Biocontrol Efficacy of Bacillus thuringiensis Strain 00-50-5 Against the Root-Knot Nematode Meloidogyne enterolobii in Pepper
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacteria Culture
2.2. Nematode Extraction and Hatching
2.3. In Vitro Mortality Assay
2.4. In Vitro Inhibition of Egg Hatching Assay
2.5. Pot Trials
2.6. Field Trials
2.7. Statistical Analysis
3. Results
3.1. Nematicidal Activity of Bt 00-50-5 Against M. enterolobii J2s In Vitro
3.2. Inhibition of M. enterolobii Egg Hatching by Bt 00-50-5 In Vitro
3.3. The Biocontrol Efficacy of Bt 00-50-5 Against M. enterolobii in the Greenhouse
3.4. The Biocontrol Efficacy of Bt 00-50-5 Against M. enterolobii in the Field
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hunt, D.J.; Handoo, Z.A. Taxonomy, identification and principal species. In Root-Knot Nematodes; CABI: Wallingford, UK, 2009; pp. 55–58. [Google Scholar] [CrossRef]
- Forghani, F.; Hajihassani, A. Recent advances in the development of environmentally benign treatments to control root-knot nematode. Front. Plant Sci. 2020, 11, 1125. [Google Scholar] [CrossRef] [PubMed]
- Koutsovoulos, G.D.; Poullet, M.; Elashry, A.; Kozlowski, D.K.; Sallet, E.; Da Rocha, M. Genome assembly and annotation of Meloidogyne enterolobii, an emerging arthenogenetic root-knot nematode. Sci. Data 2020, 7, 324. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Eisenback, J.D. Meloidogyne enterolobii n. sp. (Meloidogynidae), a root-knot nematode parasitizing pacara earpod tree in China. J. Nematol. 1983, 15, 381–391. [Google Scholar] [PubMed]
- Collett, R.L.; Marais, M.; Daneel, M.; Rashidifard, M.; Fourie, H. Meloidogyne enterolobii, a threat to crop production with particular reference to sub-saharan Africa: An extensive, critical and updated review. Nematology 2021, 23, 247–285. [Google Scholar] [CrossRef]
- Long, H.B.; Sun, Y.F.; Chen, Y.; Pei, Y.L.; Feng, T.Z.; Che, H.Y. Occurrence of root-knot nematodes (Meloidogyne spp.) on peppers in Hainan, China, and resistance of common cultivars to M. enterolobii and M. incognita. Plant Dis. 2023, 107, 3148–3154. [Google Scholar] [CrossRef]
- Khan, A.; Khan, A.; Ali, A.; Fatima, S.; Siddiqui, M.A. Root-Knot nematodes (Meloidogyne spp.): Biology, plant-nematode interactions and their environmentally benign management strategies. Gesunde Pflanzen. 2023, 75, 2187–2205. [Google Scholar] [CrossRef]
- Gao, H.J.; Qi, G.F.; Yin, R.Y.; Zhang, H.C.; Li, C.G.; Zhao, X.Y. Bacillus cereus strain S2 shows high nematicidal activity against Meloidogyne incognita by producing sphingosine. Sci. Rep. 2016, 6, 28756. [Google Scholar] [CrossRef]
- Khan, M.R.; Mohiddin, F.A. Biocontrol strategies for nematode management, an overview. In Novel Biological and Biotechnological Applications in Plant Nematode Management; Khan, M.R., Ed.; Springer: Singapore, 2023. [Google Scholar] [CrossRef]
- Ahmad, G.; Khan, A.; Khan, A.A. Biological control: A novel strategy for the control of the plant parasitic nematodes. Antonie Van Leeuwenhoek 2021, 114, 885–912. [Google Scholar] [CrossRef]
- Antil, S.; Kumar, R.; Pathak, D.V.; Kumari, A. Recent advances in utilizing bacteria as biocontrol agents against plant parasitic nematodes emphasizing Meloidogyne spp. Biol. Control 2023, 183, 105244. [Google Scholar] [CrossRef]
- Azlay, L.; El Boukhari, M.E.M.; Mayad, E.H.; Barakate, M. Biological management of root-knot nematodes (Meloidogyne spp.): A review. Org. Agric. 2022, 13, 99–117. [Google Scholar] [CrossRef]
