Preparation of Biofertilizers from Banana Peels: Their Impact on Soil and Crop Enhancement
Abstract
:1. Introduction
2. Method
- Relevant databases and information sources: The literature search for research articles reporting on the preparation and application of banana peels as fertilizers was carried out on reputable academic databases: PubMed, ScienceDirect (Elsevier), Springer, Proquest, and Scopus. Google Scholar, ResearchGate, and the Directory of Open Access Journals were also utilized to access relevant studies.
- Relevant search terms for the topic of interest were considered: “banana peels-based fertilizer”, “banana peels-based composite fertilizer”, “agricultural waste fertilizer”, “valorization of banana peels”, and “preparation methods of banana peels”.
- Publication timeframe: The selected articles were published between 2012 and 2024 and in English.
- The selection of references for this review was guided by an analysis of their content: More than 146 articles were identified based on their abstracts, and only 126 of those publications were included; 7 studies focused specifically on the use of banana peel-based fertilizers, 9 studies focused on banana peel composite fertilizers, and 5 studies focused on banana peels transformed into biochar for fertilizer applications.
3. Banana Peels
Nutritional Component | Content (%) |
---|---|
Carbohydrates | 59–67 |
Proteins | 0.9–5.3 |
Starch | 3.5–6.3 |
Fibre | 19.2–31.7 |
Crude fat/lipids | 1.24–5.93 |
Ash | 3.95–9.60 |
3.1. Banana Peel-Based Fertilizers
3.1.1. Effect of Wet and Dried Banana Peels on Plant Growth Parameters
3.1.2. Dried Banana Peel-Based Fertilizers
3.1.3. Composite Banana Peel Fertilizers
Test Crop | Composite Material | Elemental Analysis | Working Conditions | Plant Height | Experiment Duration | Ref. |
---|---|---|---|---|---|---|
Okra | Pomegranate and orange peels | - | - | 60 cm | 8 weeks | [38] |
Solanum scabrum Mill | Orange peels | - | - | 58.84 cm | 5 weeks | [78] |
Chickpea | Orange peels | Soil: N = 0.4% P = 118 ppm K = 45 ppm Ca = 240 ppm | Soil: pH = 7.24 EC = 0.58 dS/m Soil Moisture = 3.1% Organic matter = 0.91% | Powder: 4 g = 45.5 cm Powder extract: 12 g = 47.83 cm Foliar application: 4 g = 51.33 cm | 45 days | [79] |
Mustard Looseleaf | Okara | - | - | 15 cm | 10 weeks | [80] |
Eggplants | KCl | - | - | 46.23 cm | 10 weeks | [81] |
Ethiopian lettuce | Coffee grounds | N = 3.25% P = 2.51% K = 3.74% | Composite pH = 7 EC = 1.10 dS/m | - | - | [82] |
Wheat | Eggshell Duckweed | - | Soil pH = 5.7 Composite + soil pH = 6.9 | - | 90 days | [19] |
Black Gram Seeds | Sugar powder Curd | N = 1.225% %K = 3.225 | Soil pH = 7.4 Moisture content = 30 w/w% | - | - | [83] |
3.1.4. Liquid-Based Banana Fertilizers
3.2. Banana Peel Ashes and Biochar
3.2.1. Banana Peel Ashes
3.2.2. Banana Peel Biochar
Ref. | Reactor Type | Feed Mass (g) | Temp (°C) | Heating Rate (°C/min) | Residence Time (min) | Biochar Yield | O/C Ratio |
---|---|---|---|---|---|---|---|
[113] | - | - | 400 | - | 60 | - | - |
[114] | Batch Reactor | 10.10 | 450 | 10 | 67.50 | 35.64% | - |
4. Comparison of Different Methods for Preparing Banana Peel-Based Fertilizers
5. Conclusions and Future Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BPs | Banana peels |
NPK | Nitrogen, phosphorous, potassium |
Zn | Zinc |
K | Potassium |
NMR | Nuclear Magnetic Resonance |
IR | Infrared spectroscopy |
FTIR | Fourier transform infrared spectroscopy |
WAP | Week after planting |
P | Phosphorous |
Ca | Calcium |
N | Nitrogen |
KCl | Potassium chloride |
C:N | Carbon–nitrogen |
Mg | Magnesium |
CEC | Cation exchange capacity |
C | Carbon |
H | Hydrogen |
O | Oxygen |
S | Sulphur |
CCD | Central composite design |
EDX | Energy Dispersive X-ray Spectroscopy |
O/C | Oxygen/carbon |
CRD | Completely randomized design |
CO2 | Carbon dioxide |
DW | Dry weight |
EC | Electrical conductivity |
Fe | Iron |
Mn | Manganese |
RSM | Response surface methodology |
References
- FAO; IFAD; UNICEF; WFP; WHO. Transforming Food Systems for Food Security, Improved Nutrition and Affordable Healthy Diets for All; FAO: Rome, Italy, 2020. [Google Scholar]
- Roser, M.; Ritchie, H.; Ortiz-Ospina, E. Our World In Data. Available online: https://ourworldindata.org/population-growth (accessed on 3 January 2023).
