Climate Change as an Existential Threat to Tropical Fruit Crop Production—A Review
Abstract
:1. Introduction
2. Methodology
3. Abiotic Factors Affecting Tropical Fruit Ecosystem
3.1. Impact of Temperature Variations on Tropical Fruit Crops
3.1.1. High Temperature Stress
3.1.2. Low Temperature Stress
3.2. Impact of Erratic Rainfall Pattern on Growth and Development of Tropical Fruit Crops
3.3. Effect of Relative Humidity, Wind Speed, and Evaporation on the Growth and Yield of Tropical Fruits
3.4. Influence of Rising Carbon Dioxide (CO2) Levels on Tropical Fruit Production
3.5. Impact of Environmental Factors on the Behavior of Pollinators and Pollination of Tropical Fruit Crops
3.6. Climate Change Impact on Biochemical Aspects and Quality of Tropical Fruit Crops
4. Biotic Factors Affecting Tropical Fruit Ecosystem
4.1. Impact of Climate Change on Pest Population Dynamics of Tropical Crops
4.2. Diseases of Tropical Fruit Crops in the Context of Climate Change
4.2.1. Fungal Diseases
4.2.2. Bacterial Diseases
4.2.3. Viral Diseases
5. Prospects: Adaptation and Mitigation Strategies in Tropical Fruit Production
- Orchard establishment: Due to changing climate scenarios, tropical regions may experience a northward shift in agroclimatic zones in the northern hemisphere and a southward shift in the southern hemisphere in the future [125]. Hence, identification of potential areas for orchard establishment could be done using climate suitability models. The suitable areas for establishment of mango and guava orchards in India were mapped using models developed using algorithms like rule set prediction (GARP), maximum entropy (MAXENT) and bio-climate (BIOCLIM) [126].
- Variety development: Breeding techniques could be adopted to develop varieties that can endure both biotic and abiotic stresses like high temperature, drought, salinity, pest and diseases. For example, in regions with limited water resources, varieties like Arka sahan (Annona) and ruby (pomegranate), that can withstand droughts show great potential. Mango cultivars that are monoembryonic are best suited for areas with well-defined winter season, while coastal regions benefit from polyembryonic varieties [7]. In vegetatively propagated plants virus infection is a major issue. Certified virus-free plants could be used to avoid the spread of graft-transmissible diseases [127,128].
- Management practices: Pruning for canopy management shapes young plants and increases leaf and fruit exposure, leading to enhanced fruit yield and quality. Innovative techniques like fruit bagging could be adopted to prevent fruit drop at early stages and avoid physiological disorders. Bagging of mango fruits at the marble stage using brown paper or newspaper improved fruit retention and reduced the occurrence of spongy tissue [129]. The use of prgmen bags to cover pomegranate fruits helped decrease fruit cracking and sunburn issues [130]. Nets could be used to provide shade and protect fruits from birds, insects and hail. The abiotic stress tolerance could be imparted by the exogeneous application of plant growth regulators like cytokinins, abscisic acid, salicylic acid, jasmonic acid and proline [131,132].
- Soil and water conservation: Mulching and microsite modification using fillers improves the water-holding capacity of soils. Reuse of wastewater and solid waste in agriculture, along with implementing water-harvesting technologies, is advisable. Conservation techniques such as levelling, constructing bunds, bench terracing, etc., need to be implemented, as well as effective management of irrigation water through the use of drip systems in growing bananas, papayas, pomegranates, mangoes and sapotas [65]. Transformation of degraded lands and barren areas into tropical fruit orchards can serve as a significant carbon-sequestration tool. Over a year, perennial crops can store 320 to 1100 kg of soil carbon per hectare, while annual crops can store 0 to 450 kg; additionally, perennial crops tend to yield better than annual crops in hotter conditions [133].
- Microclimate modifications: Modifications to the microclimate can be utilized to mitigate extreme weather events. Overcoming heat and cold stress is possible by utilizing methods such as overhead irrigation, sprinklers and shade nets. The use of mulch enhances soil microclimate, microbial activity and soil health. Plastic mulch resulted in higher yields for papaya (64.24%), mango (45.23%), banana (33.95%), ber (27.06%), guava (25.93%), pineapple (14.63%), and litchi (12.61%) compared to no mulch [134]. Antitranspirants can be used to reduce water loss through transpiration and temperature on leaf and fruit surfaces. The use of antitranspirant chitosan at a concentration of 2% resulted in significantly higher average finger weight, average hand weight and bunch weight in bananas compared to the other treatments [135]. Using terra alba in treatment improves the quality of pomegranate fruits by lowering fruit and leaf temperature compared to the control, as reported by [136]. Kaolin is also key in preventing sunburn in pomegranate fruits [137]. Windbreaks or shelter belts alter the microclimate and soil of orchards, offering shelter for pollinating insects and guarding against wind erosion and natural disasters. Fruit plant mortality due to frost is lower in orchards with wind breaks (2.97 to 30.81%) compared to those without (up to 91.43%) [138].
