Urban–Rural Integration and Agricultural Technology Innovation: Evidence from China
Abstract
:1. Introduction
2. Literature Review and Main Hypothesis Development
2.1. Factors Influencing ATI
2.2. URI and ATI
2.3. The Moderating Effects of Regional Governance Systems and Mature Markets
3. Research Design
3.1. Measures
3.2. Model Selection
3.3. Data Sources
4. Spatio-Temporal Pattern Analysis
4.1. Spatio-Temporal Dynamics of ATI
4.2. Spatio-Temporal Dynamics of URI
4.3. Correlation Analysis
5. Mechanism Analysis
5.1. Benchmark Regression
5.2. Heterogeneity Regression
5.2.1. Dimensional Analysis
5.2.2. Regional Analysis
5.2.3. Agricultural Production Area Analysis
5.3. Robustness Test
5.4. Further Analysis
5.4.1. Moderation Effect Test
5.4.2. Threshold Effect Test
6. Discussion
7. Conclusions and Policy Implications
7.1. Conclusions
7.2. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cui, X.; Cai, T.; Deng, W.; Zheng, R.; Jiang, Y.; Bao, H. Indicators for Evaluating High-Quality Agricultural Development: Empirical Study from Yangtze River Economic Belt, China. Soc. Indic. Res. 2022, 164, 1101–1127. [Google Scholar] [CrossRef] [PubMed]
- Gouel, C.; Guimbard, H. Nutrition Transition and the Structure of Global Food Demand. Am. J. Agric. Econ. 2018, 101, 383–403. [Google Scholar] [CrossRef]
- Wuepper, D.; Tang, F.H.; Finger, R. National leverage points to reduce global pesticide pollution. Glob. Environ. Chang. 2023, 78, 102631. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Panagos, P.; Lugato, E.; Yang, J.E.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef]
- Ortiz-Bobea, A.; Ault, T.R.; Carrillo, C.M.; Chambers, R.G.; Lobell, D.B. Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Clim. Chang. 2021, 11, 306–312. [Google Scholar] [CrossRef]
- Herrero, M.; Thornton, P.K.; Mason-D’Croz, D.; Palmer, J.; Benton, T.G.; Bodirsky, B.L.; Bogard, J.R.; Hall, A.; Lee, B.; Nyborg, K.; et al. Innovation can accelerate the transition towards a sustainable food system. Nat. Food 2020, 1, 266–272. [Google Scholar] [CrossRef]
- El Bilali, H. Transition heuristic frameworks in research on agro-food sustainability transitions. Environ. Dev. Sustain. 2020, 22, 1693–1728. [Google Scholar] [CrossRef]
- Sutherland, L.; Adamsone-Fiskovica, A.; Elzen, B.; Koutsouris, A.; Laurent, C.; Stræte, E.P.; Labarthe, P. Advancing AKIS with assemblage thinking. J. Rural Stud. 2022, 97, 57–69. [Google Scholar] [CrossRef]
- Andrew, F. Agricultural Knowledge and Innovation Systems in European Union policy discourse: Quo vadis? Stud. Agric. Econ. 2020, 122, 115–123. [Google Scholar] [CrossRef]
- OECD. Agricultural Innovation Systems: A Framework for Analyzing the Role of the Government; OECD Publishing: Paris, France, 2013. [Google Scholar]
- Abdulai, A.N.; Abdul-Rahaman, A.; Issahaku, G. Adoption and diffusion of conservation agriculture technology in Zambia: The role of social and institutional networks. Environ. Econ. Policy Stud. 2021, 23, 761–780. [Google Scholar] [CrossRef]
- Chen, T.; Ren, Y. Agricultural science and technology innovation in Brazil: Institutional mechanisms, characteristics and results, enlightenment and reference. Sci. Technol. Rev. 2023, 41, 43–54. [Google Scholar] [CrossRef]
- Eastwood, C.; Klerkx, L.; Nettle, R. Dynamics and distribution of public and private research and extension roles for technological innovation and diffusion: Case studies of the implementation and adaptation of precision farming technologies. J. Rural Stud. 2017, 49, 1–12. [Google Scholar] [CrossRef]
- Davies, W.P.; Newton, D.J. Agricultural innovation and biotechnology development towards sustainable goals: Can we make it more pro-poor? World Rev. Sci. Technol. Sustain. Dev. 2006, 3, 99–122. [Google Scholar] [CrossRef]
- Zeng, Y.; Guo, H.; Yao, Y.; Huang, L. The formation of agricultural e-commerce clusters: A case from China. Growth Chang. 2019, 50, 1356–1374. [Google Scholar] [CrossRef]
- Wang, F.; Wu, L.; Zhang, F. Network Structure and Influencing Factors of Agricultural Science and Technology Innovation Spatial Correlation Network-A Study Based on Data from 30 Provinces in China. Symmetry 2020, 12, 1773. [Google Scholar] [CrossRef]
- Gaffney, J.; Challender, M.; Califf, K.; Harden, K. Building bridges between agribusiness innovation and smallholder farmers: A review. Glob. Food Secur. 2019, 20, 60–65. [Google Scholar] [CrossRef]
- Guo, X.Y.; Zeng, F.S.; Wang, X.L.; Zhang, G.S. Research on Frontier Issues in Agricultural Economic Management; China Financial & Economic Publishing House: Beijing, China, 2012. [Google Scholar]
- Li, E.; Yao, F.; Xi, J.; Guo, C. Evolution Characteristics of Government-Industry-University-Research Cooperative Innovation Network for China’s Agriculture and Influencing Factors: Illustrated According to Agricultural Patent Case. Chin. Geo-Graph. Sci. 2018, 28, 137–152. [Google Scholar] [CrossRef]
- Kaufmann, A. Patterns of innovation relations in metropolitan regions: The case of the Vienna urban region. Ann. Reg. Sci. 2007, 41, 735–748. [Google Scholar] [CrossRef]
- Shearmur, R. Far from the Madding Crowd: Slow Innovators, Information Value, and the Geography of Innovation. Growth Chang. 2015, 46, 424–442. [Google Scholar] [CrossRef]
