Sustainability Assessment of Agricultural Waste Biogas Production System in China Based on Emergy and Carbon Evaluation Methods
Abstract
:1. Introduction
2. Method
2.1. Study Object and System Boundary
2.2. Emergy Evaluation Method
2.3. Carbon Footprint Analysis Method
2.4. Environmental Radius Assessment Method
2.5. Data Source
3. Result and Discussion
3.1. Emergy Evaluation Result
3.1.1. Emergy Value Accounting
3.1.2. Emergy Indicator Evaluation
3.2. Carbon Footprint Analysis Result
3.2.1. Carbon Emission Accounting
3.2.2. Carbon Emission Reduction Accounting
3.3. Environmental Radius Assessment Result
3.3.1. Environmental Radius Accounting
3.3.2. Sensitivity Analysis
3.4. Limitations of This Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Item | Value | Unit |
---|---|---|
Carbon factor of diesel oil | 3.0959 | kgCO2/kg diesel |
Carbon factor of electricity | 0.738 | kgCO2/kwh electricity |
Carbon factor of open-air pollution | 1.3904 | kgCO2/kg straw |
Carbon factor of chemical fertilizer | 1.475 | kgCO2/kg fertilizer |
Parameter | Value | Unit |
---|---|---|
Average solar radiation | 125.07 | kcal/cm2 |
Average annual precipitation | 599.70 | mm |
Average elevation | 46.0 | m |
Average wind speed | 2.7 | m/s |
Item | Value | Unit |
---|---|---|
Collection quantities of crop straw | 73,000 | ton |
Collection quantities of animal waste | 182,500 | ton |
Practical feedstock supply radius | 7.5 | km |
Purchase price of straw baler | 20,601.1 | $ |
Working efficiency of straw baler | 2 | ton/h |
Number of straw balers | 13 | num |
Unit diesel consumption of straw baler | 15.6 | kg/h |
Annual number of livestock and poultry | 125,000 | head |
Laying cost of water well | 31,694 | $ |
Effective annual working days | 330 | day |
Item | Truck | Tanker | Unit |
---|---|---|---|
Full-load speed | 20 | 40 | km/h |
Empty-load speed | 25 | 60 | km/h |
Full-load oil consumption | 0.24 | 0.26 | kg/kwh |
Empty-load oil consumption | 0.20 | 0.23 | kg/kwh |
Power-load ratio | 13.3 | 8.3 | kw/ton |
Machine price | 11,045.36 | 31,694 | $ |
Number of vehicles | 10 | 10 | num |
Item | Value | Unit |
---|---|---|
Annual electricity consumption | 873,226 | kwh |
Annual fuel consumption | 135,916 | tce |
Labor management cost | 34,170.45 | $ |
Machine maintenance cost | 42,472.73 | $ |
Purchased price of anaerobic jar | 39,617.5 | $ |
Number of anaerobic jars | 5 | num |
Capacity of the anaerobic jar | 1500 | m3 |
Government subsidy | 79,235 | $ |
Collection revenue of livestock manure | 1,095,000 | $ |
Biogas electricity | 9,855,000 | kwh |
Fertilizer yield | 1,830,000 | kg |
Biogas yields | 8,760,000 | m3 |
Item | Value | Unit |
---|---|---|
Labor numbers | 56 | person |
Labor costs | 4.35 × 105 | $ |
Diesel consumption | 5.45 × 105 | kg |
Diesel costs | 7.60 × 105 | $ |
Electricity consumption | 8.75 × 105 | kwh |
Electricity costs | 4.08 × 105 | $ |
Equipment costs | 5.71 × 105 | $ |
Water consumption | 7.80 × 107 | kg |
Water costs | 1.04 × 105 | $ |
References
- Zhang, D.; Wang, J.; Lin, Y.; Si, Y.; Huang, C.; Yang, J.; Huang, B.; Li, W. Present situation and future prospect of renewable energy in China. Renew. Sustain. Energy Rev. 2017, 76, 865–871. [Google Scholar] [CrossRef]