- Pest and disease control: Integrated pest and disease management along with choice of tolerant cultivars will help to ensure good yield and avoid economic losses.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martin, R. Climate change: Why the tropical poor will suffer most. Technol. Rev. 2015. [Google Scholar]
- Haque, S.; Akbar, D.; Kinnear, S. Identifying impacts & adaptation strategies for tropical fruit farms affected by extreme weather events in sub-tropical Australia: Stakeholders’ insights. Heliyon 2024, 10, e26097. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Barret, K.; et al. IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Fischer, E.M.; Schär, C. Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci. 2010, 3, 398–403. [Google Scholar] [CrossRef]
- Liu, X.; He, B.; Guo, L.; Huang, L.; Chen, D. Similarities and Differences in the Mechanisms Causing the European Summer Heatwaves in 2003, 2010, and 2018. Earth’s Future 2020, 8, e2019EF001386. [Google Scholar] [CrossRef]
- Fischer, G.; Melgarejo, L.M.; Balaguera-López, H.E. Review on the impact of elevated CO2 concentrations on fruit species in the face of climate change. Cienc. Tecnol. Agropecu. 2022, 23, e2475. [Google Scholar]
- Nath, V.; Kumar, G.; Pandey, S.; Pandey, S. Impact of climate change on tropical fruit production systems and its mitigation strategies. In Climate Change and Agriculture in India: Impact and Adaptation; Springer: Berlin/Heidelberg, Germany, 2019; pp. 129–146. [Google Scholar]
- Watson, B.J.; Moncur, M. Criteria for Determining Survival: Commercial and Best Minimum July Temperatures for Various Tropical Fruits in Australia (S. Hemisphere); West Tropical Regional Publication: Cape York, QLD, Australia, 1985. [Google Scholar]
- Mansyah, E.; Budiyanti, T.; Hadiati, S.; Riska Indriyani, N.L. Biodiversity of Fruit Crops and Utilization in Food and Nutritional Security. In Sustainable Utilization and Conservation of Plant Genetic Diversity; Springer Nature: Singapore, 2024; pp. 127–170. [Google Scholar]
- Mohamed, Z.; AbdLatif, I.; Abdullah, A.M. Economic importance of tropical and subtropical fruits. In Postharvest Biology and Technology of Tropical and Subtropical Fruits; Elsevier: Amsterdam, The Netherlands, 2011; pp. 1–20. [Google Scholar]
- Haokip, S.W.; Shankar, K.; Lalrinngheta, J. Climate change and its impact on fruit crops. J. Pharmacogn. Phytochem. 2020, 9, 435–438. [Google Scholar]
- Tewari, G.S.; Pareek, N.; Pandey, S.; Nath, V. Impact of temperature stress on growth and development of fruit crops and its mitigation strategies. Int. J. Innov. Hortic. 2018, 7, 1–9. [Google Scholar]
- National Horticultural Board (NHB). Mango. 2024. Available online: https://www.nhb.gov.in/report_files/mango/MANGO.htm (accessed on 6 February 2024).
- Dhillon, W.S.; Aulakh, P.S. Impact of Climate Change on Fruit Crops; Narendra Publishing House: Delhi, India, 2011. [Google Scholar]
- Joshi, R.U.; Singh, A.K.; Singh, V.P.; Rai, R.; Joshi, P. A review on adaptation of banana (Musa spp.) to cold in subtropics. Plant Breed. 2023, 142, 269–283. [Google Scholar] [CrossRef]
- Fischer, G.; Melgarejo, L.M. Ecophysiological aspects of guava (Psidium guajava L.). A review. Rev. Colomb. Cienc. Hortíc. 2021, 15, e12355. [Google Scholar] [CrossRef]
- Gill. Encyclopedia of Food and Health; Academic Press: Cambridge, MA, USA, 2016; pp. 270–277. [Google Scholar] [CrossRef]
- Salinas, I.; Hueso, J.J.; Cuevas, J. Active Control of Greenhouse Climate Enhances Papaya Growth and Yield at an Affordable Cost. Agronomy 2021, 11, 378. [Google Scholar] [CrossRef]
- Lange, A.H. The Effect of Temperature and Photoperiod on the Growth of Carica Papaya. Ecology 1961, 42, 481–486. [Google Scholar] [CrossRef]
- Kome, G.K.; Enang, R.K.; Silatsa, F.B.; Yerima, B.P.K.; Van Ranst, E. Baseline edaphic requirements of soursop (Annona muricata L.). Trop. Plants 2024, 3, 1–9. [Google Scholar] [CrossRef]
- Alves Gomes, A.; Marangon Debastiani, M.; Pizzatto, M.; Carvalho Da Silva, A.; Pacheco De Souza, A. Thermal requirements and estimates of number of leaves of Annona squamosa L. grown under different shading conditions. Comun. Sci. 2023, 14, e3973. [Google Scholar]
- Jang, Y.; Moon, J.-H.; Kim, S.-G.; Kim, T.; Lee, O.-J.; Lee, H.-J.; Wi, S.-H. Effect of Low-Temperature Tolerant Rootstocks on the Growth and Fruit Quality of Watermelon in Semi-Forcing and Retarding Culture. Agronomy 2022, 13, 67. [Google Scholar] [CrossRef]
- Melo, T.K.D.; Espínola, J.; Medeiros, J.F.D.; Figueiredo, V.B.; Silva, J.S.D.; Sá, F.V.D.S. Impacts of climate change scenarios in the Brazilian semiarid region on watermelon cultivars. Rev. Caatinga 2020, 33, 794–802. [Google Scholar] [CrossRef]
- Devi, S.P.; Talaulikar, S.; Gupta, M.J.; Thangam, M.; Singh, N.P. A Guide on Jack Fruit: Cultivation and Value Addition; Indian Council of Agricultural Research: Hyderabad, India, 2014.