- Johnston, A.; Huggins, R. Drivers of University-Industry Links: The Case of Knowledge-Intensive Business Service Firms in Rural Locations. Reg. Stud. 2016, 50, 1330–1345. [Google Scholar] [CrossRef]
- Korsgaard, S.; Müller, S.; Welter, F. It’s right nearby: How entrepreneurs use spatial bricolage to overcome resource constraints. Entrep. Reg. Dev. 2021, 33, 147–173. [Google Scholar] [CrossRef]
- Von Braun, J. Rural-Urban Linkages for Growth, Employment, and Poverty Reduction. In Proceedings of the Ethiopian Economic Association, Fifth International Conference on the Ethiopian Economy, Addis Ababa, Ethiopia, 7–9 June 2007. [Google Scholar]
- Lichter, D.T.; Brown, D.L. Rural America in an Urban Society: Changing Spatial and Social Boundaries. Annu. Rev. Sociol. 2011, 37, 565–592. [Google Scholar] [CrossRef]
- Lamprinopoulou, C.; Renwick, A.; Klerkx, L.; Hermans, F.; Roep, D. Application of an integrated systemic framework for analysing agricultural innovation systems and informing innovation policies: Comparing the Dutch and Scottish agrifood sectors. Agric. Syst. 2014, 129, 40–54. [Google Scholar] [CrossRef]
- Mikhailov, A.; Oliveira, C.; Padula, A.D.; Reichert, F.M. Californian innovation ecosystem: Emergence of agtechs and the new wave of agriculture. Innov. Manag. Rev. 2021, 18, 292–307. [Google Scholar] [CrossRef]
- Long, T.B.; Blok, V.; Coninx, I. Barriers to the adoption and diffusion of technological innovations for climate-smart agriculture in Europe: Evidence from the Netherlands, France, Switzerland and Italy. J. Clean. Prod. 2015, 112, 9–21. [Google Scholar] [CrossRef]
- Asare, R.; Essegbey, G.O. Funding of Agricultural Research and Development in Ghana: The Case of Council for Scientific and Industrial Research (CSIR). Technol. Invest. 2016, 7, 40–50. [Google Scholar] [CrossRef]
- Xie, D.; Chen, L.; Liu, L.; Chen, L.; Wang, H. Actuators and Sensors for Application in Agricultural Robots: A Review. Machines 2022, 10, 913. [Google Scholar] [CrossRef]
- Moss, W.M.; Nichols, P.G.; Foster, K.J.; Ryan, M.H.; Guzzomi, A.L. Farmer-driven innovation: Lessons from a case study of subterranean clover seed production. Prometheus 2022, 37, 353–370. [Google Scholar] [CrossRef]
- Liu, S.Y.; Long, T.Y. The theory of urban-rural integration: Stages, characteristics and enlightenment. Econ. Perspect. 2022, 3, 21–34. [Google Scholar]
- Zhou, D.; Qi, J.L.; Zhong, W.Y. Review of urban-rural integration evaluation: Connotation identification, theoretical analysis, and system reconstruction. J. Nat. Resour. 2021, 36, 2634–2651. [Google Scholar] [CrossRef]
- Kusio, T.; Rosiek, J.; Conto, F. Urban-Rural Partnership Perspectives in the Conceptualization of Innovative Activities in Rural Development: On Example of Three-Case Study Analysis. Sustainability 2022, 14, 7309. [Google Scholar] [CrossRef]
- Central People’s Government of the People’s Republic of China. Outline of the 14th Five-Year Plan for National Economic and Social Development of the People’s Republic of China and the Long-Range Objectives Through the Year 2035. 2021. Available online: https://www.gov.cn/xinwen/2021-03/13/content_5592681.htm (accessed on 24 October 2024).
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Release of the “14th Five-Year” New Urbanization Plan. 2022. Available online: https://www.mohurd.gov.cn/xinwen/gzdt/202207/20220713_767164.html (accessed on 24 October 2024).
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. National Agricultural Science and Technology Advancement Contribution Rate Surpasses 61%. 2022. Available online: http://www.moa.gov.cn/xw/shipin/xwzx/202208/t20220826_6407889.htm (accessed on 24 October 2024).
- Wang, C.C.; Lin, G.C. Geography of knowledge sourcing, heterogeneity of knowledge carriers and innovation of clustering firms: Evidence from China’s software enterprises. Habitat Int. 2018, 71, 60–69. [Google Scholar] [CrossRef]
- Xu, W.X.; Wang, R.; Liu, C.J.; Xu, Y.; Liu, X.W. Study on the spacetime evolution characteristics and its influence mechanism of Chinese agricultural scientific and technology innovation. China Sci. Technol. Forum 2021, 8, 108–119. [Google Scholar]
- Chen, Q.Q.; Zhang, J.B.; Huo, Y. A study on research hot-spots and frontiers of agricultural science and technology inno-va-tion-visualization analysis based on the Citespace III. Agric. Econ. 2016, 62, 429–445. [Google Scholar] [CrossRef]
- Dunning, J.H.; Narula, R. The R&D Activities of Foreign Firms in the United States. Int. Stud. Manag. Organ. 1995, 25, 39–74. [Google Scholar] [CrossRef]
- Mao, H.; Zhou, L.; Ying, R.; Pan, D. Time Preferences and green agricultural technology adoption: Field evidence from rice farmers in China. Land Use Policy 2021, 109, 105627. [Google Scholar] [CrossRef]
- Gebremariam, G.; Tesfaye, W. The heterogeneous effect of shocks on agricultural innovations adoption: Microeconometric evidence from rural Ethiopia. Food Policy 2018, 74, 154–161. [Google Scholar] [CrossRef]
- Pardey, P.G.; Alston, J.M.; Ruttan, V.W. The Economics of Innovation and Technical Change in Agriculture. Handb. Econ. Innov. 2010, 2, 939–984. [Google Scholar] [CrossRef]
- Jacobs, J.; The Economy of Cities. Vintage. 2016. Available online: https://www.jstor.org/stable/48583526 (accessed on 24 October 2024).
