 | 0.918 | 5.607 | 3.722 |
Urban–rural income disparity | inc | Per capita disposable income of urban residents to net income per capita of rural residents | 4.759 | 1.842 | 2.807 | 0.561 |
Level of urbanization | urb | Urban population to total population | 0.896 | 0.217 | 0.522 | 0.151 |
Land consolidation | lc | Proportion of improved and high-standard farmland to total cultivated land as representing land remediation policy | 1.000 | 0.002 | 0.266 | 0.244 |
Variable | 3SLS | Explaining Variables Lagged One Period | ||||
---|---|---|---|---|---|---|
ia | eci | eni | ia | ec | en | |
ia | 1.251 *** | 0.158 *** | 0.317 *** | 0.090 *** | ||
(0.133) | (0.037) | (0.038) | (0.019) | |||
eci | −0.296 *** | 0.026 ** | −0.243 *** | 0.008 ** | ||
(0.085) | (0.012) | (0.075) | (0.004) | |||
eni | 5.951 *** | −1.274 *** | 2.158 *** | −0.037 *** | ||
(0.353) | (0.271) | (0.137) | (0.008) | |||
labe | 0.283 * | 2.142 *** | ||||
(0.145) | (0.144) | |||||
cape | 0.007 ** | 0.007 | ||||
(0.003) | (0.006) | |||||
lane | 0.016 ** | 0.220 *** | ||||
(0.007) | (0.050) | |||||
irr | 0.348 *** | 0.294** | ||||
(0.126) | (0.119) | |||||
instr | 1.541 *** | 0.061 | 1.804 *** | 0.026 | ||
(1.164) | (0.045) | (0.413) | (0.024) | |||
labtr | −0.613 *** | −0.045 *** | −0.971 *** | −0.150 * | ||
(0.141) | (0.016) | (0.102) | (0.084) | |||
tech | −0.130 *** | 0.002 ** | −0.045 *** | 0.021 *** | ||
(0.017) | (0.001) | (0.008) | (0.004) | |||
edu | 0.028 ** | 0.039 ** | ||||
(0.012) | (0.016) | |||||
plstr | 0.736 *** | 0.512 *** | ||||
(0.087) | (0.063) | |||||
disr | 0.069 | 0.079 | ||||
(0.075) | (0.064) | |||||
enreg | −0.002 ** | −0.006 *** | ||||
(0.001) | (0.001) | |||||
inc | 0.002 | 0.007 | ||||
(0.006) | (0.012) | |||||
urb | −0.162 *** | −0.263 *** | ||||
(0.040) | (0.069) | |||||
_cons | −0.405 *** | 0.826 *** | 0.038 | −0.360 *** | 0.178 | −0.133 |
(0.112) | (0.166) | (0.058) | (0.090) | (0.114) | (0.085) | |
N | 660 | 629 | ||||
R2 | 0.354 | 0.571 | 0.418 | 0.352 | 0.574 | 0.445 |
Variable | Eastern | Central | Western | ||||||
---|---|---|---|---|---|---|---|---|---|
ia | eci | eni | ia | eci | eni | ia | eci | eni | |
ia | −0.267 ** | −0.071 * | 1.103 *** | 0.063 *** | 2.186 *** | 0.170 *** | |||
(0.132) | (0.042) | (0.086) | (0.024) | (0.527) | (0.065) | ||||
eci | −1.796 *** | −0.250 * | −1.159 *** | 0.408 *** | −0.567 *** | 0.087 * | |||
(0.584) | (0.142) | (0.200) | (0.033) | (0.108) | (0.045) | ||||
eni | −4.103 *** | 0.550 ** | 0.840 | −0.873 *** | 0.502 ** | −3.594 *** | |||
(0.632) | (0.230) | (0.474) | (0.206) | (0.232) | (0.581) | ||||
N | 162 | 198 | 198 | ||||||
R2 | 0.589 | 0.468 | 0.404 | 0.446 | 0.690 | .0625 | 0.366 | 0.364 | 0.557 |
Variable | Major Grain Production Areas | Non-Major Grain Production Areas | ||||
---|---|---|---|---|---|---|
ia | eci | eni | ia | eci | eni | |
ia | 0.429 *** | 0.054 ** | 2.413 *** | 0.067 *** | ||
(0.100) | (0.027) | (0.352) | (0.023) | |||