- Sether, D.; Melzer, M.; Busto, J.; Zee, F.; Hu, J. Diversity and mealybug transmissibility of ampeloviruses in pineapple. Plant Dis. 2005, 89, 450–456. [Google Scholar] [CrossRef]
- Baskar, M.; Hemalatha, G.; Muneeshwari, P. Traditional and medicinal importance of sapota–Review. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 1711–1717. [Google Scholar] [CrossRef]
- Mangrauthia, S.K.; Singh Shakya, V.P.; Jain, R.; Praveen, S. Ambient temperature perception in papaya for papaya ringspot virus interaction. Virus Genes 2009, 38, 429–434. [Google Scholar] [CrossRef]
- Hossain, M. World pineapple production: An overview. Afr. J. Food Agric. Nutr. Dev. 2016, 16, 11443–11456. [Google Scholar] [CrossRef]
- Williams, P.A.; Crespo, O.; Atkinson, C.J.; Essegbey, G.O. Impact of climate variability on pineapple production in Ghana. Agric. Food Secur. 2017, 6, 1–14. [Google Scholar] [CrossRef]
- Sarkar, T.; Roy, A.; Choudhary, S.M.; Sarkar, S.K. Impact of climate change and adaptation strategies for fruit crops. In India: Climate Change Impacts, Mitigation and Adaptation in Developing Countries; Springer International Publishing: Cham, Switzerland, 2021; pp. 79–98. [Google Scholar]
- Kishore, K. Phenological growth stages of Indian gooseberry (Phyllanthus emblica L.) according to the extended BBCH scale. Sci. Hortic. 2017, 225, 607–614. [Google Scholar] [CrossRef]
- Danjuma, S.; Thaochan, N.; Permkam, S.; Satasook, C. Effect of temperature on the development and survival of immature stages of the carambola fruit fly, Bactrocera carambolae, and the Asian papaya fruit fly, Bactrocera papayae, reared on guava diet. J. Insect Sci. 2014, 14, 126. [Google Scholar] [CrossRef] [PubMed]
- Utsunomiya, N. Effect of temperature on shoot growth, flowering and fruit growth of purple passionfruit (Passiflora edulis Sims var. edulis). Sci. Hortic. 1992, 52, 63–68. [Google Scholar] [CrossRef]
- de Souto, A.G.L.; da Costa, J.C.F.; Campos, N.L.F.; de Azevedo, J.L.F.; dos Santos, C.E.M. Effect of temperature on passion fruit emergence and seedling vigor. J. Seed Sci. 2017, 39, 50–57. [Google Scholar] [CrossRef]
- Jaroensutasinee, K.; Jaroensutasinee, M.; Boonsanong, P. Climatic factor differences and mangosteen fruit quality between on-and off-season productions. Emerg. Sci. J. 2023, 7, 578–588. [Google Scholar] [CrossRef]
- Tripathi, P.; Karunakaran, G. Rambutan Cultivation. In Fruit Production in India; Narendra Publishing House: Delhi, India, 2013. [Google Scholar]
- De Andrade, R.A.; Bagatim, A.G.; Nacata, G. Rambutan seed germination: Temperature and storage. Comun. Sci. 2017, 8, 383–388. [Google Scholar] [CrossRef]
- Wahid, A. Physiological implications of metabolite biosynthesis for net assimilation and heat-stress tolerance of sugarcane (Saccharum officinarum) sprouts. J. Plant Res. 2007, 120, 219–228. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Roychowdhury, R.; Fujita, M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef]
- Rodríguez, M.; Canales, E.; Borrás-Hidalgo, O. Molecular aspects of abiotic stress in plants. Biotechnol. Appl. 2005, 22, 1–10. [Google Scholar]
- Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M.R. Heat tolerance in plants: An overview. Environ. Exp. Bot. 2007, 61, 199–223. [Google Scholar] [CrossRef]
- Marchand, F.L.; Mertens, S.; Kockelbergh, F.; Beyens, L.; Nijs, I. Performance of High Arctic tundra plants improved during but deteriorated after exposure to a simulated extreme temperature event. Glob. Chang. Biol. 2005, 11, 2078–2089. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Z.; Cui, L.J.; Wang, Y.; Li, J.L. Growth, lipid peroxidation and photosynthesis in two tall fescue cultivars differing in heat tolerance. Biol. Plant. 2009, 53, 237–242. [Google Scholar] [CrossRef]
- Cao, Y.; Duan, H.; Yang, L.; Wang, Z.; Zhou, S.; Yang, J. Effect of heat-stress during meiosis on grain yield of rice cultivars differing in heat-tolerance and its physiological mechanism. Acta Agron. Sin. 2008, 34, 2134–2142. [Google Scholar] [CrossRef]
- Awasthi, R.; Bhandari, K.; Nayyar, H. Temperature stress and redox homeostasis in agricultural crops. Front. Environ. Sci. 2015, 3, 11. [Google Scholar] [CrossRef]
- Dinesh, M.; Reddy, B. Physiological basis of growth and fruit yield characteristics of tropical and sub-tropical fruits to temperature. In Tropical Fruit Tree Species and Climate Change; Bioversity International: New Delhi, India, 2012; pp. 45–65. [Google Scholar]
- Paull, R.E.; Duarte, O. Tropical Fruits; CABI: Wallingford, UK, 2010. [Google Scholar]