- Conley, T.G.; Udry, C.R. Learning about a New Technology: Pineapple in Ghana. Am. Econ. Rev. 2010, 100, 35–69. [Google Scholar] [CrossRef]
- Kassie, M.; Jaleta, M.; Shiferaw, B.; Mmbando, F.; Mekuria, M. Adoption of interrelated sustainable agricultural practices in smallholder systems: Evidence from rural Tanzania. Technol. Forecast. Soc. Chang. 2013, 80, 525–540. [Google Scholar] [CrossRef]
- García-Cortijo, M.C.; Castillo-Valero, J.S.; Carrasco, I. Innovation in rural Spain. What drives innovation in the rural-peripheral areas of southern Europe? J. Rural Stud. 2019, 71, 114–124. [Google Scholar] [CrossRef]
- European Commission. Proposal for a Regulation of the European Parliament and of the Council on Support for Rural Development by the European Agricultural Fund for Rural Development (EAFRD); Council of the European Union: Brussels, Belgium, 2011. [Google Scholar]
- Zitti, M.; Grigoriadis, E.; Salvati, L. Beyond the ‘divided city’: A manifesto for spatially balanced, sprawl-free post-crisis metropolises. Rev. Appl. Socio-Econ. Res. 2017, 13, 95–109. [Google Scholar]
- Ma, C.; Jiang, Y.; Qi, K. Investigating the urban-rural integrated town development strategy on the basis of the study of rural forms in Nantong, China. Front. Archit. Res. 2021, 10, 190–201. [Google Scholar] [CrossRef]
- Rondinelli, D.A. Dynamics of Growth of Secondary Cities in Developing Countries. Geogr. Rev. 1983, 73, 42–57. [Google Scholar] [CrossRef]
- Ma, L.; Liu, S.; Fang, F.; Che, X.; Chen, M. Evaluation of urban-rural difference and integration based on quality of life. Sustain. Cities Soc. 2020, 54, 101877. [Google Scholar] [CrossRef]
- Yang, Y.; Bao, W.; Wang, Y.; Liu, Y. Measurement of urban-rural integration level and its spatial differentiation in China in the new century. Habitat Int. 2021, 117, 102420. [Google Scholar] [CrossRef]
- Chen, K.; Long, H.; Liao, L.; Tu, S.; Li, T. Land use transitions and urban-rural integrated development: Theoretical framework and China’s evidence. Land Use Policy 2020, 92, 104465. [Google Scholar] [CrossRef]
- Tacoli, C. Changing Rural-Urban Interactions in Sub-Saharan Africa and their Impact on Livelihoods: A Summary. 2002. Available online: https://www.iied.org/9153iied (accessed on 24 October 2024).
- Zhu, J.; Zhu, M.; Xiao, Y. Urbanization for rural development: Spatial paradigm shifts toward inclusive urban-rural integrated development in China. J. Rural Stud. 2019, 71, 94–103. [Google Scholar] [CrossRef]
- Boschma, R. Proximity and Innovation: A Critical Assessment. Reg. Stud. 2005, 39, 61–74. [Google Scholar] [CrossRef]
- Lu, Q.; Yao, S. From Urban–Rural Division to Urban–Rural Integration: A Systematic Cost Explanation and Chengdu’s Experience. China World Econ. 2018, 26, 86–105. [Google Scholar] [CrossRef]
- Morescalchi, A.; Pammolli, F.; Penner, O.; Petersen, A.M.; Riccaboni, M. The evolution of networks of innovators within and across borders: Evidence from patent data. Res. Policy 2014, 44, 651–668. [Google Scholar] [CrossRef]
- Mwantimwa, K.; Ndege, N. Transferring knowledge and innovations through village knowledge center in Tanzania: Approaches, impact and impediments. VINE J. Inf. Knowl. Manag. Syst. 2024, 54, 379–397. [Google Scholar] [CrossRef]
- Chen, H.P.; Peng, S.Y.; Shen, Q.L. Digital economy, factor mobility, and urban-rural integrated development. Stat. Decis. 2023, 10, 100–105. [Google Scholar]
- Lichter, D.T.; Ziliak, J.P. The Rural-Urban Interface: New Patterns of Spatial Interdependence and Inequality in America. Ann. Am. Acad. Political Soc. Sci. 2017, 672, 6–25. [Google Scholar] [CrossRef]
- Neffke, F.; Henning, M.; Boschma, R. How Do Regions Diversify over Time? Industry Relatedness and the Development of New Growth Paths in Regions. Econ. Geogr. 2011, 87, 237–265. [Google Scholar] [CrossRef]
- Liu, S.; Yuan, J. Can government digitalization promote the urban–rural equalization of basic public services? Evidence from double machine learning. Appl. Econ. 2024, 56, 1–16. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Y.; Zhu, Y. Can the integration between urban and rural areas be realized? A new theoretical analytical framework. J. Geogr. Sci. 2024, 34, 3–24. [Google Scholar] [CrossRef]