- Vågsholm, I.; Arzoomand, N.S.; Boqvist, S. Food Security, Safety, and Sustainability—Getting the Trade-Offs Right. Front. Sustain. Food Syst. 2020, 4, 487217. [Google Scholar] [CrossRef]
- Elemike, E.E.; Uzoh, I.M.; Onwudiwe, D.C.; Babalola, O.O. The Role of Nanotechnology in the Fortification of Plant Nutrients and Improvement of Crop Production. Appl. Sci. 2019, 9, 499. [Google Scholar] [CrossRef]
- Panhwar, Q.A.; Ali, A.; Naher, U.A.; Memon, M.Y. Fertilizer Management Strategies for Enhancing Nutrient Use Efficiency and Sustainable Wheat Production. In Organic Farming; Chandran, S., Unni, M.R., Thomas, S., Eds.; Woodhead Publishing: Sawston, UK, 2019; pp. 17–39. [Google Scholar]
- Shahane, A.A.; Shivay, Y.S. Soil Health and Its Improvement Through Novel Agronomic and Innovative Approaches. Front. Agron. 2021, 3, 680456. [Google Scholar] [CrossRef]
- Timsina, J. Can Organic Sources of Nutrients Increase Crop Yields to Meet Global Food Demand? Agronomy 2018, 8, 214. [Google Scholar] [CrossRef]
- Morgan, J.B.; Connolly, E.L. Plant-Soil Interactions: Nutrient Uptake. Nat. Educ. Knowl. 2013, 4, 2. [Google Scholar]
- Chandini Kumar, R.; Kumar, R.; Prakash, O. The Impact of Chemical Fertilizers on our Environment and Ecosystem; AkiNik Publications: New Delhi, India, 2019; pp. 69–86. [Google Scholar]
- Pasley, H.R.; Cairns, J.E.; Camberato, J.J.; Vyn, T.J. Nitrogen fertilizer rate increases plant uptake and soil availability of essential nutrients in continuous maize production in Kenya and Zimbabwe. Nutr. Cycl. Agroecosyst. 2019, 115, 373–389. [Google Scholar] [CrossRef]
- Chun, J.-H.; Kim, S.; Arasu, M.V.; Al-Dhabi, N.A.; Chung, D.Y.; Kim, S.-J. Combined effect of Nitrogen, Phosphorus and Potassium fertilizers on the contents of glucosinolates in rocket salad (Eruca sativa Mill.). Saudi J. Biol. Sci. 2017, 24, 436–443. [Google Scholar] [CrossRef]
- Jiaying, M.; Tingting, C.; Jie, L.; Weimeng, F.; Baohua, F.; Guangyan, L.; Hubo, L.; Juncai, L.; Zhihai, W.; Longxing, T.; et al. Functions of Nitrogen, Phosphorus and Potassium in Energy Status and Their Influences on Rice Growth and Development. Rice Sci. 2022, 29, 166–178. [Google Scholar] [CrossRef]
- Sinha, D.; Tandon, P.K. An Overview of Nitrogen, Phosphorus and Potassium: Key Players of Nutrition Process in Plants. In Sustainable Solutions for Elemental Deficiency and Excess in Crop Plants; Mishra, K., Tandon, P.K., Srivastava, S., Eds.; Springer: Singapore, 2020; pp. 85–117. [Google Scholar]
- Xu, X.; Du, X.; Wang, F.; Sha, J.; Chen, Q.; Tian, G.; Zhu, Z.; Ge, S.; Jiang, Y. Effects of Potassium Levels on Plant Growth, Accumulation and Distribution of Carbon, and Nitrate Metabolism in Apple Dwarf Rootstock Seedlings. Front. Plant Sci. 2020, 11, 904. [Google Scholar] [CrossRef]
- Lin, W.; Lin, M.; Zhou, H.; Wu, H.; Li, Z.; Lin, W. The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PLoS ONE 2019, 14, e0217018. [Google Scholar] [CrossRef]
- Chen, J.; Lü, S.; Zhang, Z.; Zhao, X.; Li, X.; Ning, P.; Liu, M. Environmentally friendly fertilizers: A review of materials used and their effects on the environment. Sci. Total Environ. 2018, 613–614, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Chew, K.W.; Chia, S.R.; Yen, H.-W.; Nomanbhay, S.; Ho, Y.-C.; Show, P.L. Transformation of biomass waste into sustainable organic fertilizers. Sustainability 2019, 11, 2266. [Google Scholar] [CrossRef]
- Dahunsi, S.O.; Oranusi, S.; Efeovbokhan, V.E.; Adesulu-Dahunsi, A.T.; Ogunwole, J.O. Crop performance and soil fertility improvement using organic fertilizer produced from valorization of Carica papaya fruit peel. Sci. Rep. 2021, 11, 4696. [Google Scholar] [CrossRef]
- Aishwarya, A.; Shinde, R.S.; Deshmukh, A.J. Banana Peel, Duckweed and Egg Shell: Cheap Sources of organic Fertilizer. Int. J. Green Herb. Chem. 2019, 8, 55–60. [Google Scholar] [CrossRef]
- Toksha, B.; Sonawale, V.A.M.; Vanarase, A.; Bornare, D.; Tonde, S.; Hazra, C.; Kundu, D.; Satdive, A.; Tayde, S.; Chatterjee, A. Nanofertilizers: A review on synthesis and impact of their use on crop yield and environment. Environ. Technol. Innov. 2021, 24, 101986. [Google Scholar] [CrossRef]