- Ravi, I.; Mustaffa, M.M. Impact, adaptation and mitigation strategies for climate resilient banana production. In Climate-Resilient Horticulture: Adaptation and Mitigation Strategies; Springer: Berlin/Heidelberg, Germany, 2013; pp. 45–52. [Google Scholar]
- Matsuda, H.; Higuchi, H. Effects of temperature and humidity conditions on anthesis and pollen germinability of cherimoya (Annona cherimola Mill.). Trop. Agric. Dev. 2015, 59, 57–62. [Google Scholar]
- Higuchi, H.; Utsunomiya, N.; Sakuratani, T. Effects of temperature on growth, dry matter production and CO2 assimilation in cherimoya (Annona cherimola Mill.) and sugar apple (Annona squamosa L.) seedlings. Sci. Hortic. 1998, 73, 89–97. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Sarwar, R.; Zhang, W.; Geng, R.; Zhu, K.M.; Tan, X.L. Research progress on the physiological response and molecular mechanism of cold response in plants. Front. Plant Sci. 2024, 15, 1334913. [Google Scholar] [CrossRef]
- Chadha, K. Global climate change and Indian horticulture. Author Copy 2015, 1, 26. [Google Scholar]
- Datta, M.; Singh, N.P.; Daschaudhuri, D. Climate Change & Food Security; New India Publishing: Delhi, India, 2008. [Google Scholar]
- Makhmale, S.; Bhutada, P.; Yadav, L.; Yadav, B. Impact of climate change on phenology of mango-the case study. Ecol. Environ. Conserv. 2016, 22, S127–S132. [Google Scholar]
- Bally, I.S. Mangifera indica (mango). Species Profiles Pac. Isl. Agrofor. 2006, 6, 1–25. [Google Scholar]
- Ranjitkar, S.; Sujakhu, N.; Budhamagar, K.; Rimal, S.; Xu, J.; Merz, J.; Zomer, R.J. Projected Climate Change Impacts on Climatic Suitability and Geographical Distribution of Banana and Coffee Plantations in Nepal; World Agroforestry Center (ICRAF): Nairobi, Kenya, 2015. [Google Scholar]
- Hernández-Salinas, G.; Luna-Cavazos, M.; Soto-Estrada, A.; García-Pérez, E.; Pérez-Vázquez, A.; Córdova-Téllez, L. Distribution and eco-geographic characterization of Carica papaya L. native to Mexico. Genet. Resour. Crop. Evol. 2022, 69, 99–116. [Google Scholar] [CrossRef]
- Salinas, I.; Hueso, J.J.; Cuevas, J. Fruit growth model, thermal requirements and fruit size determinants in papaya cultivars grown under subtropical conditions. Sci. Hortic. 2019, 246, 1022–1027. [Google Scholar] [CrossRef]
- de Pinto, A.Q.; Cordeiro, M.; De Andrade, S.; Ferreira, F.; de Filgueiras, H.C.; Alves, R.; Kinpara, S.I. Annona Species; DFID: London, UK, 2005.
- Deshmukh, N.; Patel, R.; Okram, S.; Rymbai, H.; Roy, S.; Jha, A. Passion fruit (Passiflora spp.). Magnes. Mglitre 2017, 100, 200. [Google Scholar]
- Manda, H.; Vyas, K.; Pandya, A.; Singhal, G. A complete review on: Averrhoa carambola. World J. Pharm. Pharm. Sci. 2012, 1, 17–33. [Google Scholar]
- Rajan, S. Phenological responses to temperature and rainfall: A case study of mango. In Tropical Fruit Tree Species and Climate Change; Bioversity International: New Delhi, India, 2012; pp. 71–96. [Google Scholar]
- Jaybhaye, P. Mitigation and Adaptation Strategies of Plants against Hailstorm under Changing Climate. In Plant Defense Mechanisms; BoD—Books on Demand: Norderstedt, Germany, 2019; pp. 123–142. [Google Scholar]
- Lorenz, D.J.; DeWeaver, E.T.; Vimont, D.J. Evaporation change and global warming: The role of net radiation and relative humidity. J. Geophys. Res. Atmos. 2010, 115, D20118. [Google Scholar] [CrossRef]
- Gao, Y.; Ren, C.; Liu, Y.; Zhu, J.; Li, B.; Mu, W.; Liu, F. Pepper-maize intercropping affects the occurrence of anthracnose in hot pepper. Crop Prot. 2021, 148, 105750. [Google Scholar] [CrossRef]
- Balraj, G.; Preethi, P.G.M.; Selvaraj, R. Banana. In Tropical Fruit Crop: Theory to Practical; Jaya Publishing House: Delhi, India, 2021; pp. 43–114. [Google Scholar]
- Srinivas, K. Plant water relations, yield, and water use of papaya (Carica papaya L.) at different evaporation-replenishment rates under drip irrigation. Trop. Agric. 1996, 73, 264–269. [Google Scholar]
- Arslan, F.; Kartal, S. Water management effect on tropical fruits: Case study of Alanya, Turkey. In Proceedings of the 22nd International Scientific Conference “Engineering for Rural Development”: Proceedings, Jelgava, Latvia, 24–26 May 2023; pp. 533–538. [Google Scholar]
- Ma, Y.; Xie, Y.; Ha, R.; Cao, B.; Song, L. Effects of elevated CO2 on photosynthetic accumulation, sucrose metabolism-related enzymes, and genes identification in goji berry (Lycium barbarum L.). Front. Plant Sci. 2021, 12, 643555. [Google Scholar] [CrossRef]