- Aravani, V.P.; Sun, H.; Yang, Z.; Liu, G.; Wang, W.; Anagnostopoulos, G.; Syriopoulos, G.; Charisiou, N.D.; Goula, M.A.; Kornaros, M.; et al. Agricultural and livestock sector’s residues in Greece & China: Comparative qualitative and quantitative characterization for assessing their potential for biogas production. Renew. Sustain. Energy Rev. 2022, 154, 111821. [Google Scholar] [CrossRef]
- Yan, B.; Li, Y.; Qin, Y.; Shi, W.; Yan, J. Spatial-temporal distribution of biogas production from agricultural waste per capita in rural China and its correlation with ground temperature. Sci. Total. Environ. 2022, 817, 152987. [Google Scholar] [CrossRef]
- Davison, N.; Brown, A.; Ross, A. Potential Greenhouse Gas Mitigation from Utilising Pig Manure and Grass for Hydrothermal Carbonisation and Anaerobic Digestion in the UK, EU, and China. Agriculture 2023, 13, 479. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, Y.; Li, H. Research Progress and Analysis on Comprehensive Utilization of Livestock and Poultry Biogas Slurry as Agricultural Resources. Agriculture 2023, 13, 2216. [Google Scholar] [CrossRef]
- Kapoor, R.; Ghosh, P.; Kumar, M.; Sengupta, S.; Gupta, A.; Kumar, S.S.; Vijay, V.; Kumar, V.; Vijay, V.K.; Pant, D. Valorization of agricultural waste for biogas based circular economy in India: A research outlook. Bioresour. Technol. 2020, 304, 123036. [Google Scholar] [CrossRef]
- Liu, T.; Ferrari, G.; Pezzuolo, A.; Alengebawy, A.; Jin, K.; Yang, G.; Li, Q.; Ai, P. Evaluation and analysis of biogas potential from agricultural waste in Hubei Province, China. Agric. Syst. 2023, 205, 103577. [Google Scholar] [CrossRef]
- Singh, P.; Kalamdhad, A.S. Assessment of agricultural residue-based electricity production from biogas in India: Resource-environment-economic analysis. Sustain. Energy Technol. Assess. 2022, 54, 102843. [Google Scholar] [CrossRef]
- Odum, H.T. Self-Organization, Transformity, and Information. Science 1988, 242, 1132–1139. [Google Scholar] [CrossRef]
- Wąs, A.; Sulewski, P.; Krupin, V.; Popadynets, N.; Malak-Rawlikowska, A.; Szymańska, M.; Skorokhod, I.; Wysokiński, M. The Potential of Agricultural Biogas Production in Ukraine—Impact on GHG Emissions and Energy Production. Energies 2020, 13, 5755. [Google Scholar] [CrossRef]
- Elia, V.; Gnoni, M.G.; Tornese, F. Measuring circular economy strategies through index methods: A critical analysis. J. Clean. Prod. 2017, 142, 2741–2751. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Yang, B.; Zheng, Z.; Wang, C.; Chen, B.; Li, S.; Ying, J.; Liu, X.; Chen, L.; et al. Emergy evaluation of straw collection, transportation and storage system for power generation in China. Energy 2021, 231, 120792. [Google Scholar] [CrossRef]
- Xu, Z.; Tang, Y.; Wang, Q.; Xu, Y.; Yuan, X.; Ma, Q.; Wang, G.; Liu, M.; Hao, H. Emergy based optimization of regional straw comprehensive utilization scheme. J. Clean. Prod. 2021, 297, 126638. [Google Scholar] [CrossRef]
- Liu, W.; Wang, J.; Sun, L.; Wang, T.; Li, C.; Chen, B. Sustainability evaluation of soybean-corn rotation systems in the Loess Plateau region of Shaanxi, China. J. Clean. Prod. 2019, 210, 1229–1237. [Google Scholar] [CrossRef]
- Gu, L.; Zhou, Y.; Mei, T.; Zhou, G.; Xu, L. Carbon Footprint Analysis of Bamboo Scrimber Flooring—Implications for Carbon Sequestration of Bamboo Forests and Its Products. Forests 2019, 10, 51. [Google Scholar] [CrossRef]