- Khem, B.; Hirai, Y.; Yamakawa, T.; Mori, Y.; Inoue, E.; Okayasu, T.; Mitsuoka, M. Effects of different application methods of fertilizer and manure on soil chemical properties and yield in whole crop rice cultivation. Soil Sci. Plant Nutr. 2018, 64, 406–414. [Google Scholar] [CrossRef]
- Lohmousavi, S.M.; Abad, H.H.S.; Noormohammadi, G.; Delkhosh, B. Synthesis and characterization of a novel controlled release nitrogen-phosphorus fertilizer hybrid nanocomposite based on banana peel cellulose and layered double hydroxides nanosheets. Arab. J. Chem. 2020, 13, 6977–6985. [Google Scholar] [CrossRef]
- Robles-García, M.A.; Rodríguez-Félix, F.; Márquez-Ríos, E.; Aguilar, J.A.; Barrera-Rodríguez, A.; Aguilar, J.; Ruiz-Cruz, S.; Del-Toro-Sánchez, C.L. Applications of Nanotechnology in the Agriculture, Food, and Pharmaceuticals. J. Nanosci. Nanotechnol. 2016, 16, 8188–8207. [Google Scholar] [CrossRef]
- Shahena, S.; Rajan, M.; Chandran, V.; Mathew, L. Conventional methods of fertilizer release. In Controlled Release Fertilizers for Sustainable Agriculture; Lewu, F.B., Volova, T., Thomas, Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 1–24. [Google Scholar]
- Jubin, J.J.; Radzi, N.M. Application of Fish Waste Fertilizer on the Growth of Maize (Zea mays). IOP Conf. Ser. Earth Environ. Sci. 2022, 1059, 012070. [Google Scholar] [CrossRef]
- Said, M.I. Characteristics of by-product and animal waste: A review. Large Anim. Rev. 2019, 25, 243–250. [Google Scholar]
- El-Sayed, A.-F.M. Semi-intensive culture. In Tilapia Culture, 2nd ed.; El-Sayed, A.F.M., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 69–101. [Google Scholar]
- Shaji, H.; Chandran, V.; Mathew, L. Organic fertilizers as a route to controlled release of nutrients. In Controlled Release Fertilizers for Sustainable Agriculture; Lewu, F.B., Volova, T., Thomas, S.R.K.R., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 231–245. [Google Scholar]
- Gundala, R.R.; Singh, A. What motivates consumers to buy organic foods? Results of an empirical study in the United States. PLoS ONE 2021, 16, e0257288. [Google Scholar] [CrossRef] [PubMed]
- FAO. Banana Facts and Figures. Available online: https://www.fao.org/economic/est/est-commodities/oilcrops/bananas/bananafacts/en/ (accessed on 11 July 2024).
- Mostafa, H.S. Banana plant as a source of valuable antimicrobial compounds and its current applications in the food sector. J. Food Sci. 2021, 86, 3778–3797. [Google Scholar] [CrossRef]
- Lamessa, K. Performance Evaluation of Banana Varieties, through Farmer’s Participatory Selection. Int. J. Fruit Sci. 2021, 21, 768–778. [Google Scholar] [CrossRef]
- Panigrahi, N.; Thompson, A.J.; Zubelzu, S.; Knox, J.W. Identifying opportunities to improve management of water stress in banana production. Sci. Hortic. 2021, 276, 109735. [Google Scholar] [CrossRef]
- Evans, E.A.; Ballen, F.H.; Siddiq, M. Banana Production, Global Trade, Consumption Trends, Postharvest Handling, and Processing. In Handbook of Banana Production, Postharvest Science, Processing Technology, and Nutrition; Wiley: Hoboken, NJ, USA, 2020; pp. 1–18. [Google Scholar]
- Acevedo, S.A.; Carrillo, J.D.; Flórez-López, E.; Grande-Tovar, C.D. Recovery of Banana Waste-Loss from Production and Processing: A Contribution to a Circular Economy. Molecules 2021, 26, 5282. [Google Scholar] [CrossRef]
- Dayarathna, S.G.A.R.M.; Karunarathna, B. Effect of Different Fruit Peel Powders as Natural Fertilizers on Growth of Okra (Abelmoschus esculentus L.). J. Agric. Sci. 2021, 16, 67–79. [Google Scholar] [CrossRef]
- Sharma, R.; Oberoi, H.; Dhillon, G. Fruit and vegetable processing waste: Renewable feed stocks for enzyme production. In Gro-Industrial Wastes as Feedstock for Enzyme Production; Elsevier: Amsterdam, The Netherlands, 2016; pp. 23–59. [Google Scholar]
- Gomes, S.; Vieira, B.; Barbosa, C.; Pinheiro, R. Evaluation of mature banana peel flour on physical, chemical, and texture properties of a gluten-free Rissol. J. Food Process. Preserv. 2020, 46, 14441. [Google Scholar] [CrossRef]
- Zaini, H.M.; Roslan, J.; Saallah, S.; Munsu, E.; Sulaiman, N.S.; Pindi, W. Banana peels as a bioactive ingredient and its potential application in the food industry. J. Funct. Foods 2022, 92, 105054. [Google Scholar] [CrossRef]
- Vu, H.T.; Scarlett, C.J.; Vuong, Q.V. Phenolic compounds within banana peel and their potential uses: A review. J. Funct. Foods 2018, 40, 238–248. [Google Scholar] [CrossRef]