- Pritchard, S.G.; Rogers, H.H.; Prior, S.A.; Peterson, C.M. Elevated CO2 and plant structure: A review. Glob. Chang. Biol. 1999, 5, 807–837. [Google Scholar] [CrossRef]
- Lauriks, F.; Salomón, R.L.; Steppe, K. Temporal variability in tree responses to elevated atmospheric CO2. Plant Cell Environ. 2021, 44, 1292–1310. [Google Scholar] [CrossRef]
- Leibar-Porcel, E.; Dodd, I.C. Role of Plant Hormones in Plant Response to Elevated CO2 Concentrations: Above-and Below-ground Interactions. In Plant Hormones and Climate Change; Springer: Berlin/Heidelberg, Germany, 2023; pp. 55–74. [Google Scholar]
- Yong, J.W.; Wong, S.C.; Letham, D.S.; Hocart, C.H.; Farquhar, G.D. Effects of elevated [CO2] and nitrogen nutrition on cytokinins in the xylem sap and leaves of cotton. Plant Physiol. 2000, 124, 767–780. [Google Scholar] [CrossRef] [PubMed]
- Cruz, J.L.; Alves, A.A.; LeCain, D.R.; Ellis, D.D.; Morgan, J.A. Interactive effects between nitrogen fertilization and elevated CO2 on growth and gas exchange of papaya seedlings. Sci. Hortic. 2016, 202, 32–40. [Google Scholar] [CrossRef]
- Elbasiouny, H.; El-Ramady, H.; Elbehiry, F.; Rajput, V.D.; Minkina, T.; Mandzhieva, S. Plant nutrition under climate change and soil carbon sequestration. Sustainability 2022, 14, 914. [Google Scholar] [CrossRef]
- Kiba, T.; Takebayashi, Y.; Kojima, M.; Sakakibara, H. Sugar-induced de novo cytokinin biosynthesis contributes to Arabidopsis growth under elevated CO2. Sci. Rep. 2019, 9, 7765. [Google Scholar] [CrossRef]
- Roussos, P.A. Climate Change Challenges in Temperate and Sub-Tropical Fruit Tree Cultivation. Encyclopedia 2024, 4, 558–582. [Google Scholar] [CrossRef]
- Ramírez, F.; Kallarackal, J. Response of trees to CO2 Increase. In Responses of Fruit Trees to Global Climate Change; Springer International Publishing: Cham, Switzerland, 2015; pp. 3–7. [Google Scholar]
- Hao, L.; Chang, Z.; Lu, Y.; Tian, Y.; Zhou, H.; Wang, Y.; Liu, L.; Wang, P.; Zheng, Y.; Wu, J. Drought dampens the positive acclimation responses of leaf photosynthesis to elevated CO2 by altering stomatal traits, leaf anatomy, and Rubisco gene expression in Pyrus. Environ. Exp. Bot. 2023, 211, 105375. [Google Scholar] [CrossRef]
- Mcgrath, J.M.; Lobell, D.B. Reduction of transpiration and altered nutrient allocation contribute to nutrient decline of crops grown in elevated CO2 concentrations. Plant Cell Environ. 2013, 36, 697–705. [Google Scholar] [CrossRef]
- Millard, J.; Outhwaite, C.L.; Ceaușu, S.; Carvalheiro, L.G.; Silva, F.D.d.S.e.; Dicks, L.V.; Ollerton, J.; Newbold, T. Key tropical crops at risk from pollinator loss due to climate change and land use. Sci. Adv. 2023, 9, eadh0756. [Google Scholar] [CrossRef]
- Reddy, P.R.; Kavitha, S.J. Thermal sensitivity of major pollinators of mango: Dipterans score high in climate resilience. Pest Manag. Hortic. Ecosyst. 2023, 29, 161–165. [Google Scholar]
- George, A.; Nissen, R.; Ironside, D.; Anderson, P. Effects of nitidulid beetles on pollination and fruit set of Annona spp. hybrids. Sci. Hortic. 1989, 39, 289–299. [Google Scholar] [CrossRef]
- Jones, G.V.; Davis, R.E. Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am. J. Enol. Vitic. 2000, 51, 249–261. [Google Scholar] [CrossRef]
- Wang, H.; Guo, Y.; Zhu, J.; Yue, K.; Zhou, K. Characteristics of mango leaf photosynthetic inhibition by enhanced UV-B radiation. Horticulturae 2021, 7, 557. [Google Scholar] [CrossRef]
- Rajan, S. Implications of climate change in mango. In Impact Assessment of Climate Change for Research Priority Planning in Horticultural Crops; Central Potato Research Institute: Shimla, India, 2008; pp. 36–42. [Google Scholar]
- Peacock, B. Banana ripening-effect of temperature of fruit quality. Qld. J. Agric. Anim. Sci. 1980, 37, 39–45. [Google Scholar]
- Fischer, G.; Parra-Coronado, A. Influence of some environmental factors on the feijoa (Acca sellowiana [Berg] Burret): A review. Agron. Colomb. 2020, 38, 388–397. [Google Scholar] [CrossRef]
- Jiménez-Zurita, J.O.; Alia-Tejacal, I.; Balois-Morales, R.; Villarreal-Fuentes, J.M.; Núñez-Colín, C.A.; Berumen-Varela, G. Phenological growth stages of soursop trees (Annona muricata L.) based on the extended BBCH-scale. Rev. Chapingo Ser. Hortic. 2023, 29, 5–18. [Google Scholar] [CrossRef]
- Prakash, A.; Rao, J.; Mukherjee, A.K.; Berliner, J.; Pokhare, S.S.; Adak, T.; Munda, S.; Shashank, P.R. Climate Change: Impact on Crop Pests; Applied Zoologists Research Association (AZRA), Central Rice Research: Cuttack, India, 2014.