- Zhou, L.-Y.; Zhu, Y.-H.; Kan, Z.-R.; Li, F.-M.; Zhang, F. The impact of crop residue return on the food–carbon–water–energy nexus in a rice–wheat rotation system under climate warming. Sci. Total. Environ. 2023, 894, 164675. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, C.; Chen, J.; Hu, N.; Zhu, L. Evaluation on environmental consequences and sustainability of three rice-based rotation systems in Quanjiao, China by an integrated analysis of life cycle, emergy and economic assessment. J. Clean. Prod. 2021, 310, 127493. [Google Scholar] [CrossRef]
- Fang, D.; Chen, B.; Hayat, T.; Alsaedi, A. Emergy evaluation for a low-carbon industrial park. J. Clean. Prod. 2017, 163, S392–S400. [Google Scholar] [CrossRef]
- Fan, Y.; Meng, J.; Ye, H.; Wang, P.; Wang, Y.; Wang, Y. Sustainability and ecological efficiency of low-carbon power system: A concentrating solar power plant in China. J. Environ. Manag. 2021, 290, 112659. [Google Scholar] [CrossRef]
- Gao, M.; Wang, D.; Wang, H.; Wang, X.; Feng, Y. Biogas potential, utilization and countermeasures in agricultural provinces: A case study of biogas development in Henan Province, China. Renew. Sustain. Energy Rev. 2019, 99, 191–200. [Google Scholar] [CrossRef]
- Brown, M.T.; Campbell, D.E.; Tilley, D.R. Emergy Synthesis 8 ~ Emergy and environmental accounting: Theories, applications, and methodologies. Ecol. Model. 2015, 315, 1–3. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, C.; Sun, J.; Qiu, L. Assessing the sustainable abilities of a pilot hybrid solar-pyrolysis energy system using emergy synthesis. Int. J. Energy Res. 2020, 44, 2909–2924. [Google Scholar] [CrossRef]
- Cui, Y.; Khan, S.U.; Sauer, J.; Kipperberg, G.; Zhao, M. Agricultural carbon footprint, energy utilization and economic quality: What causes what, and where? Energy 2023, 278, 127886. [Google Scholar] [CrossRef]
- Zhou, Y.G.; Zhang, Z.X.; Zhang, Y.X.; Zhou, J.; Chen, L.; Yin, X.F.; Dong, R. Inventory analysis of carbon footprint on greenhouse gas emission of large-scale biogas plants. Int. J. Agric. Biol. Eng. 2016, 9, 99–105. [Google Scholar] [CrossRef]
- Skovsgaard, L.; Jacobsen, H.K. Economies of scale in biogas production and the significance of flexible regulation. Energy Policy 2017, 101, 77–89. [Google Scholar] [CrossRef]
- Gao, J.; Wang, C.; Wang, Z.; Lin, J.; Zhang, R.; Wu, X.; Xu, G.; Wang, Z. Site selection decision for biomass cogeneration projects from a sustainable perspective: A case study of China. Energy 2024, 286, 129518. [Google Scholar] [CrossRef]
- De Menna, F.; Malagnino, R.A.; Vittuari, M.; Segrè, A.; Molari, G.; Deligios, P.A.; Solinas, S.; Ledda, L. Optimization of agricultural biogas supply chains using artichoke byproducts in existing plants. Agric. Syst. 2018, 165, 137–146. [Google Scholar] [CrossRef]
- Liu, G.; Bao, J. Constructing super large scale cellulosic ethanol plant by decentralizing dry acid pretreatment technology into biomass collection depots. Bioresour. Technol. 2019, 275, 338–344. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, B.; Wang, Y.; Zheng, Z.; Wang, J.; Yue, Y.; Mu, W.; Xu, G.; Ying, J. Emergy evaluation of biogas production system in China from perspective of collection radius. Energy 2023, 265, 126377. [Google Scholar] [CrossRef]