- Inkpen, A.C.; Tsang, E.W.K. Social Capital, Networks, and Knowledge Transfer. Acad. Manag. Rev. 2005, 30, 146–165. [Google Scholar] [CrossRef]
- Zasada, I. Multifunctional peri-urban agriculture—A review of societal demands and the provision of goods and services by farming. Land Use Policy 2011, 28, 639–648. [Google Scholar] [CrossRef]
- Long, H.; Tu, S.; Ge, D.; Li, T.; Liu, Y. The allocation and management of critical resources in rural China under restructuring: Problems and prospects. J. Rural Stud. 2016, 47, 392–412. [Google Scholar] [CrossRef]
- Huo, Y.; Wang, J.; Guo, X.; Xu, Y. The Collaboration Mechanism of Agricultural Product Supply Chain Dominated by Farmer Cooperatives. Sustainability 2022, 14, 5824. [Google Scholar] [CrossRef]
- Rockenbauch, T.; Sakdapolrak, P.; Sterly, H. Do translocal networks matter for agricultural innovation? A case study on advice sharing in small-scale farming communities in Northeast Thailand. Agric. Hum. Values 2019, 36, 685–702. [Google Scholar] [CrossRef]
- Gertler, M.S.; Levitte, Y.M. Local Nodes in Global Networks: The Geography of Knowledge Flows in Biotechnology Innovation. Ind. Innov. 2005, 12, 487–507. [Google Scholar] [CrossRef]
- Jarosz-Angowska, A.; Angowski, M.; Kijek, T. The Creation of Social Capital in Rural Areas in the Lubelskie Region; Aleksandras Stulginskis University: Kaunas, Lithuania, 2015. [Google Scholar] [CrossRef]
- Fonte, M.; Cucco, I. Cooperatives and alternative food networks in Italy. The long road towards a social economy in agriculture. J. Rural. Stud. 2017, 53, 291–302. [Google Scholar] [CrossRef]
- Nerbonne, J.F.; Lentz, R. Rooted in grass: Challenging patterns of knowledge exchange as a means of fostering social change in a southeast Minnesota farm community. Agric. Hum. Values 2003, 20, 65–78. [Google Scholar] [CrossRef]
- Mfitumukiza, D.; Barasa, B.; Nankya, A.M.; Dorothy, N.; Owasa, A.H.; Siraj, B.; Gerald, K. Assessing the farmer field schools diffusion of knowledge and adaptation to climate change by smallholder farmers in Kiboga District, Uganda. J. Agric. Ext. Rural Dev. 2017, 9, 74–83. [Google Scholar] [CrossRef]
- Jayne, T.; Snapp, S.; Place, F.; Sitko, N. Sustainable agricultural intensification in an era of rural transformation in Africa. Glob. Food Secur. 2019, 20, 105–113. [Google Scholar] [CrossRef]
- Chavas, J.; Nauges, C. Uncertainty, Learning, and Technology Adoption in Agriculture. Appl. Econ. Perspect. Policy 2020, 42, 42–53. [Google Scholar] [CrossRef]
- Arroio, A.C.M. Governance of Science, Technology and Innovation Programmes for Development Is Global Financing Getting It Right? Int. J. Inst. Econ. 2012, 4, 45–64. Available online: http://mojem.um.edu.my/index.php/ijie/article/view/4850 (accessed on 24 October 2024).
- Farhangi, M.H.; Turvani, M.E.; Van Der Valk, A.; Carsjens, G.J. High-Tech Urban Agriculture in Amsterdam: An Actor Network Analysis. Sustainability 2020, 12, 3955. [Google Scholar] [CrossRef]
- Hanushchak-Yefimenko, L. Features of the influence of the market environment on the innovative development of agricultural enterprises. Management 2021, 32, 111–118. [Google Scholar] [CrossRef]
- Adeola, O.; Meru, A.K.; Kinoti, M.W. Kenya’s Blooming Flower Industry: Enhancing Global Competitiveness. In Africa’s Competitiveness in the Global Economy; Palgrave Macmillan: Cham, Switzerland, 2018; pp. 331–349. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Lan, Y. Research on Cold Chain Logistics Based on Environmentally Friendly Rural One, Two and Three Industry Integration Development. IOP Conference Series. Earth Environ. Sci. 2019, 252, 042040. [Google Scholar] [CrossRef]
- Goodhue, R.; Green, R.; Heien, D.; Martin, P. California wine industry evolving to compete in 21st century. Calif. Agric. 2008, 62, 12–18. [Google Scholar] [CrossRef]
- Asheim, B.T.; Boschma, R.; Cooke, P. Constructing Regional Advantage: Platform Policies Based on Related Variety and Differentiated Knowledge Bases. Reg. Stud. 2011, 45, 893–904. [Google Scholar] [CrossRef]
- Bjørn, A.; Coenen, L.; Vang, J. Face-to-Face, Buzz and Knowledge Bases: Socio-Spatial Implications for Learning and Innovation Policy. Papers in Innovation Studies. 2005. Available online: https://ideas.repec.org/p/hhs/lucirc/2005_018.html (accessed on 24 October 2024).