eci | −1.537 *** | 0.157 ** | −0.199 *** | −0.034 * | ||
(0.238) | (0.075) | (0.048) | (0.018) | |||
eni | 2.665 *** | −1.340 *** | 4.849 *** | −4.814 *** | ||
(0.305) | (0.131) | (0.339) | (0.587) | |||
N | 286 | 374 | ||||
R2 | 0.357 | 0.401 | 0.335 | 0.319 | 0.0.404 | 0.485 |
Variable | Nationwide | Eastern | Central | Western | Major Grain Production Areas | Non-Major Grain Production Areas | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
eci | eni | eci | eni | eci | eni | eci | eni | eci | eni | eci | eni | |
ia | 0.710 *** | 0.022 ** | −0.119 *** | −0.382 *** | 0.259 *** | 0.102 ** | 0.461 ** | 0.234 * | 0.136 *** | 0.243 *** | 0.941 *** | 0.208 ** |
(0.172) | (0.009) | (0.034) | (0.135) | (0.095) | (0.045) | (0.224) | (0.130) | (0.015) | (0.075) | (0.271) | (0.094) | |
eci | 0.023 ** | −0.301 *** | 0.356 *** | 0.109 * | 0.186 * | −0.114 *** | ||||||
(0.011) | (0.098) | (0.032) | (0.056) | (0.110) | (0.024) | |||||||
eni | −1.199 *** | 0.463 *** | −0.990 *** | 2.420 *** | −0.984 *** | −0.783 *** | ||||||
(0.215) | (0.115) | (0.199) | (0.433) | (0.158) | (0.280) | |||||||
lc | −0.450 *** | −0.113 *** | 0.299 *** | −0.249 *** | 0.216 *** | 0.421 *** | −0.189 *** | 0.439 | −0.368 *** | −0.022 ** | −0.123 ** | −0.186 *** |
(0.085) | (0.039) | (0.062) | (0.070) | (0.077) | (0.159) | (0.014) | (0.268) | (0.019) | (0.011) | (0.049) | (0.040) | |
ia*lc | −0.132 *** | −0.086 ** | −0.073 ** | −0.224 *** | −0.322 *** | −0.075 * | −0.093 | −0.076 | −0.169 *** | −0.165 ** | −0.089 ** | −0.052 ** |
(0.013) | (0.042) | (0.039) | (0.074) | (0.099) | (0.045) | (0.147) | (0.070) | (0.031) | (0.064) | (0.037) | (0.022) | |
N | 660 | 162 | 198 | 198 | 286 | 374 | ||||||
R2 | 0.320 | 0.346 | 0.265 | 0.216 | 0.701 | 0.631 | 0.373 | 0.560 | 0.296 | 0.483 | 0.357 | 0.512 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, B.; Chen, X. Industrial Agglomeration, Land Consolidation, and Agricultural Energy Inefficiency in China: An Analysis Using By-Production Technology and Simultaneous Equations Model. Agriculture 2024, 14, 1872. https://doi.org/10.3390/agriculture14111872
Xu B, Chen X. Industrial Agglomeration, Land Consolidation, and Agricultural Energy Inefficiency in China: An Analysis Using By-Production Technology and Simultaneous Equations Model. Agriculture. 2024; 14(11):1872. https://doi.org/10.3390/agriculture14111872
Chicago/Turabian StyleXu, Biaowen, and Xueli Chen. 2024. "Industrial Agglomeration, Land Consolidation, and Agricultural Energy Inefficiency in China: An Analysis Using By-Production Technology and Simultaneous Equations Model" Agriculture 14, no. 11: 1872. https://doi.org/10.3390/agriculture14111872
APA StyleXu, B., & Chen, X. (2024). Industrial Agglomeration, Land Consolidation, and Agricultural Energy Inefficiency in China: An Analysis Using By-Production Technology and Simultaneous Equations Model. Agriculture, 14(11), 1872. https://doi.org/10.3390/agriculture14111872