- Sun, Y.; Cai, W.; Chen, B.; Guo, X.; Hu, J.; Jiao, Y. Economic analysis of fuel collection, storage, and transportation in straw power generation in China. Energy 2017, 132, 194–203. [Google Scholar] [CrossRef]
- Zhao, X.-G.; Li, A. A multi-objective sustainable location model for biomass power plants: Case of China. Energy 2016, 112, 1184–1193. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, J.; Yi, W.; Cai, H.; Su, Z.; Li, Y. Economic analysis of different straw supply modes in China. Energy 2021, 237, 121594. [Google Scholar] [CrossRef]
- Brown, M.T.; Campbell, D.E.; Ulgiati, S.; Franzese, P.P. The geobiosphere emergy baseline: A synthesis. Ecol. Model. 2016, 339, 89–91. [Google Scholar] [CrossRef]
- He, Z.; Jiang, L.; Wang, Z.; Zeng, R.; Xu, D.; Liu, J. The emergy analysis of southern China agro-ecosystem and its relation with its regional sustainable development. Glob. Ecol. Conserv. 2019, 20, e00721. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, C.; Sun, J.; Qiu, L. Sustainability accounting for the construction and operation of a plant-scale solar-biogas heating system based on emergy analysis. Int. J. Energy Res. 2019, 43, 3806–3822. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Ni, W. Emergy evaluation of Eco-Industrial Park with Power Plant. Ecol. Model. 2005, 189, 233–240. [Google Scholar] [CrossRef]
- Sha, S.; Hurme, M. Emergy evaluation of combined heat and power plant processes. Appl. Therm. Eng. 2012, 43, 67–74. [Google Scholar] [CrossRef]
- Wu, X.; Wu, F.; Tong, X.; Wu, J.; Sun, L.; Peng, X. Emergy and greenhouse gas assessment of a sustainable, integrated agricultural model (SIAM) for plant, animal and biogas production: Analysis of the ecological recycle of wastes. Resour. Conserv. Recycl. 2015, 96, 40–50. [Google Scholar] [CrossRef]
- Ghisellini, P.; Zucaro, A.; Viglia, S.; Ulgiati, S. Monitoring and evaluating the sustainability of Italian agricultural system. An emergy decomposition analysis. Ecol. Model. 2014, 271, 132–148. [Google Scholar] [CrossRef]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z.; Tahir, N.; Wang, H.; Li, J.; Xu, G. Study of synergetic development in straw power supply chain: Straw price and government subsidy as incentive. Energy Policy 2020, 146, 111788. [Google Scholar] [CrossRef]
- Hu, H.; Zhou, Q.; Li, X.; Lou, W.; Du, C.; Teng, Q.; Zhang, D.; Liu, H.; Zhong, Y.; Yang, C. Phytoremediation of anaerobically digested swine wastewater contaminated by oxytetracycline via Lemna aequinoctialis: Nutrient removal, growth characteristics and degradation pathways. Bioresour. Technol. 2019, 291, 121853. [Google Scholar] [CrossRef] [PubMed]
- Yentekakis, I.V.; Goula, G. Biogas Management: Advanced Utilization for Production of Renewable Energy and Added-Value Chemicals. Front. Environ. Sci. 2017, 5, e00007. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, D.; Ning, T.; Zhang, S.; Yang, Y.; He, Z.; Li, Z. Sustainability assessment of straw utilization circulation modes based on the emergetic ecological footprint. Ecol. Indic. 2017, 75, 1–7. [Google Scholar] [CrossRef]
- Surie, G. Achieving Sustainability: Insights from Biogas Ecosystems in India. Agriculture 2017, 7, 15. [Google Scholar] [CrossRef]