- Martin, R.; Moodysson, J. Comparing knowledge bases: On the geography and organization of knowledge sourcing in the regional innovation system of Scania, Sweden. Eur. Urban Reg. Stud. 2011, 20, 170–187. [Google Scholar] [CrossRef]
- Qian, H. Knowledge base differentiation in urban systems of innovation and entrepreneurship. Urban Stud. 2016, 54, 1655–1672. [Google Scholar] [CrossRef]
- Long-gao, G. On Construction of the Institutional Mechanism in Integrated Development of Urban and Rural Areas. J. Lianyungang Tech. Coll. 2010, 23, 33–36. [Google Scholar]
- Wigboldus, S.; Klerkx, L.; Leeuwis, C. Systemic perspectives on scaling agricultural innovations. A review. Agron. Sustain. Dev. 2016, 36, 46. [Google Scholar] [CrossRef]
- Yang, Y.L.; Ma, H.K.; Wang, X.J.; Mao, S.P. Construction experience of regional agricultural science and technology innovation center in the typical developed countries and its enlightenment to Beijing-Tianjin-Hebei region. J. China Agric. Sci. Technol. 2019, 21, 9–16. [Google Scholar]
- Zhang, Z. The Role of Local Government in Sustainable Rural-Urban Integration. Urban. Land Reserv. Res. 2010, 3, 487–493. [Google Scholar]
- Ovaska, U.; Vihinen, H.; Oostindie, H.; Farinós, J.; Hrabar, M.; Kilis, E.; Kobal, J.; Tisenkopfs, T.; Vulto, H. Network Governance Arrangements and Rural-Urban Synergy. Sustainability 2021, 13, 2952. [Google Scholar] [CrossRef]
- Su, Y.; Ma, W.J.; Han, Z.R.; Li, Z.L. Effect of institution on regional technology innovation. Technol. Econ. 2013, 12, 40–45+95. [Google Scholar]
- Mbaye, L.M.; Okara, A.; Tani, M. Labour Mobility and Innovation in Africa. J. Afr. Econ. 2023, 32, ejad020. [Google Scholar] [CrossRef]
- Clancy, M.S.; Moschini, G. Intellectual Property Rights and the Ascent of Proprietary Innovation in Agriculture. Annu. Rev. Resour. Econ. 2017, 9, 53–74. [Google Scholar] [CrossRef]
- Kumar, A.; Takeshima, H.; Thapa, G.; Adhikari, N.; Saroj, S.; Karkee, M.; Joshi, P. Adoption and diffusion of improved technologies and production practices in agriculture: Insights from a donor-led intervention in Nepal. Land Use Policy 2020, 95, 104621. [Google Scholar] [CrossRef]
- Honcharuk, I.; Tomashuk, I. Influence of innovation processes on increase of competitiveness of agricultural enterprises. Econ. Financ. Manag. Top. Issues Sci. Pract. Act. 2023, 1, 30–47. [Google Scholar] [CrossRef]
- Du, G.M.; Liu, M. A factor-based theoretical analysis of urban-rural relationship change. Prog. Geogr. Sci. 2021, 40, 1298–1309. [Google Scholar] [CrossRef]
- Araral, E.; Wang, Y. Water Governance 2.0: A Review and Second Generation Research Agenda. Water Resour. Manag. 2013, 27, 3945–3957. [Google Scholar] [CrossRef]
- Ge, D.Z.; Long, H.L. Rural spatial governance and urban-rural integration development. Acta Geogr. Sin. 2020, 75, 1272–1286. [Google Scholar]
- Wang, C.; Piperopoulos, P.; Chen, S.; Ming, A.a.K.; Herbert, K. Outward FDI and Innovation Performance of Chinese Firms: Why Can Home-Grown Political Ties Be A Liability? J. World Bus. 2022, 57, 101306. [Google Scholar] [CrossRef]
- Hansen, B.E. Threshold effects in non-dynamic panels: Estimation, testing, and inference. J. Econom. 1999, 93, 345–368. [Google Scholar] [CrossRef]
- Mwangi, M.; Kariuki, S. Factors Determining Adoption of New Agricultural Technology by Smallholder Farmers in Developing Countries. J. Econ. Sustain. Dev. 2015, 6, 208–216. Available online: https://www.iiste.org/Journals/index.php/JEDS/article/view/20710 (accessed on 24 October 2024).
- Ma, X.S. The Road of Urban-Rural Integration Development Under the Rural Revitalization Strategy. Int. J. Agric. Econ. 2019, 4, 181. [Google Scholar] [CrossRef]
- Liu, Y.; Ji, D.; Zhang, L.; An, J.; Sun, W. Rural Financial Development Impacts on Agricultural Technology Innovation: Evidence from China. Int. J. Environ. Res. Public Health 2021, 18, 1110. [Google Scholar] [CrossRef]
- Mao, Y.S. Land-tenure Transfer and Farmer’s Right Secuity in the Urban-rural Integrating Experimental Region. J. Zhengzhou Inst. Aeronaut. Ind. Manag. 2008. Available online: https://en.cnki.com.cn/Article_en/CJFDTOTAL-ZZHK200805007.htm (accessed on 24 October 2024).
- Yin, X.; Chen, J.; Li, J. Rural innovation system: Revitalize the countryside for a sustainable development. J. Rural Stud. 2022, 93, 471–478. [Google Scholar] [CrossRef]