- Tibolla, H.; Pelissari, F.; Martins, J.; Vicente, A.; Menegalli, F. Cellulose nanofibers produced from banana peel by chemical and mechanical treatments: Characterization and cytotoxicity assessment. Food Hydrocoll. 2018, 75, 192–201. [Google Scholar] [CrossRef]
- Kumar, K.S.; Bhowmik, D.; Duraivel, S.; Umadevi, M. Traditional and Medicinal Uses of Banana. J. Pharmacogn. Phytochem. 2012, 1, 51–63. [Google Scholar]
- Padam, B.S.; Tin, H.S.; Chye, F.Y.; Abdullah, M.I. Banana by-products: An under-utilized renewable food biomass with great potential. J. Food Sci. Technol. 2014, 51, 3527–3545. [Google Scholar] [CrossRef] [PubMed]
- Prakash, B.; Sumangala, C.H.; Melappa, G.; Gavimath, C. Evaluation of Antifungal activity of Banana peel against Scalp Fungi. Mater. Today Proc. 2017, 4, 11977–11983. [Google Scholar] [CrossRef]
- Fries, J.H.; Waldron, R.J. Dehydrated banana in the dietetic management of diarrheas of infancy. J. Pediatr. 1950, 37, 367–372. [Google Scholar] [CrossRef]
- AGore, M.; Akolekar, D. Evaluation of banana leaf dressing for partial thickness burn wounds. Burns 2003, 29, 487–492. [Google Scholar] [CrossRef]
- Pereira, A.; Maraschin, M. Banana (Musa spp) from peel to pulp: Ethnopharmacology, source of bioactive compounds and its relevance for human health. J. Ethnopharmacol. 2015, 160, 149–163. [Google Scholar] [CrossRef]
- Anhwange, B.; Ugye, J.; Nyiatagher, T.D. Chemical Composition of Musa sepientum (Banana) Peels. Elec. J. Environ. Agricult. Food Chem. 2009, 8, 437–4442. [Google Scholar]
- Hassan, H.F.; Hassan, U.F.; Usher, O.A.; Ibrahim, A.B. Exploring the Potentials of Banana (Musa sapietum) Peels in Feed Formulation. Int. J. Adv. Res. Chem. Sci. 2018, 5, 10–14. [Google Scholar] [CrossRef]
- Oyeyinka, B.O.; Afolayan, A.J. Comparative Evaluation of the Nutritive, Mineral, and Antinutritive Composition of Musa sinensis L. (Banana) and Musa paradisiaca L. (Plantain) Fruit Compartments. Plants 2019, 8, 598. [Google Scholar] [CrossRef]
- Abbas, M.N.; Abbas, F.S.; Ibrahim, S.A. Cyanide Removal from Wastewater by Using Banana Peel. J. Asian Sci. Res. 2014, 4, 239–247. [Google Scholar]
- Abdulmumin, A.; Abdulsalam, S.; Hamza, U.D. Production and Optimization of Biodiesel from Microalgae using Banana Peel as Catalyst Through Response Surface Methodology (RSM)—A Review. Int. J. Sci. Res. 2021, 11, 27–39. [Google Scholar]
- Waghmare, A.G.; Arya, S.S. Utilization of unripe banana peel waste as feedstock for ethanol production. Bioethanol 2016, 2, 146–156. [Google Scholar] [CrossRef]
- Rosli, N.R.; Yusuf, S.M.; Sauki, A.; Razali, W.M.R.W. Musa sapientum (Banana) peels as green corrosion inhibitor for mild steel. Key Eng. Mater. 2019, 797, 230–239. [Google Scholar] [CrossRef]
- Barbero-López, A. Antifungal Activity of Several Vegetable Origin Household Waste Extracts against Wood-Decaying Fungi In Vitro. Waste Biomass-Valorization 2020, 12, 1237–1241. [Google Scholar] [CrossRef]
- Behiry, S.I.; Okla, M.K.; Alamri, S.A.; EL-Hefny, M.; Salem, M.Z.M.; Alaraidh, I.A.; Ali, H.M.; Al-Ghtani, S.M.; Monroy, J.C.; Salem, A.Z.M. Antifungal and Antibacterial Activities of Musa paradisiaca L. Peel Extract: HPLC Analysis of Phenolic and Flavonoid Con-tents. Processes 2019, 7, 215. [Google Scholar] [CrossRef]
- Loyaga-Castillo, M.; Calla-Poma, R.D.; Calla-Poma, R.; Requena-Mendizabal, M.F.; AMillones-Gómez, P. Antifungal Activity of Peruvian Banana Peel (Musa paradisiaca L.) on Candida albicans: An In Vitro Study. J. Contemp. Dent. Pract. 2020, 21, 509–514. [Google Scholar] [CrossRef]
- Hikal, W.M.; Said-Al Ahl, H.A. Banana peels as possible antioxidant and antimicrobial agents. Asian J. Res. Rev. Agric. 2021, 3, 35–45. [Google Scholar]
- Ramdani, D.; Hernaman, I.; ANurmeidiansyah, A.; Heryadi, D.; Nurachma, S. Potential Use of Banana Peels Waste at Different Ripening Stages for Sheep Feeding on Chemical, Tannin, and In Vitro Assessments. IOP Conf. Ser. Earth Environ. Sci. 2019, 334, 012003. [Google Scholar] [CrossRef]
- Ogunlade, I.; Akinmade, A.O.; Popoola, O.K. Comparative study of chemical composition and evaluation of the In-Vitro antioxidant capacity of unripe and ripe banana species (Musa sapientum) biowastes. Int. J. Agric. Sci. Food Technol. 2021, 7, 061–066. [Google Scholar] [CrossRef]