- Lehtoranta, S.; Tampio, E.; Rasi, S.; Laakso, J.; Vikki, K.; Luostarinen, S. The implications of management practices on life cycle greenhouse gas emissions in biogas production. J. Environ. Manag. 2024, 366, 121884. [Google Scholar] [CrossRef]
- Yang, Y.; Campana, P.E.; Stridh, B.; Yan, J. Potential analysis of roof-mounted solar photovoltaics in Sweden. Appl. Energy 2020, 279, 115786. [Google Scholar] [CrossRef]
- Albert, M.D.; Bennett, K.O.; Adams, C.A.; Gluyas, J.G. Waste heat mapping: A UK study. Renew. Sustain. Energy Rev. 2022, 160, 112230. [Google Scholar] [CrossRef]
- Karimi, M.; Shirzad, M.; Silva, J.A.C.; Rodrigues, A.E. Carbon dioxide separation and capture by adsorption: A review. Environ. Chem. Lett. 2023, 21, 2041–2084. [Google Scholar] [CrossRef]
- Timonen, K.; Sinkko, T.; Luostarinen, S.; Tampio, E.; Joensuu, K. LCA of anaerobic digestion: Emission allocation for energy and digestate. J. Clean. Prod. 2019, 235, 1567–1579. [Google Scholar] [CrossRef]
- Wang, Y.-N.; Cheng, Y.; Gu, Z.-L.; Yang, J.-T.; Ren, H.-H. Emission Factors and Inventories of Carbonaceous Aerosols from Residential Biomass Burning in Guizhou Province, China. Atmosphere 2022, 13, 1595. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, B.; Deng, H.; Du, H.; Yang, R.; Ju, L.; Liu, S. Analysis on the evolution law and influencing factors of Beijing’s power generation carbon emissions. Energy Rep. 2022, 8, 1689–1697. [Google Scholar] [CrossRef]
- Cervi, W.R.; Lamparelli, R.A.C.; Seabra, J.E.A.; Junginger, M.; van der Hilst, F. Spatial assessment of the techno-economic potential of bioelectricity production from sugarcane straw. Renew. Energy 2020, 156, 1313–1324. [Google Scholar] [CrossRef]
- Andrić, I.; Jamali-Zghal, N.; Santarelli, M.; Lacarrière, B.; Le Corre, O. Environmental performance assessment of retrofitting existing coal fired power plants to co-firing with biomass: Carbon footprint and emergy approach. J. Clean. Prod. 2017, 103, 13–27. [Google Scholar] [CrossRef]
- Ni, H.; Han, Y.; Cao, J.; Chen, L.-W.A.; Tian, J.; Wang, X.; Chow, J.C.; Watson, J.G.; Wang, Q.; Wang, P.; et al. Emission characteristics of carbonaceous particles and trace gases from open burning of crop residues in China. Atmos. Environ. 2015, 123, 399–406. [Google Scholar] [CrossRef]
Emergy Indicator | Expression Equation | Interpretation |
---|---|---|
Unit emergy value (UEV) | UEV = I/Q | The conversion rate of the solar emergy. |
Emergy self-sufficiency (ESR) | ESR = (R + N)/T | Degree of local resource development. |
Emergy yield ratio (EYR) | EYR = Y/(PR + PN) | Economic output efficiency of the system. |
Environmental loading ratio (ELR) | ELR = (N + PN)/(R + PR) | Environmental burden from the system. |
Emergy sustainable index (ESI) | ESI = EYR/ELR | Development potential of the system. |
Economic benefit (EB) | EB = Revenue − Cost | Economic return of the system. |
Calculation Formulas | Symbol Explanations |
---|---|
(R and N) is referred to the emergy value of natural environmental resource inputs, including sunlight, rainfall, wind, and agricultural wastes, etc.; is the collection radius of agricultural waste; represents energy flow of different natural resource of unit area; indicates emergy conversion ratio of different materials. To avoid double counting of emergy, the maximum emergy flow (agricultural waste) is selected to represent the natural resource input. | |