Target Layer | Standardized Layer | Indicator Layer | Calculation or Description of the Indices | Properties | Weights |
---|---|---|---|---|---|
URI evaluation index system | RUIpop | Urban–rural population structure [32,33] | Permanent urban population/total permanent population | + | 0.065 |
Urban–rural employment structure [32,33] | Proportion of the workforce employed in secondary and tertiary sectors/Proportion of the workforce employed in primary sectors | + | 0.075 | ||
RUIecon | Urban–rural industrial structure [32,101] | Proportion of GDP contributed by secondary and tertiary sectors compared to the primary sector | + | 0.131 | |
Urban–rural income structure [33] | Ratio of urban to rural household disposable income per capita | - | 0.041 | ||
Urban–rural consumption structure [32,33] | Ratio of urban to rural household consumption per capita | - | 0.031 | ||
Urban–rural industrial technology level [33,101] | Per capita agricultural machinery power | + | 0.048 | ||
RUIsoc | Urban–Rural basic education structure [32,33] | Ratio of students to full-time teachers in primary and secondary schools | - | 0.089 | |
Urban–rural cultural, educational, and entertainment structure [33,101] | Urban to rural per capita expenditure ratio on culture, education, and entertainment | - | 0.035 | ||
Urban–rural healthcare structure [32,33] | Urban to rural per capita expenditure ratio on healthcare | - | 0.049 | ||
Urban–rural social security structure [33,101] | Social security and employment expenditure/Local general public budget expenditure | + | 0.026 | ||
RUIspa | Urban spatial agglomeration level [33] | Ratio of built-up area to total land area | + | 0.139 | |
Urban–rural spatial circulation network [32,33] | Ratio of highway and railway mileage to land area | + | 0.054 | ||
Urban–rural information connectivity level [32,101] | Urban to rural per capita expenditure ratio on transportation and communication | - | 0.04 | ||
RUIecol | Urban–rural greening level [32] | Urban green coverage rate | + | 0.024 | |
Urban–rural health level [32] | Sanitation facilities penetration rate | + | 0.053 | ||
Urban–rural environmental protection level [32,33] | Wastewater centralized treatment rate | + | 0.099 |
var | Obs | Mean | Std.Dev | Min | Max | VIF |
---|---|---|---|---|---|---|
ATI | 5760 | 49.649 | 156.057 | 0 | 2970 | - |
RUI | 5760 | 0.539 | 0.092 | 0.267 | 0.899 | 1.39 |
GDP | 5760 | 29,240.736 | 26,936.689 | 1160 | 186,125 | 1.63 |
OPEN | 5760 | 0.022 | 0.028 | 0.006 | 0.376 | 1.21 |
IND | 5760 | 15.824 | 10.113 | 0.035 | 63.822 | 2.42 |
ENV | 5760 | 0.003 | 0.002 | 0 | 0.012 | 1.47 |
RCR | 5760 | 46.651 | 16.042 | 12.88 | 105.7 | 1.22 |
AG-R&D | 5760 | 4260.072 | 6611.287 | 0 | 74,567.005 | 1.31 |
MAN | 5760 | 9.273 | 3.713 | 1.089 | 28.009 | 2.33 |
MAR | 5760 | 8.373 | 3.355 | 1.077 | 18.257 | 1.52 |
var | ATI | ||||||
---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
RUI | 0.53 *** (0.03) | 0.29 *** (0.04) | 0.3 *** (0.04) | 0.38 *** (0.04) | 0.38 *** (0.04) | 0.4 *** (0.04) | 0.43 *** (0.04) |
lnpgdp | 0.41 *** (0.05) | 0.45 *** (0.05) | 0.59 *** (0.06) | 0.58 *** (0.06) | 0.56 *** (0.06) | 0.47 *** (0.06) | |
lnopen | −2.06 *** (0.6) | −2.33 *** (0.61) | −2.29 *** (0.61) | −2.21 *** (0.61) | −2.67 *** (0.61) | ||
lnInd | 0.24 *** (0.05) | 0.25 *** (0.05) | 0.25 *** (0.05) | 0.23 *** (0.05) | |||
lnenv | 23.98 *** (7.5) | 23.49 *** (7.49) | 26.68 *** (7.46) | ||||
lnrcr | −0.23 *** (0.05) | −0.29 *** (0.06) | |||||
lnag-r&d | 0.08 *** (0.01) | ||||||
Cons | −0.55 *** (0.08) | −4.45 *** (0.46) | −4.71 *** (0.47) | −6.52 *** (0.6) | −6.51 *** (0.6) | −5.48 *** (0.65) | −5.01 *** (0.66) |
FE(City) | YES | ||||||
FE(Year) | |||||||
N | 5760 | 5760 | 5760 | 5760 | 5760 | 5760 | 5760 |
var | ATI | ATIaf | ATIame | ATIasm | ||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
RUI | 0.42 *** (0.05) | 0.45 *** (0.06) | 0.46 *** (0.11) | |||||
RUIpop | 0.18 *** (0.04) | |||||||
RUIecon | 0.43 *** (0.04) | |||||||
RUIsoc | 0.16 *** (0.02) | |||||||
RUIspa | 0.11 *** (0.03) | |||||||
RUIecol | 0.07 *** (0.03) | |||||||
lnpgdp | 0.58 *** (0.06) | 0.58 *** (0.06) | 0.6 *** (0.06) | 0.63 *** (0.06) | 0.67 *** (0.06) | 0.48 *** (0.07) | 0.47 *** (0.08) | 0.61 *** (0.14) |