- El Barnossi, A.; Moussaid, F.Z.; Saghrouchni, H.; Zoubi, B.; Housseini, A.I.I. Tangerine, Pomegranate, and Banana Peels: A Promising Environmentally Friendly Bioorganic Fertilizers for Seed Germination and Cultivation of Pisum sativum L. Waste Biomass-Valorization 2022, 13, 3611–3627. [Google Scholar] [CrossRef]
- Wazir, A.; Gul, Z.; Hussain, M. Comparative Study of Various Organic Fertilizers Effect on Growth and Yield of Two Economically Important Crops, Potato and Pea. Agric. Sci. 2018, 09, 703–717. [Google Scholar] [CrossRef]
- Mercy, S.; Mubsira, B.S.; Jenifer, I. Application of Different Fruit Peels Formulations. Int. J. Sci. Technol. Res. 2014, 3, 300–307. [Google Scholar]
- Olid, M.R.; Dakay, R.K.; Canedo, J.E.; Madrid, H.J.; Barontoy, K.J. Eco-friendly development: Exploring the effectiveness of using banana peel fertilizer. Sci. Educ. 2022, 3, 49–62. [Google Scholar]
- Hussein, H.S.; Shaarawy, H.H.; Hussien, N.H.; Hawash, S.I. Preparation of nano-fertilizer blend from banana peels. Bull. Natl. Res. Cent. 2019, 43, 26. [Google Scholar] [CrossRef]
- Frink, C.R.; Waggoner, P.E.; Ausubel, J.H. Nitrogen fertilizer: Retrospect and prospect. Proc. Natl. Acad. Sci. USA 1999, 96, 1175–1180. [Google Scholar] [CrossRef]
- Altaee, A.H. Effect of plants extract in vegetative and flowering growth, aromatic and volatile oil extracted from Narcissus Narcissus daffodil L plant. IOP Conf. Ser. Earth Environ. Sci. 2019, 388, 012074. [Google Scholar] [CrossRef]
- Marion, D. An Introduction to biological NMR spectroscopy. Mol. Cell. Proteom. 2013, 12, 3006–3025. [Google Scholar] [CrossRef]
- Cardoso, S.; Maraschin, M.; Peruch, L.A.; Rocha, M.; Pereira, A. Characterization of the chemical composition of banana peels from southern Brazil across the seasons using nuclear magnetic resonance and chemometrics. In 11th International Conference on Practical Applications of Computational Biology & Bioinformatics 2017; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 321–328. [Google Scholar]
- de Faria, A.J.G.; Rufini, M.; Leite, A.D.A.; Ribeiro, B.T.; Silva, S.H.G.; Guilherme, L.R.G.; Melo, L.C.A. Elemental analysis of biochar-based fertilizers via portable X-ray fluorescence spectrometry. Environ. Technol. Innov. 2021, 23, 101788. [Google Scholar] [CrossRef]
- Chowdhury, C.R.; Kavitake, D.; Jaiswal, K.K.; Jaiswal, K.S.; Reddy, G.B.; Agarwal, V.; Shetty, P.H. NMR-based metabolomics as a sig-nificant tool for human nutritional research and health applications. Food Biosci. 2023, 53, 102538. [Google Scholar] [CrossRef]
- Xiang, Y.; Liu, Y.; Gong, M.; Tong, Y.; Liu, Y.; Zhao, G.; Yang, J. Preparation of Novel Biodegradable Polymer Slow-Release Fertilizers to Improve Nutrient Release Performance and Soil Phosphorus Availability. Polymers 2023, 15, 2242. [Google Scholar] [CrossRef]
- Jahin, H.S.; Khedr, A.I.; Ghannam, H.E. Banana peels as a green bioadsorbent for removing metals ions from wastewater. Discov. Water 2024, 4, 36. [Google Scholar] [CrossRef]
- Pereira, L.d.O.; Filho, H.S.G.; Luiz, L.d.C.; Batista, R.T.; Ferreira, D.S.R.; Gonçalves, E.A.d.S.; Dutra, R.d.S.; Felix, V.d.S.; de Freitas, R.P.; Pimenta, A.R. Elementary analysis in banana samples using X-Ray Fluorescence. Res. Soc. Dev. 2021, 10, e565101119667. [Google Scholar] [CrossRef]
- Arifin, Z.; Sukartono, S.; ESusilawati, L.; Kusumo, B.H.; Yasin, I. Performance of maize under two different methods of fertilizer application in semi-arid tropic Dompu Indonesia. J. Physics Conf. Ser. 2019, 1402, 022097. [Google Scholar] [CrossRef]
- Dom, Z.M.; Mujianto, L.; Azhar, A.; Masaudin, S.; Samsudin, R. Physicochemical properties of banana peel powder in functional food products. Food Res. 2021, 5, 209–215. [Google Scholar] [CrossRef]
- Sakpere, A.M.A.; Bankole, M.; Oyekola, O.B.; Akinyemi, O.S.; Akosile, O.R.; Adegboye, O.A.; Akinropo, M.S.; Obisesan, I.A. Effect of different Moringa oleifera extracts and fruit peels on the growth of Solanum scabrum. Int. J. Biol. Chem. Sci. 2018, 12, 1543. [Google Scholar] [CrossRef]
- Qader, H.R. Influence combination of Fruits Peel and Fertilizer Methods on growth and yield of Chickpea (Cicer areitinum) L. Plants. Zanco J. Pure Appl. Sci. 2019, 31, 45–51. [Google Scholar] [CrossRef]