is the diesel consumption of unit agricultural waste transportation; and and are the transportation speed of full-loaded and empty-loaded vehicle, reseverally; and are the transportation speed of full-loaded and empty-loaded vehicle, severally; is equal to the ratio of power and load. | |
represents the transportation distances of vehicles from collection points to biogas plant; describes the road tortuous factor. | |
M stands for the annual collection quantities of agricultural waste; is the resource density of available agricultural waste. | |
is the economic cost of diesel consumption, is referred to the working efficiency of a straw baler; are set to the unit fuel consumption of agricultural waste balers, carriers, and conversion station, respectively; is the price of unit diesel. | |
(PN) is the emergy value of diesel fuel input; represents the energy conversion ratio of 1 kg diesel. | |
represents the total costs of labor; is the daily wage of worker. are unit worker costs of agricultural waste collection, transportation, and production; is the effective time of agricultural waste collection. | |
(PR) is the emergy value of labor input. | |
represents the total costs of equipment purchase; are net present value of collection machine and vehicle, and is the unit costs of facility. | |
(PN) indicates the total emergy value of equipment purchase. | |
represents the total costs of water consumption; is the production efficiency of biogas; are unit water consumption of biogas production; is the unit price of water. | |
(PR) indicates the total emergy value of water consumption. | |
represents the total costs of electricity consumption; are unit electricity consumption of biogas production; is the unit price of electricity. | |
(PN) indicates the total emergy value of electricity consumption. represents the energy conversion ratio of 1 kwh electricity. | |
represents the total revenue of biomass products; is assumed as output of different biomass products, are market price of different biomass product. | |
(Y) quantifies emergy value of different agricultural waste products. |
Formulars | Explanation of Variables |
---|---|
is referred to the carbon emission of straw baler; indicates carbon emission factor of diesel; stands for the available agricultural waste resource of unit area. is set to the unit fuel consumption of straw balers. | |
is the carbon emission from the diesel consumption of agricultural waste vehicles; describes the road tortuous factor. is the unit fuel consumption of agricultural waste carriers. | |
represents the carbon emission from electricity consumption; indicates carbon emission factor of electricity; is the electricity consumption of agricultural waste recycling system. | |
is the carbon emission from the fossil fuel in production phase. is set to the unit fuel consumption of conversion station. | |
is the carbon emission from the biogas leakage; is the methane production from agricultural waste; indicates the carbon emission factor of methane. | |
indicates the carbon offset from agricultural waste power generation; is the power generation used by the system itself. | |