lnopen | −2.09 *** (0.6) | −2.6 *** (0.61) | −2.15 *** (0.6) | −1.99 *** (0.61) | −2.14 *** (0.61) | −2.25 *** (0.66) | −3.14 *** (0.79) | 1.68 (1.33) |
lnInd | 0.15 *** (0.05) | 0.47 *** (0.06) | −0.01 (0.05) | 0.11 ** (0.05) | 0.05 (0.05) | 0.19 *** (0.06) | 0.19 *** (0.06) | 0.18 (0.12) |
lnenv | 24.36 *** (7.48) | 23.79 *** (7.46) | 24.45 *** (7.45) | 27.66 *** (7.49) | 26.1 *** (7.48) | 37.14 *** (8.49) | 7.43 (9.25) | −10.12 (17.24) |
lnrcr | −0.23 *** (0.06) | −0.26 *** (0.05) | −0.22 *** (0.05) | −0.27 *** (0.06) | −0.25 *** (0.06) | −0.37 *** (0.06) | 0.01 (0.07) | −0.62 *** (0.14) |
lnag-r&d | 0.08 *** (0.01) | 0.09 *** (0.01) | 0.09 *** (0.01) | 0.07 *** (0.01) | 0.07 *** (0.01) | 0.08 *** (0.02) | 0.1 *** (0.02) | 0.16 *** (0.04) |
Cons | −6.3 *** (0.65) | −7.07 *** (0.63) | −6.07 *** (0.65) | −6.48 *** (0.65) | −6.7 *** (0.64) | −4.82 *** (0.72) | −6.85 *** (0.85) | −7.17 *** (1.62) |
FE(City) | YES | |||||||
FE(Year) | ||||||||
N | 5760 | 5760 | 5760 | 5760 | 5760 | 5740 | 5760 | 5460 |
var | ATI | ||||
---|---|---|---|---|---|
EST | CTR | WST | Urban | Rural | |
(1) | (2) | (3) | (4) | (5) | |
RUI | 0.38 *** (0.07) | 0.34 *** (0.09) | 0.32 *** (0.09) | 0.44 *** (0.05) | 0.37 *** (0.08) |
lnpgdp | 0.31 *** (0.1) | 0.52 *** (0.12) | 0.39 *** (0.12) | 0.46 *** (0.06) | 0.3 *** (0.1) |
lnopen | −4.04 *** (0.82) | −1.45 (1.27) | −5.73 ** (2.54) | −2.83 *** (0.62) | 1.34 (1.02) |
lnInd | 0.09 (0.09) | 0.54 *** (0.09) | −0.32 *** (0.1) | 0.18 *** (0.05) | 0.31 *** (0.08) |
lnenv | 8.87 (11.27) | 29.64 ** (13.18) | 36.93 ** (14.86) | 20.74 *** (7.71) | 40.6 *** (12.99) |
lnrcr | 0.19 ** (0.09) | −0.73 *** (0.1) | −0.61 *** (0.1) | −0.29 *** (0.06) | 0.06 (0.09) |
lnag-r&d | 0.07 *** (0.02) | 0.03 (0.03) | 0.11 *** (0.03) | 0.09 *** (0.01) | 0.09 *** (0.02) |
Cons | −4.66 *** (1.07) | −4.32 *** (1.34) | −2 (1.31) | −4.77 *** (0.69) | −6.77 *** (1.08) |
FE(City) | YES | ||||
FE(Year) | |||||
N | 2000 | 2000 | 1760 | 5760 | 5720 |
var | ATI | ||||||
---|---|---|---|---|---|---|---|
GXPA | HIDPA | NPPA | FWPPA | HHHPPA | YRPA | SCPA | |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
RUI | 0.76 *** (0.25) | 0.07 (0.33) | −0.03 (0.14) | 0.16 (0.23) | 0.24 * (0.13) | 0.54 *** (0.09) | 0.27 *** (0.1) |
lnpgdp | −0.05 (0.34) | 0.39 (0.32) | 0.09 (0.16) | 0.7 ** (0.29) | −0.11 (0.18) | −0.15 (0.13) | 0.71 *** (0.15) |
lnopen | −22.03 (17.73) | −10.35 * (5.57) | −0.12 (1.26) | −1.64 (4.75) | 0.1 (1.14) | 2.62 ** (1.12) | −1.31 (1.35) |
lnInd | −0.63 ** (0.26) | −0.1 (0.31) | 0.27 * (0.16) | 0.32 (0.2) | −0.05 (0.14) | 0.17 * (0.1) | 0.13 (0.13) |
lnenv | −18.75 (45.39) | 6.84 (34.17) | 69.57 *** (20.12) | 55.47 ** (26.3) | 35.89 ** (16.43) | 15.97 (12.5) | −4.82 (19.14) |
lnrcr | −0.29 (0.24) | −0.3 (0.26) | 0.7 *** (0.2) | −0.5 (0.41) | 0.12 (0.15) | −0.15 (0.12) | −0.95 *** (0.18) |
lnag-r&d | 0.15 * (0.09) | 0.5 *** (0.13) | −0.03 (0.05) | −0.05 (0.06) | 0.1 ** (0.05) | 0.08 *** (0.03) | −0.02 (0.04) |
Cons | 1.65 (3.57) | −5.51 (3.63) | −3.36 * (1.9) | −5.36 (3.32) | −0.36 (2.14) | −0.17 (1.39) | −4.73 *** (1.55) |
FE(City) | YES | ||||||
FE(Year) | |||||||
N | 280 | 280 | 680 | 420 | 920 | 1920 | 1080 |
var | ATI | ||||
---|---|---|---|---|---|
Winsorize | Change of Method | Deletion of Municipalties | Interaction Fixed Effect | Changing the Time Period of the Research | |
(1) | (2) | (3) | (4) | (5) | |
RUI | 0.32 *** (0.04) | 1.01 *** (0.02) | 0.39 *** (0.04) | 0.86 *** (0.04) | 0.41 *** (0.07) |
lnpgdp | 0.76 *** (0.05) | 0.92 *** (0.03) | 0.52 *** (0.06) | 0.89 *** (0.04) | 0.38 *** (0.09) |
lnopen | −2.84 *** (0.78) | −0.25 * (0.15) | −2.42 *** (0.61) | −6.68 *** (0.61) | 1.24 (0.98) |
lnInd | 0.31 *** (0.05) | −0.01 (0.03) | 0.25 *** (0.05) | 0.77 *** (0.04) | 0.34 *** (0.08) |
lnenv | 23.42 *** (8.65) | 9.17 *** (1.94) | 24.91 *** (7.49) | 39.34 *** (7.71) | 22.27 ** (9.24) |
lnrcr | −0.28 *** (0.05) | −0.12 *** (0.02) | −0.27 *** (0.05) | −0.53 *** (0.05) | −0.25 *** (0.07) |
lnag-r&d | 0.11 *** (0.02) | 0.11 *** (0.01) | 0.07 *** (0.02) | 0.08 *** (0.01) | 0.07 *** (0.02) |
Cons | −8.15 *** (0.62) | −6.63 *** (0.29) | −5.57 *** (0.65) | −9.23 *** (0.49) | −4.19 *** (1.06) |
FE(City) | YES | ||||
FE(Year) | |||||
N | 5760 | 5760 | 5680 | 5760 | 2592 |
var | ATI | ATIest | ATImid | ATIwes | ATIurb | ATIrur |
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