- Borrajo, M.P.; Mondino, E.A.; Maroniche, G.A. Potential of rhizobacteria native to Argentina for the control of Meloidogyne javanica. Rev. Argent. Microbiol. 2021, 54, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Bel, Y.; Ferre, J.; Martinez, P.H. Bacillus thuringiensis toxins: Functional characterization and mechanism of action. Toxins 2020, 12, 785. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Q.; Wei, J.Z.; Tan, A.; Aroian, R.V. Resistance to root-knot nematode in tomato roots expressing a nematicidal Bacillus thuringiensis crystal protein. Plant Biotechnol. J. 2007, 5, 455–464. [Google Scholar] [CrossRef]
- Prasad, S.S.V.; Tilak, K.V.B.R.; Gollakota, K.G. Role of Bacillus thuringiensis var. thuringiensis on the larval survivability and egg hatching of Meloidogyne spp.; the causative agent of root-knot disease. J. Invertebr. Pathol. 1972, 20, 377–378. [Google Scholar] [CrossRef]
- Wei, J.; Lum, A.; Schepers, E.; Liu, L.; Weston, R.T. Novel insecticidal proteins from ferns resemble insecticidal proteins from Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 2023, 120, e2306177120. [Google Scholar] [CrossRef]
- Ruan, L.; Crickmore, N.; Peng, D.; Sun, M. Are nematodes a missing link in the confounded ecology of the entomopathogen Bacillus thuringiensis? Trends Microbiol. 2015, 23, 341. [Google Scholar] [CrossRef]
- Luo, X.; Chen, L.; Huang, Q.; Zheng, J.; Zhou, W.; Peng, D.; Ruan, L.; Sun, M. Bacillus thuringiensis metalloproteinase Bmp1 functions as a nematicidal virulence factor. Appl. Environ. Microbiol. 2013, 79, 460–468. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, R.; Ding, M.; Liu, Y.; Li, L. Biocontrol of the root-knot nematode Meloidogyne incognita by a nematicidal bacterium Paeudomonas simiae MB751 with cyclic dipeptide. Pest. Manag. Sci. 2021, 77, 4365–4374. [Google Scholar] [CrossRef]
- Jamal, Q.; Cho, J.Y.; Moon, J.H.; Munir, S.; Anees, M.; Kim, K.Y. Identification for the first time of Cyclo(D-Pro-L-Leu) produced by Bacillus amyloliquefaciens Y1 as a nematicide for control of Meloidogyne incognita. Molecules 2017, 22, 1839. [Google Scholar] [CrossRef]
- Mohammed, S.H.; Saedy, M.A.; Enan, M.R.; Ibrahim, N.E. Biocontrol efficiency of Bacillus thuringiensis toxins against root-knot nematode, Meloidogyne incognita. J. Cell Mol. Biol. 2008, 7, 57–66. [Google Scholar]
- Du, C.; Cao, S.; Shi, X.; Nie, X.; Zheng, J.; Deng, Y.; Ruan, L.; Peng, D.; Sun, M. Genetic and biochemical characterization of a gene operon for trans-Aconitic acid, a novel nematicide from Bacillus thuringiensis. J. Biol. Chem. 2017, 292, 3517–3530. [Google Scholar] [CrossRef] [PubMed]
- Bai, C.; Barker, J.F.; Yi, S. A new Bacillus thuringiensis isolate with an unusually high activity against the banded sunflower moth. In Proceedings of the 23rd Sunflower Research Workshop, Fargo, ND, USA, 17–18 January 2001; National Sunflower Association: Bismark, ND, USA, 2001; pp. 63–69. [Google Scholar]
- Bai, C.; Brady, A.V. Fermentation of a new Bacillus thuringiensis strain. Helia 2001, 24, 47–54. [Google Scholar] [CrossRef]
- Hussey, R.S.; Barker, K.R. A comparison of methods of collecting inocula on Meloidogyne spp., including a new technique. Plant Dis. Rep. 1973, 57, 1025–1028. [Google Scholar]
- Cayrol, J.C.; Djian, C.; Pijarowski, L. Study of the nematicidal properties of the culture filtrate of the nematophagous fungus Paecilomyces lilacinus. Rev. Nematol. 1989, 12, 331–336. [Google Scholar]
- Jenkins, W.R.B. A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Dis. Rep. 1964, 48, 692. [Google Scholar]
- Wu, H.; de Oliveira Silva, J.; Becker, J.S.; Becker, J.O. Fluazaindolizine mitigates plant-parasitic nematode activity at sublethal dosages. J. Pest Sci. 2021, 94, 573–583. [Google Scholar] [CrossRef]
- Tian, X.; Zhao, X.; Zhao, S.; Zhao, J.; Mao, Z. The biocontrol functions of Bacillus velezensis strain Bv-25 against Meloidogyne incognita. Front. Microbiol. 2022, 13, 843041. [Google Scholar] [CrossRef]