- Dukes, J.S.; Pontius, J.; Orwig, D.; Garnas, J.R.; Rodgers, V.L.; Brazee, N.; Cooke, K.; Theoharides, K.A.; Stange, E.E.; Harrington, R.; et al. Responses of insect pests, pathogens, and invasive plant species to climate change in the forests of northeastern North America: What can we predict? Can. J. For. Res. 2009, 39, 231–248. [Google Scholar] [CrossRef]
- Deutsch, C.A.; Tewksbury, J.J.; Tigchelaar, M.; Battisti, D.S.; Merrill, S.C.; Huey, R.B.; Naylor, R.L. Increase in crop losses to insect pests in a warming climate. Science 2018, 361, 916–919. [Google Scholar] [CrossRef]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The impact of climate change on agricultural insect pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef]
- Cilas, C.; Goebel, F.R.; Babin, R.; Avelino, J. Tropical crop pests and diseases in a climate change setting—A few examples. In Climate Change and Agriculture Worldwide; SpringerNature: Berlin/Heidelberg, Germany, 2016; pp. 73–82. [Google Scholar]
- Pathak, H.; Aggarwal, P.K.; Singh, S. Climate Change Impact, Adaptation and Mitigation in Agriculture: Methodology for Assessment and Applications; Indian Agricultural Research Institute: New Delhi, India, 2012; Volume 302, p. 19.
- Yihdego, Y.; Salem, H.S.; Muhammed, H.H. Agricultural pest management policies during drought: Case studies in Australia and the state of Palestine. Nat. Hazards Rev. 2019, 20, 05018010. [Google Scholar] [CrossRef]
- Du, F.; Deng, W.; Yang, M.; Wang, H.; Mao, R.; Shao, J.; Fan, J.; Chen, Y.; Fu, Y.; Li, C.; et al. Protecting grapevines from rainfall in rainy conditions reduces disease severity and enhances profitability. Crop Prot. 2015, 67, 261–268. [Google Scholar] [CrossRef]
- Bhriguvanshi, S. Impact of climate change on mango and tropical fruits. In Challenges of Climate Change-Indian Horticulture; Westville Publishing House: New Delhi, India, 2010; pp. 1–224. [Google Scholar]
- Chowdhury, S.K. Diversity and nature of damage of mango insect pests at Kaliachak-II Block of Malda, West Bengal, India. J. Entomol. Zool. Stud. 2015, 3, 307–311. [Google Scholar]
- Raut, P.; Desai, V.; Narangalkar, A.; Naik, K.V.; Mehendale, S.; Karmarkar, M. Effect of weather parameters on mango hoppers population. J. Entomol. Zool. Stud. 2018, 6, 112–114. [Google Scholar]
- Stuart, R.R.; Gao, Y.; Lei, Z. Thrips: Pests of concern to China and the United States. Agric. Sci. China 2011, 10, 867–892. [Google Scholar] [CrossRef]
- Tora, T.I.; Rahman, M.M.; Afroz, M.; Miah, R.U.; Amin, M.R.; Kabir, M.H. Effect of different temperatures on developmental periods and reproduction of fruit fly (Bactrocera cucurbitae). Serangga 2023, 27, 110–123. [Google Scholar]
- Patel, K.; Saxena, S.; Patel, K. Fluctuation of fruit fly oriented damage in mango in relation to major abiotic factors. HortFlora Res. Spectr. 2013, 2, 197–201. [Google Scholar]
- Anhalt, M.; Almeida, R. Effect of temperature, vector life stage, and plant access period on transmission of Banana bunchy top virus to banana. Phytopathology 2008, 98, 743–748. [Google Scholar] [CrossRef]
- Awmack, C.; Woodcock, C.; Harrington, R. Climate change may increase vulnerability of aphids to natural enemies. Ecol. Entomol. 1997, 22, 366–368. [Google Scholar] [CrossRef]
- Pathania, M.; Verma, A.; Singh, M.; Arora, P.K.; Kaur, N. Influence of abiotic factors on the infestation dynamics of whitefly, Bemisia tabaci (Gennadius 1889) in cotton and its management strategies in North-Western India. Int. J. Trop. Insect. Sci. 2020, 40, 969–981. [Google Scholar] [CrossRef]
- Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.N.; de Siqueira, M.F.; Grainger, A.; Hannah, L.; et al. Extinction risk from climate change. Nature 2004, 427, 145–148. [Google Scholar] [CrossRef]
- De Cal, A.; Gell, I.; Usall, J.; Viñas, I.; Melgarejo, P. First report of brown rot caused by Monilinia fructicola in peach orchards in Ebro Valley, Spain. Plant Dis. 2009, 93, 763. [Google Scholar] [CrossRef]
- Cayan, D.R.; Maurer, E.P.; Dettinger, M.D.; Tyree, M.; Hayhoe, K. Climate change scenarios for the California region. Clim. Chang. 2008, 87, 21–42. [Google Scholar] [CrossRef]