indicates the carbon offset from agricultural waste utilization instead of waste emission; is the amount of agricultural waste utilization. indicates carbon emission factor of agricultural waste pollution. | |
indicates the carbon offset from organic fertilizer preparation; is the amount of fertilizer savings. indicates carbon emission factor of unit fertilizer manure. | |
is the net carbon emission of the system. |
Item | Quantity | Unit | Transformity (Sej/Unit) | Emergy (Sej) | Reference |
---|---|---|---|---|---|
Local renewable resources (R) | |||||
Sunlight | 9.25 × 1017 | J/y | 1.00 | 9.25 × 1017 | [6] |
Wind, kinetic | 6.15 × 1011 | J/y | 8.00 × 102 | 4.92 × 1014 | [33] |
Rain, chemical | 5.24 × 1013 | J/y | 7.00 × 103 | 3.67 × 1017 | [33] |
straw | 1.13 × 1015 | J/y | 2.70 × 104 | 3.05 × 1019 | [12] |
Total | 3.05 × 1019 | ||||
Local non-renewable resource (N) | |||||
Topsoil loss | 6.67 × 1013 | J/y | 7.40 × 104 | 4.94 × 1018 | [12] |
Total | 4.94 × 1018 | ||||
Renewable external inputs (PR) | |||||
Labor | 3.00 × 105 | $/y | 4.94 × 1012 | 1.48 × 1018 | [34] |
Total | 1.48 × 1018 | ||||
Non-renewable external inputs (PN) | |||||
Diesel oil | 1.65 × 1013 | J/y | 6.60 × 104 | 1.09 × 1018 | [35] |
Electricity | 1.52 × 1012 | J/y | 3.36 × 105 | 5.11 × 1017 | [35] |
Equipment | 2.29 × 105 | $/y | 4.94 × 1012 | 1.13 × 1018 | [34] |
Total | 2.73 × 1018 |
Item | Quantity | Unit | Transformity (Sej/Unit) | Emergy (Sej) | Reference |
---|---|---|---|---|---|
Renewable external inputs (PR) | |||||
Labor | 9.25 × 104 | $/y | 4.94 × 1012 | 4.57 × 1017 | [34] |
Total | 4.57 × 1017 | ||||
Non-renewable external inputs (PN) | |||||
Diesel oil | 3.56 × 1012 | J/y | 6.60 × 104 | 2.35 × 1017 | [35] |
Equipment | 1.34 × 105 | $/y | 4.94 × 1012 | 6.62 × 1017 | [34] |
Total | 8.97 × 1017 | ||||
Outputs | |||||
Straw return | 8.24 × 1013 | J/y | 2.96 × 104 | 2.44 × 1018 | [13] |
Straw product | 5.18 × 105 | $/y | 4.94 × 1012 | 2.56 × 1018 | [34] |
Total | 5.00 × 1018 |
Item | Quantity | Unit | Transformity (Sej/Unit) | Emergy (Sej) | Reference |
---|---|---|---|---|---|
Renewable external inputs (PR) | |||||
Labor | 1.97 × 105 | $/y | 4.94 × 1012 | 9.75 × 1017 | [34] |
Cooling water | 1.97 × 1012 | g/y | 5.03 × 105 | 9.91 × 1017 | [36] |
Oxygen | 1.35 × 1010 | g/y | 5.16 × 107 | 6.96 × 1017 | [37] |
Total | 2.66 × 1018 | ||||
Non-renewable external inputs (PN) | |||||
Fuel | 8.18 × 1012 | J/y | 6.60 × 104 | 5.40 × 1017 | [35] |
Electricity | 5.40 × 1011 | J/y | 3.36 × 105 | 1.81 × 1017 | [35] |
Equipment | 6.05 × 105 | $/y | 4.94 × 1012 | 2.99 × 1018 | [34] |
Total | 3.71 × 1018 | ||||
Outputs | |||||
Straw electricity | 2.89 × 1013 | J/y | 3.36 × 105 | 9.72 × 1018 | [35] |
Total | 9.72 × 1018 |
Item | Quantity | Unit | Transformity (Sej/Unit) | Emergy (Sej) | Reference |
---|---|---|---|---|---|
Renewable external inputs (PR) | |||||
Labor | 1.35 × 105 | $/y | 4.94 × 1012 | 6.65 × 1017 | [34] |
Water | 7.80 × 1010 | g/y | 1.00 × 105 | 7.80 × 1015 | [36] |
Manure waste | 3.25 × 1013 | J/y | 1.24 × 105 | 4.03 × 1018 | [38] |
Total | 4.70 × 1018 | ||||
Non-renewable external inputs (PN) | |||||
Diesel oil | 6.74 × 1012 | J/y | 6.60 × 104 | 4.45 × 1017 | [35] |
Electricity | 1.63 × 1012 | J/y | 3.36 × 105 | 5.49 × 1017 | [35] |