- Nossier, M.I. Impact of Organic Fertilizers Derived from Banana and Orange Peels on Tomato plant Quality. Arab. Univ. J. Agric. Sci. 2021, 29, 459–469. [Google Scholar] [CrossRef]
- Lai, J.C.; Masrun, K.H.; Madin, N.; Baini, R.H.; Samat, N.A.A. Production and performance of okara/sago and okara/banana peel organic fertilizers in plantation. Int. J. Eng. Sci. Technol. 2021, 16, 4423–4437. [Google Scholar]
- Hariyono; Mulyono; Ayunin, I.Q. Effectiveness of Banana Peel-Based Liquid Organic Fertilizer Application as Potassium Source for Eggplant (Solanum melongena L.) Growth and Yield. IOP Conf. Ser. Earth Environ. Sci. 2021, 752, 012022. [Google Scholar] [CrossRef]
- Bedhasa, T.Z. Production of Bioorganic Liquid Fertilizer from Coffee Ground and Banana Peels. Adv. Res. J. Biotechnol. 2020, 4, 091–097. [Google Scholar]
- Sogani, M.; Sonu, K.; Syed, Z.; Rajvanshi, J. Preparation of biofertilizer blend from banana peels along with its application in agriculture and plant microbial fuel cell. IOP Conf. Ser. Earth Environ. Sci. 2023, 1151, 012034. [Google Scholar] [CrossRef]
- Bergstrand, K.-J. Organic fertilizers in greenhouse production systems—A review. Sci. Hortic. 2022, 295, 110855. [Google Scholar] [CrossRef]
- Ghiyasi, M.; Amirnia, R.; Moghaddam, S. Effect of foliar application of some organic compounds with magnetic and tap water on wheat (Triticum aestivum L.) yield. J. Appl. Biol. Sci. 2017, 11, 23–28. [Google Scholar]
- Siahaan, F.R.; Tampubolon, K.; Pardede, E. Morphophysiology, biochemical, and yielding characteristics of Chinese cabbage due to formulation and concentration of nutrient solution in hydroponic culture. Comun. Sci. 2023, 15, e4192. [Google Scholar] [CrossRef]
- Gopalakrishnan, L.; Doriya, K.; Kumar, D.S. Moringa oleifera: A review on nutritive importance and its medicinal application. Food Sci. Hum. Wellness 2016, 5, 49–56. [Google Scholar] [CrossRef]
- Howeidi, M.A.R.; Manea, A.I.; Slomy, A.K. Effect of Bio-Fertilizer and Banana Peel Extract on the Vegetative Traits and Yield of Carrot Plants. IOP Conf. Ser. Earth Environ. Sci. 2023, 1158, 042035. [Google Scholar] [CrossRef]
- Nannyonga, S.; Mantzouridou, F.; Naziri, E.; Goode, K.; Fryer, P.; Robbins, P. Comparative analysis of banana waste bioengineering into animal feeds and fertilizers. Bioresour. Technol. Rep. 2018, 2, 107–114. [Google Scholar] [CrossRef]
- Albuquerque, A.R.; Angélica, R.S.; Merino, A.; Paz, S.P. Chemical and mineralogical characterization and potential use of ash from Amazonian biomasses as an agricultural fertilizer and for soil amendment. J. Clean. Prod. 2021, 295, 126472. [Google Scholar] [CrossRef]
- Albuquerque, A.R.; Merino, A.; Angélica, R.S.; Omil, B.; Paz, S.P. Performance of ash from Amazonian biomasses as an alternative source of essential plant nutrients: An integrated and eco-friendly strategy for industrial waste management in the lack of raw fertilizer materials. J. Clean. Prod. 2022, 360, 132222. [Google Scholar] [CrossRef]
- Kfle, G.; Haile, T.; Sium, M.; Debretsion, S.; Abrham, H.; Ghirmay, M.; Tsegay, H.; Nega, F. Analysis of the Mineral Content of Wood Ashes of Selected Plants Used for Soil Amendments in Eritrea. Int. J. Plant Soil Sci. 2018, 25, 1–12. [Google Scholar] [CrossRef]
- Neina, D.; Faust, S.; Joergensen, R.G. Characterization of charcoal and firewood ash for use in African peri-urban agriculture. Chem. Biol. Technol. Agric. 2020, 7, 5. [Google Scholar] [CrossRef]
- Scheepers, G.P.; du Toit, B. Potential use of wood ash in South African forestry: A review. South. For. J. For. Sci. 2016, 78, 255–266. [Google Scholar] [CrossRef]
- Franck, K.N.; Eustach, N.M.; Eric, K.S.; Innocent, B.B.; Franck, K.; Leontine, N.L.; Israel, M.B.; Marcel, B.M.; Edouard, M.M.; Cedric, N.N.; et al. Synthesis of a Potassium Fertilizer from Banana Peels and its Fertility effect on Onion Growth and Ripening in Lubumbashi. Int. J. Recent Engin. Res. Dev. 2020, 5, 10–21. [Google Scholar]
- Santos, F.M.; Gonçalves, A.L.; Pires, J.C.M. Negative emission technologies. In Bioenergy with Carbon Capture and Storage; Magalhães Pires, J.C., Cunha Gonçalves, A.L.D., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 1–13. [Google Scholar]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Bio/Technol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Al Arni, S. Comparison of slow and fast pyrolysis for converting biomass into fuel. Renew. Energy 2018, 124, 197–201. [Google Scholar] [CrossRef]