- Garrett, K.A.; Dendy, S.P.; Frank, E.E.; Rouse, M.N.; Travers, S.E. Climate change effects on plant disease: Genomes to ecosystems. Annu. Rev. Phytopathol. 2006, 44, 489–509. [Google Scholar] [CrossRef] [PubMed]
- Harvell, C.D.; Mitchell, C.E.; Ward, J.R.; Altizer, S.; Dobson, A.P.; Ostfeld, R.S.; Samuel, M.D. Climate warming and disease risks for terrestrial and marine biota. Science 2002, 296, 2158–2162. [Google Scholar] [CrossRef] [PubMed]
- Ownley, B.H.; Trigiano, R.N. Plant Pathology Concepts and Laboratory Exercises; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Benatar, G.V.; Wibowo, A. First report of Colletotrichum asianum associated with mango fruit anthracnose in Indonesia. Crop Prot. 2021, 141, 105432. [Google Scholar] [CrossRef]
- Muimba-Kankolongo, A. Root and Tuber Crops. In Food Crop Production by Smallholder Farmers in Southern Africa; Academic Press: Cambridge, MA, USA, 2018; pp. 1–382. [Google Scholar]
- Uddin, M.; Shefat, S.; Afroz, M.; Moon, N. Management of anthracnose disease of mango caused by Colletotrichum gloeosporioides: A review. Acta Sci. Agric. 2018, 2, 169–177. [Google Scholar]
- Ghini, R.; Hamada, E.; Gonçalves, R.R.; Gasparotto, L.; Pereira, J.C.R. Análise de risco das mudanças climáticas globais sobre a sigatoka-negra da bananeira no Brasil. Fitopatol. Bras. 2007, 32, 197–204. [Google Scholar] [CrossRef]
- Ploetz, R.C.; Thomas, J.E.; Slabaugh, W.R. Diseases of banana and plantain. In Diseases of Tropical Fruits; CABI Publishing, CABI International: Wallingford, UK, 2003; pp. 73–134. [Google Scholar]
- Ghini, R.; Bettiol, W.; Hamada, E. Diseases in tropical and plantation crops as affected by climate changes: Current knowledge and perspectives. Plant Pathol. 2011, 60, 122–132. [Google Scholar] [CrossRef]
- Matos, A.; Cabral, J.; Sanches, N.; Caldas, R. Effect of temperature and rainfall on the incidence of Fusarium subglutinans on pineapple fruits. Acta Hortic. 1998, 529, 265–272. [Google Scholar] [CrossRef]
- Shetty, S.; Kumar, V.S.; Yogananda, S.; Kumar, N.K. A Review of Papaya Black Spot-A Fungal Disease (Asperisporium caricae). Mysore J. Agric. Sci. 2021, 55, 1–11. [Google Scholar]
- Kumar, R.; Shamarao Jahagirdar, M.; Yenjerappa, S.; Patil, H. Epidemiology and management of bacterial blight of pomegranate caused by Xanthomonas axonopodis pv. punicae. Acta Hortic. 2006, 818, 291–296. [Google Scholar] [CrossRef]
- Kubiriba, J.; Legg, J.; Tushemereirwe, W.; Adipala, E. Vector transmission of Banana streak virus in the screenhouse in Uganda. Ann. Appl. Biol. 2001, 139, 37–43. [Google Scholar] [CrossRef]
- Sether, D.; Karasev, A.; Okumura, C.; Arakawa, C.; Zee, F.; Kislan, M.; Busto, J.L.; Hu, J.S. Differentiation, distribution, and elimination of two different pineapple mealybug wilt-associated viruses found in pineapple. Plant Dis. 2001, 85, 856–864. [Google Scholar] [CrossRef] [PubMed]
- Sthapit, B.; Ramanatha Rao, V.; Sthapit, S. Tropical Fruit Tree Species and Climate Change; CGSpace: Milano, Italy, 2012. [Google Scholar]
- Akritidis, D.; Georgoulias, A.K.; Lorilla, R.S.; Kontoes, C.; Ceglar, A.; Toreti, A.; Kalisoras, A.; Zanis, P. On the Northward Shift of Agro-Climatic Zones in Europe under Different Climate Change Scenarios. Environ. Sci. Proc. 2023, 26, 20. [Google Scholar] [CrossRef]
- Singh, K.; Rani, D. Climate change impacts on orchard management: A review. In PLANTA-Research Book Series; Association of Plant Science Researchers (APSR): Dehradun, India, 2020; pp. 1428–1446. [Google Scholar]
- Hull, R. Ecology, Epidemiology, and Control of Plant Viruses. In Plant Virology, 5th ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 809–876. [Google Scholar]
- Kumar, B.N.; Kumar, P.V.; Naidu, L.N.; Rajasekhar, M. Studies on fruit development in different cultivars of sapota. Andhra Pradesh J. Agric. Sci. 2015, 1, 24–28. [Google Scholar]
- Haldankar, P.; Parulekar, Y.; Kireeti, A.; Kad, M.; Shinde, S.; Lawande, K. Studies on influence of bagging of fruits at marble stage on quality of mango cv. J. Plant Stud. 2015, 4, 12. [Google Scholar] [CrossRef]