Investment | 3.42 × 105 | $/y | 4.94 × 1012 | 1.69 × 1018 | [34] |
Total | 2.68 × 1018 | ||||
Outputs | |||||
Ecological subsidy | 1.70 × 105 | $/y | 4.94 × 1012 | 8.40 × 1017 | [34] |
Organic fertilizer | 1.83 × 109 | g/y | 2.80 × 109 | 5.12 × 1018 | [39] |
Biogas electricity | 3.55 × 1013 | J/y | 3.36 × 105 | 1.19 × 1019 | [35] |
Total | 1.79 × 1019 |
Emergy Index | Straw Return | Power Generation | Biogas Production |
---|---|---|---|
R (×1018 sej) | 30.5 | 30.5 | 30.5 |
N (×1018 sej) | 4.94 | 4.94 | 4.94 |
PR (×1018 sej) | 1.94 | 4.14 | 6.18 |
PN (×1018 sej) | 3.63 | 6.44 | 5.41 |
T (×1018 sej) | 41.01 | 46.02 | 47.03 |
Y (×1018 sej) | 5.00 | 9.72 | 17.86 |
Ratio of renewable resource | 0.79 | 0.75 | 0.78 |
Ratio of non-renewable resource | 0.21 | 0.25 | 0.22 |
Category | Straw Return | Power Generation | Biogas Production | Unit |
---|---|---|---|---|
Total carbon emission | 1.77 × 106 | 1.74 × 106 | 4.97 × 106 | kgCO2 |
Emission from fossil fuels | 1.46 × 106 | 1.32 × 106 | 1.68 × 106 | kgCO2 |
Emission from grid electricity | 3.11 × 105 | 4.23 × 105 | 6.45 × 105 | kgCO2 |
Emission from biogas leakage | 2.64 × 106 | |||
Carbon emission of utilizing 1 kg agricultural waste | 6.93 | 6.81 | 19.45 | gCO2 |
Carbon emission density of 1 kwh biomass electricity | / | 0.22 | 0.50 | kgCO2 |
Instead of agricultural waste pollution | 1.01 × 108 | 1.01 × 108 | 1.10 × 108 | kgCO2 |
Instead of chemical fertilizer | 0 | 0 | 2.70 × 106 | kgCO2 |
Instead of coal-fired electricity | 0 | 5.92 × 106 | 7.28 × 106 | kgCO2 |
Parameter | Baseline | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | ||||
---|---|---|---|---|---|---|---|---|---|
Rate of change | 0% | −10% | 10% | −10% | 10% | −10% | 10% | −10% | 10% |
EYR | 1.55 | 1.41 | 1.70 | 1.63 | 1.46 | 1.57 | 1.50 | 1.58 | 1.50 |
ELR | 0.27 | 0.27 | 0.29 | 0.28 | 0.27 | 0.27 | 0.29 | 0.27 | 0.29 |
ESR | 0.74 | 0.74 | 0.77 | 0.76 | 0.74 | 0.76 | 0.75 | 0.76 | 0.75 |
ESI | 5.53 | 5.22 | 5.86 | 5.75 | 5.34 | 5.82 | 5.27 | 5.81 | 5.28 |
Optimal radius (km) | 9.6 | 9.9 | 9.4 | 9.5 | 9.6 | 9.9 | 9.4 | 9.3 | 9.9 |
Carbon reduction (108 kg) | 1.9 | 1.7 | 2.0 | 1.8 | 1.9 | 2.0 | 1.8 | 1.8 | 2.0 |
Economy (104 $) | 6.23 | 4.73 | 7.11 | 7.72 | 5.29 | 9.65 | 3.12 | 8.13 | 4.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Jia, W.; Yu, Y.; Zhang, H. Sustainability Assessment of Agricultural Waste Biogas Production System in China Based on Emergy and Carbon Evaluation Methods. Agriculture 2024, 14, 1912. https://doi.org/10.3390/agriculture14111912
Yang B, Jia W, Yu Y, Zhang H. Sustainability Assessment of Agricultural Waste Biogas Production System in China Based on Emergy and Carbon Evaluation Methods. Agriculture. 2024; 14(11):1912. https://doi.org/10.3390/agriculture14111912
Chicago/Turabian StyleYang, Bin, Weiguo Jia, Yi Yu, and Hui Zhang. 2024. "Sustainability Assessment of Agricultural Waste Biogas Production System in China Based on Emergy and Carbon Evaluation Methods" Agriculture 14, no. 11: 1912. https://doi.org/10.3390/agriculture14111912
APA StyleYang, B., Jia, W., Yu, Y., & Zhang, H. (2024). Sustainability Assessment of Agricultural Waste Biogas Production System in China Based on Emergy and Carbon Evaluation Methods. Agriculture, 14(11), 1912. https://doi.org/10.3390/agriculture14111912