- Pecha, M.B.; Garcia-Perez, M. Pyrolysis of lignocellulosic biomass: Oil, char, and gas. In Bioenergy, 2nd ed.; Dahiya, A., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 581–619. [Google Scholar]
- Tenic, E.; Ghogare, R.; Dhingra, A. Biochar—A Panacea for Agriculture or Just Carbon? Horticulturae 2020, 6, 37. [Google Scholar] [CrossRef]
- Grammelis, P.; Margaritis, N.; Kourkoumpas, D.-S. Pyrolysis Energy Conversion Systems. In Comprehensive Energy Systems; Dincer, I., Ed.; Elsevier: Oxford, UK, 2018; pp. 1065–1106. [Google Scholar]
- Huang, M.; Zhang, Z.; Zhai, Y.; Lu, P.; Zhu, C. Effect of Straw Biochar on Soil Properties and Wheat Production under Saline Water Irrigation. Agronomy 2019, 9, 457. [Google Scholar] [CrossRef]
- Kalu, S.; Kulmala, L.; Zrim, J.; Peltokangas, K.; Tammeorg, P.; Rasa, K.; Kitzler, B.; Pihlatie, M.; Karhu, K. Potential of Biochar to Reduce Greenhouse Gas Emissions and Increase Nitrogen Use Efficiency in Boreal Arable Soils in the Long-Term. Front. Environ. Sci. 2022, 10, 914766. [Google Scholar] [CrossRef]
- Shen, Y.; Zhu, L.; Cheng, H.; Yue, S.; Li, S. Effects of Biochar Application on CO2 Emissions from a Cultivated Soil under Semiarid Climate Conditions in Northwest China. Sustainability 2017, 9, 1482. [Google Scholar] [CrossRef]
- Wang, H.; Ren, T.; Yang, H.; Feng, Y.; Feng, H.; Liu, G.; Yin, Q.; Shi, H. Research and Application of Biochar in Soil CO2 Emission, Fertility, and Microorganisms: A Sustainable Solution to Solve China’s Agricultural Straw Burning Problem. Sustainability 2020, 12, 1922. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to improve soil fertility. A review. Agron. Sustain. Dev. 2016, 36, 36. [Google Scholar] [CrossRef]
- Alghamdi, A.G.; Alkhasha, A.; Ibrahim, H.M. Effect of biochar particle size on water retention and availability in a sandy loam soil. J. Saudi Chem. Soc. 2020, 24, 1042–1050. [Google Scholar] [CrossRef]
- Jing, Y.; Zhang, Y.; Han, I.; Wang, P.; Mei, Q.; Huang, Y. Effects of different straw biochars on soil organic carbon, nitrogen, available phosphorus, and enzyme activity in paddy soil. Sci. Rep. 2020, 10, 8837. [Google Scholar] [CrossRef]
- Shetty, R.; Prakash, N.B. Effect of different biochars on acid soil and growth parameters of rice plants under aluminium toxicity. Sci. Rep. 2020, 10, 12249. [Google Scholar] [CrossRef]
- Mensah, A.K.; Frimpong, K.A. Biochar and/or Compost Applications Improve Soil Properties, Growth, and Yield of Maize Grown in Acidic Rainforest and Coastal Savannah Soils in Ghana. Int. J. Agron. 2018, 2018, 6837404. [Google Scholar] [CrossRef]
- Vijay, V.; Shreedhar, S.; Adlak, K.; Payyanad, S.; Sreedharan, V.; Gopi, G.; van der Voort, T.S.; Malarvizhi, P.; Yi, S.; Gebert, J.; et al. Review of Large-Scale Biochar Field-Trials for Soil Amendment and the Observed Influences on Crop Yield Variations. Front. Energy Res. 2021, 9, 710766. [Google Scholar] [CrossRef]
- Štefanko, A.U.; Leszczynska, D. Impact of Biomass Source and Pyrolysis Parameters on Physicochemical Properties of Biochar Manufactured for Innovative Applications. Front. Energy Res. 2020, 8, 138. [Google Scholar] [CrossRef]
- Islam, M.; Halder, M.; Siddique, A.B.; Razir, S.A.A.; Sikder, S.; Joardar, J.C. Banana peel biochar as alternative source of potassium for plant productivity and sustainable agriculture. Int. J. Recycl. Org. Waste Agric. 2019, 8, 407–413. [Google Scholar] [CrossRef]
- Omulo, G.; Banadda, N.; Kabenge, I.; Seay, J. Optimizing slow pyrolysis of banana peels wastes using response surface methodology. Environ. Eng. Res. 2018, 24, 354–361. [Google Scholar] [CrossRef]
- Kabenge, I.; Omulo, G.; Banadda, N.; Seay, J.; Zziwa, A.; Kiggundu, N. Characterization of Banana Peels Wastes as Potential Slow Pyrolysis Feedstock. J. Sustain. Dev. 2018, 11, 14. [Google Scholar] [CrossRef]
- Helliwell, R. Effect of biochar on plant growth. Arboric. J. 2015, 37, 238–242. [Google Scholar] [CrossRef]
- Tian, D.; Liu, A.; Xiang, Y. Effects of Biochar on Plant Growth and Cadmium Uptake: Case Studies on Asian Lotus (Nelumbo nucifera) and Chinese Sage (Salvia miltiorrhiza). In Engineering Applications of Biochar; Huang, W.-J., Ed.; Intechopen: London, UK, 2017; p. 68251. [Google Scholar]