RUI × MAN | 0.17 *** (0.03) | 0.32 *** (0.06) | 0.34 *** (0.07) | 0.06 *** (0.05) | 0.17 *** (0.03) | 0.06 * (0.06) |
RUI | 0.83 *** (0.04) | 0.78 *** (0.07) | 0.66 *** (0.08) | 1.07 *** (0.09) | 0.81 *** (0.04) | 0.97 *** (0.08) |
MAN | −0.06 (0.05) | 0.28 ** (0.13) | 0.7 *** (0.12) | −0.53 *** (0.08) | −0.07 (0.06) | 0.03 (0.09) |
Cons | −9.93 *** (0.51) | −10.65 *** (0.86) | −8.17 *** (0.94) | −6.7 *** (1.02) | −10.04 *** (0.52) | −13.25 *** (0.89) |
Ctrls | YES | |||||
FE(City) | ||||||
FE(Year) | ||||||
Prob > x2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
N | 5760 | 2000 | 2000 | 1760 | 5760 | 5760 |
var | ATI | ATIest | ATImid | ATIwes | ATIurb | ATIrur |
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
RUI × MAR | 0.39 *** (0.03) | 0.52 *** (0.05) | 0.85 *** (0.06) | 0.23 *** (0.06) | 0.37 *** (0.03) | 0.31 *** (0.06) |
RUI | 0.73 *** (0.04) | 0.76 *** (0.07) | 0.63 *** (0.08) | 0.75 *** (0.09) | 0.72 *** (0.04) | 0.8 *** (0.07) |
MAR | 0.57 *** (0.06) | 0.72 *** (0.1) | 0.75 *** (0.1) | 0.38 *** (0.13) | 0.53 *** (0.06) | 0.92 *** (0.11) |
Cons | −7.31 *** (0.58) | −7.19 *** (0.94) | −8.26 *** (1.06) | −3.89 *** (1.18) | −7.32 *** (0.6) | −10.14 *** (0.97) |
Ctrls | YES | |||||
FE(City) | ||||||
FE(Year) | ||||||
Prob > x2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
N | 5760 | 2000 | 2000 | 1760 | 5760 | 5760 |
Region | var | Threshold | F | p | Boundary Value | BS | ||
---|---|---|---|---|---|---|---|---|
10% | 5% | 1% | ||||||
ATIall | RUI | single | 641.83 | 0.000 | 70.456 | 91.136 | 124.487 | 300 |
double | 126.75 | 0.007 | 56.68 | 65.077 | 108.406 | 300 | ||
triple | 63.62 | 0.82 | 300.877 | 356.452 | 462.242 | 300 | ||
ATIest | single | 334.44 | 0.000 | 49.254 | 66.153 | 98.634 | 300 | |
double | 117.1 | 0.003 | 38.509 | 54.26 | 85.368 | 300 | ||
triple | 28.81 | 0.707 | 179.793 | 217.354 | 262.864 | 300 | ||
ATImid | single | 313.85 | 0.000 | 55.761 | 65.649 | 94.952 | 300 | |
double | 30.41 | 0.227 | 54.567 | 83.783 | 162.592 | 300 | ||
ATIwes | single | 136.6 | 0.013 | 54.097 | 70.517 | 147.718 | 300 | |
double | 46.00 | 0.06 | 37.2 | 47.795 | 71.124 | 300 | ||
triple | 15.03 | 0.733 | 57.778 | 69.836 | 98.97 | 300 | ||
ATIurb | single | 750.63 | 0.000 | 62.614 | 79.226 | 103.588 | 300 | |
double | 198.29 | 0.000 | 53.1 | 73.2 | 92.871 | 300 | ||
triple | 70.01 | 0.787 | 380.681 | 438.836 | 520.135 | 300 | ||
ATIrur | single | 181.00 | 0.000 | 56.336 | 70.524 | 92.252 | 300 | |
double | 40.54 | 0.16 | 49.005 | 57.836 | 83.97 | 300 |
ATI (1) | ATIest (2) | ATImid (3) | ATIwes (4) | ATIurb (5) | ATIrur (6) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RUI ≤ 0.63 | 0.04 ** (0.02) | RUI ≤ 0.55 | −0.15 *** (0.03) | RUI ≤ 0.83 | 0.18 *** (0.02) | RUI ≤ 0.65 | 0.05 *** (0.03) | RUI ≤ 0.63 | 0.02 *** (0.02) | RUI ≤ 0.64 | 0.09 *** (0.02) |
0.63 < RUI < 0.71 | 0.13 *** (0.02) | 0.55 < RUI < 0.66 | −0.06 ** (0.03) | RUI > 0.83 | 0.33 *** (0.02) | 0.65 < RUI < 0.81 | 0.09 *** (0.03) | 0.63 < RUI < 0.71 | 0.11 *** (0.02) | RUI > 0.64 | 0.15 *** (0.02) |
RUI ≥ 0.71 | 0.22 *** (0.02) | RUI ≥ 0.66 | 0.06 ** (0.03) | RUI ≥ 0.81 | 0.18 *** (0.03) | RUI ≥ 0.71 | 0.21 *** (0.02) | ||||
Cons | 0.05 * (0.03) | −0.22 *** (0.06) | 0.3 *** (0.06) | 0.17 ** (0.07) | 0.03 (0.03) | 0.08 *** (0.03) | |||||
Ctrls | YES | ||||||||||
City-FE | |||||||||||
Year-FE | |||||||||||
R2 | 0.26 | 0.36 | 0.29 | 0.21 | 0.28 | 0.13 | |||||
N | 5760 | 2000 | 2000 | 1760 | 5760 | 5760 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Geng, C.; Chen, Y. Urban–Rural Integration and Agricultural Technology Innovation: Evidence from China. Agriculture 2024, 14, 1906. https://doi.org/10.3390/agriculture14111906
Zhu H, Geng C, Chen Y. Urban–Rural Integration and Agricultural Technology Innovation: Evidence from China. Agriculture. 2024; 14(11):1906. https://doi.org/10.3390/agriculture14111906
Chicago/Turabian StyleZhu, Huasheng, Changwei Geng, and Yawei Chen. 2024. "Urban–Rural Integration and Agricultural Technology Innovation: Evidence from China" Agriculture 14, no. 11: 1906. https://doi.org/10.3390/agriculture14111906
APA StyleZhu, H., Geng, C., & Chen, Y. (2024). Urban–Rural Integration and Agricultural Technology Innovation: Evidence from China. Agriculture, 14(11), 1906. https://doi.org/10.3390/agriculture14111906