- Saedy, M.E.; Hammad, S.E.; Allah, S.F.A. Nematicidal effect of abamectin, boron, chitosan, hydrogen peroxide and Bacillus thuringiensis against citrus nematode on Valencia orange trees. J. Plant Sci. Phytopathol. 2019, 3, 111–117. [Google Scholar] [CrossRef]
- Choi, T.G.; Maung, C.E.H.; Lee, D.R.; Henry, A.B.; Lee, Y.S.; Kim, K.Y. Role of bacterial antagonists of fungal pathogens, Bacillus thuringiensis KYC and Bacillus velezensis CE 100 in control of root-knot nematode, Meloidogyne incognita and subsequent growth promotion of tomato. Biocontrol Sci. Technol. 2020, 30, 685–700. [Google Scholar] [CrossRef]
- Zheng, Z.; Zheng, J.; Zhang, Z.; Peng, D.; Sun, M. Nematicidal spore-forming Bacilli share similar virulence factors and mechanisms. Sci. Rep. 2016, 6, 31341. [Google Scholar] [CrossRef]
- Puttawong, K.; Beesa, N.; Kasem, S.; Jindapunnapat, K.; Chinnasri, B.; Sasnarukkit, A. Potential of Bacillus spp. against root-knot nematode, Meloidogyne enterolobii parasitizing chili (Capsicum annuum L.). Crop Prot. 2024, 184, 106780. [Google Scholar] [CrossRef]
- Hu, H.; Gao, Y.; Li, X.; Chen, S.; Yan, S.; Tian, X. Identification and nematicidal characterization of proteases secreted by endophytic bacteria Bacillus cereus BCM2. Phytopathology 2020, 110, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Geng, C.; Nie, X.; Tang, Z.; Zhang, Y.; Lin, J.; Sun, M.; Peng, D. A novel serine protease, Sep1, from Bacillus firmus DS-1 has nematicidal activity and degrades multiple intestinal-associated nematode proteins. Sci. Rep. 2016, 27, 25012. [Google Scholar] [CrossRef] [PubMed]
- Woźniak, M.; Gałązka, A.; Tyśkiewicz, R.; Jaroszuk-Ściseł, J. Endophytic bacteria potentially promote plant growth by synthesizing different metabolites and their phenotypic/physiological profiles in the Biolog GEN III MicroPlateTM Test. Int. J. Mol. Sci. 2019, 20, 5283. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.S. Abamectin and azadirachtin as eco-friendly and promising biorational tools in integrated nematodes management programs. J. Plant Pathol. Microbiol. 2013, 4, 4. [Google Scholar] [CrossRef]
Year | Treatment | Disease Index * | Control Efficiency (%) | Yield (kg/ha) * | Increase in Production Rate (%) |
---|---|---|---|---|---|
2020–2021 | Untreated | 92.0 ± 4.6 a | - | 4595.2 ± 122.8 c | - |
Bt 00-50-5 | 31.0 ± 0.6 b | 66.1 | 9017.2 ± 312.5 a | 96.2 | |
Abamaectin | 37.1 ± 2.1 b | 59.5 | 8140.9 ± 61.3 b | 77.2 | |
2021–2022 | Untreated | 96.0 ± 2.3 a | - | 4698.8 ± 172.5 c | - |
Bt 00-50-5 | 30.5 ± 0.5 b | 68.2 | 9074.2 ± 234.6 a | 93.1 | |
Abamaectin | 35.5 ± 3.9 b | 63.6 | 7961.0 ± 249.4 b | 69.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Guo, Y.; Pei, Y.; Chen, Y.; Feng, T.; Long, H. Biocontrol Efficacy of Bacillus thuringiensis Strain 00-50-5 Against the Root-Knot Nematode Meloidogyne enterolobii in Pepper. Agriculture 2024, 14, 1920. https://doi.org/10.3390/agriculture14111920
Sun Y, Guo Y, Pei Y, Chen Y, Feng T, Long H. Biocontrol Efficacy of Bacillus thuringiensis Strain 00-50-5 Against the Root-Knot Nematode Meloidogyne enterolobii in Pepper. Agriculture. 2024; 14(11):1920. https://doi.org/10.3390/agriculture14111920
Chicago/Turabian StyleSun, Yanfang, Yuan Guo, Yueling Pei, Yuan Chen, Tuizi Feng, and Haibo Long. 2024. "Biocontrol Efficacy of Bacillus thuringiensis Strain 00-50-5 Against the Root-Knot Nematode Meloidogyne enterolobii in Pepper" Agriculture 14, no. 11: 1920. https://doi.org/10.3390/agriculture14111920
APA StyleSun, Y., Guo, Y., Pei, Y., Chen, Y., Feng, T., & Long, H. (2024). Biocontrol Efficacy of Bacillus thuringiensis Strain 00-50-5 Against the Root-Knot Nematode Meloidogyne enterolobii in Pepper. Agriculture, 14(11), 1920. https://doi.org/10.3390/agriculture14111920