- Danish, S.; Tahir, F.A.; Rasheed, M.K.; Ahmad, N.; Ali, M.A.; Kiran, S.; Younis, U.; Irshad, I.; Butt, B. Effect of foliar application of Fe and banana peel waste biochar on growth, chlorophyll content and accessory pigments synthesis in spinach under chromium (IV) toxicity. Open Agric. 2019, 4, 381–390. [Google Scholar] [CrossRef]
- Dlamini, N.; Mukaya, H.E.; Nkazi, D. Carbon-based nanomaterials production from environmental pollutant byproducts: A Review. J. CO2 Util. 2022, 60, 101953. [Google Scholar] [CrossRef]
- Kumari, M.; Gupta, S.K. Response surface methodological (RSM) approach for optimizing the removal of trihalomethanes (THMs) and its precursor’s by surfactant modified magnetic nanoadsorbents (sMNP)—An endeavor to diminish probable cancer risk. Sci. Rep. 2019, 9, 18339. [Google Scholar] [CrossRef]
- Das, S.K.; Ghosh, G.K. Hydrogel-biochar composite for agricultural applications and controlled release fertilizer: A step towards pollution free environment. Energy 2022, 242, 122977. [Google Scholar] [CrossRef]
Element | Content (mg/100 g) |
---|---|
Potassium | 475.6 |
Calcium | 323.0 |
Sodium | 148.9 |
Phosphorous | 122.5 |
Iron | 0.40 |
Manganese | 69.0 |
Zinc | 4.55 |
Test Crop | Elemental Composition | Working Conditions | Germinating Rate/Days | Plant Height | Experiment Duration | Ref. |
---|---|---|---|---|---|---|
Green pea | BP: | BP pH = 5.74 | ~94.59% in 5 days | 75 cm | 3 months | [61] |
N = 21 mg/g Dw | Soil pH = 7.77 | |||||
Potato | Soil + BP: | Soil + BP: | 7 days | 10.62 cm | 3 months | [62] |
Pea | N = 0.08% | pH = 8.89 | 4 days | 7.5 cm | ||
P = 18 ppm | EC = 1.14% | |||||
N = 88 ppm | ||||||
Ca = 4 meg/L | ||||||
Fenugreek | Soil: | - | - | - | 45 days | [63] |
NPK = 2.7, 2.4, 1.2 | ||||||
NPK = 3.6, 2.9, 1.7 | ||||||
NPK = 4.7, 3.5, 2.1 | ||||||
Okra | - | - | - | 17 cm | 14 days | [39] |
Radish | BP: | - | - | 6.5 cm | 7 days | [64] |
Onion | K = 78.10 mg/g | Onion leaves = 15.1 cm | ||||
Mn = 76.20 mg/g | ||||||
Na = 24.30 mg/g | ||||||
Ca = 19.20 mg/g | ||||||
Fe = 0.61 mg/g | ||||||
Tomato | BP | Clay loam soil: | 7 days | - | 7 days | [65] |
Fenugreek | K = 78 g/kg | Sand = 25% | ||||
Fe = 0.6 g/kg | Silt = 37% | |||||
Clay = 38% | ||||||
Bulk density = 1.1 g/cm3 | ||||||
Conductivity = 0.69 cm.h |
Duration (Months) | Soil-Decomposed Peel | Water-Decomposed Peel | Leachate | Peels Without Decomposition (%) | ||||
---|---|---|---|---|---|---|---|---|
Germinating Rate (%) | Height (cm) | Germinating Rate (%) | Height (cm) | Germinating Rate (%) | Height (cm) | Germinating Rate (%) | Height (cm) | |
2 | 83.10 | 75.00 | 76.06 | 51.66 | 76.06 | 55.76 | ||
4 | 66.20 | 58.33 | 83.74 | 50.66 | 83.74 | 53.43 | ||
6 | 67.58 | 49.33 | 94.59 | 43.40 | 78.39 | 45.26 | 83.33 | 65.00 |
Parameter | Plant Size at Day T65 | Number of Leaves | Plant Weight | |
---|---|---|---|---|
NPK (600 kg) | 52 | 8.3 | 73.4 | |
Urea (200 kg) | 49.4 | 7.4 | 60.5 | |
K fertilizer | 150 kg | 42.4 | 6.5 | 55.1 |
200 kg | 45.9 | 7.7 | 57.3 | |
NPK (600) | K (150 kg) | 48.3 | 16.6 | 83.6 |
K (200 kg) | 52 | 9.46 | 68.2 | |
NPK (600 kg) + Urea (200 kg) | 52.23 | 8 | 69.5 | |
K (150 kg) + Urea (200 kg) | 41.7 | 5.5 | 46.7 | |
K (200 kg) + Urea (200 kg) | 49.5 | 8 | 65.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khanyile, N.; Dlamini, N.; Masenya, A.; Madlala, N.C.; Shezi, S. Preparation of Biofertilizers from Banana Peels: Their Impact on Soil and Crop Enhancement. Agriculture 2024, 14, 1894. https://doi.org/10.3390/agriculture14111894
Khanyile N, Dlamini N, Masenya A, Madlala NC, Shezi S. Preparation of Biofertilizers from Banana Peels: Their Impact on Soil and Crop Enhancement. Agriculture. 2024; 14(11):1894. https://doi.org/10.3390/agriculture14111894
Chicago/Turabian StyleKhanyile, Nokuthula, Ndumiso Dlamini, Absalom Masenya, Nothando Clementine Madlala, and Sabelo Shezi. 2024. "Preparation of Biofertilizers from Banana Peels: Their Impact on Soil and Crop Enhancement" Agriculture 14, no. 11: 1894. https://doi.org/10.3390/agriculture14111894
APA StyleKhanyile, N., Dlamini, N., Masenya, A., Madlala, N. C., & Shezi, S. (2024). Preparation of Biofertilizers from Banana Peels: Their Impact on Soil and Crop Enhancement. Agriculture, 14(11), 1894. https://doi.org/10.3390/agriculture14111894