- Abou El-Wafa, M. Effect of bagging type on reducing pomegranate fruit disorders and quality improvement. Egypt. J. Hortic. 2014, 41, 263–278. [Google Scholar]
- Abobatta, W.F. Managing citrus orchards under climate change. MOJ Eco Environ. Sci. 2021, 6, 43–44. [Google Scholar] [CrossRef]
- Kang, G.Z.; Wang, Z.X.; Xia, K.F.; Sun, G.C. Protection of ultrastructure in chilling-stressed banana leaves by salicylic acid. J. Zhejiang Univ. Sci. B 2007, 8, 277–282. [Google Scholar] [CrossRef]
- Glover, J.D.; Cox, C.M.; Reganold, J.P. Future farming: A return to roots? Sci. Am. 2007, 297, 82–89. [Google Scholar] [CrossRef]
- Patil Shirish, S.; Kelkar Tushar, S.; Bhalerao Satish, A. Mulching: A soil and water conservation practice. Res. J. Agric. Sci. 2013, 2320, 6063. [Google Scholar]
- Ahmed, Y.; Ahmed, M. Impact of spraying some antitranspirants on fruiting of williams bananas grown under Aswan region conditions. Stem Cell 2014, 5, 34–39. [Google Scholar]
- Parashar, A.; Ansari, A. A therapy to protect pomegranate (Punica granatum L.) from sunburn. Int. J. Compr. Pharm. 2012, 3, 1–3. [Google Scholar]
- Ehteshami, S.; Sarikhani, H.; Ershadi, A. Effect of kaolin and gibberellic acid application on some qualitative characteristics and reducing the sunburn in pomegranate fruits (Punica granatum L. cv. Hicaznar). Acta Hortic. 2011, 818, 167–174. [Google Scholar]
- Rathore, A.; Raizada, A.; Prakash, J.J.; Sharda, V. Impact of chilling injury on common fruit plants in the Doon Valley. Curr. Sci. 2012, 102, 1107–1111. [Google Scholar]
Sl. No. | Article Characteristics | Included | Excluded |
---|---|---|---|
1 | Study area | Articles from agricultural and biological sciences | Articles from study areas other than agricultural and biological sciences |
2 | Study population | Tropical fruit crops | Crops other than tropical fruits |
3 | Document type | Research articles, review papers, and book chapters | Conference papers, preprints, note, letter, short survey |
4 | Language | English | Languages other than English |
5 | Year of publishing | 2000 to 2024 | Article older than 2000 |
Fruits | Minimum Threshold Temperature (°C) | Optimum Temperature Range (°C) | Maximum Threshold Temperature (°C) | References |
---|---|---|---|---|
Mango (Mangifera indica) | 10 | 24–30 | 42 | [7,13] |
Banana (Musa sp.) | 10 | 25–35 | 38 | [14,15] |
Guava (Psidium guajava) | 10 | 23–28 | 51.2 | [16,17] |
Papaya (Carica papaya) | 20 | 21–33 | 35 | [18,19] |
Custard apple (Annona squamosa) | 11 | 21–30 | 38 | [20,21] |
Watermelon (Citrullus lanatus) | 18 | 22–30 | 35 | [22,23] |
Jack fruit (Artocarpus heterophyllus) | 5 | 22–35 | 35 | [24,25] |
Sapota (Manikara zapota) | 10 | 16–38 | 43 | [26,27] |
Pineapple (Ananas comosus) | 10 | 20–30 | 35 | [28,29] |
Aonla (Emblica officinalis) | 4 | 20–34 | 43 | [30,31] |
Carambola (Averrhoa carambola) | 15 | 21–32 | 30 | [7,32] |
Passion fruit (Passiflora edulis) | 1–2 | 20–30 | 30 | [33,34] |
Mangosteen (Garcinia mangostana) | 20 | 25–35 | 35 | [7,35] |
Rambutan (Nephelium lappaceum) | 10 | 22–30 | 40 | [36,37] |
Fruits | Optimum Rainfall (mm) | Maximum Elevation from Mean Sea Level (m) | References |
---|---|---|---|
Mango | 400–3600 | 1200 | [52,55] |
Banana | 1200 | 2000 | [56] |
Guava | 1000–2000 | 1500 | [14,16] |
Papaya | 1200 | 2395 | [57,58] |
Annona | 1500 | 1500 | [59] |
Passion fruit | 1000–1500 | 2000 | [60] |
Pineapple | 760–1000 | 1000 | [28] |
Aonla | 630–800 | 1800 | [31] |
Carambola | 1800 | 1200 | [61] |
Rambutan | 2000–5000 | 700 | [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raju, C.; Pazhanivelan, S.; Perianadar, I.V.; Kaliaperumal, R.; Sathyamoorthy, N.K.; Sendhilvel, V. Climate Change as an Existential Threat to Tropical Fruit Crop Production—A Review. Agriculture 2024, 14, 2018. https://doi.org/10.3390/agriculture14112018
Raju C, Pazhanivelan S, Perianadar IV, Kaliaperumal R, Sathyamoorthy NK, Sendhilvel V. Climate Change as an Existential Threat to Tropical Fruit Crop Production—A Review. Agriculture. 2024; 14(11):2018. https://doi.org/10.3390/agriculture14112018
Chicago/Turabian StyleRaju, Chinnu, Sellaperumal Pazhanivelan, Irene Vethamoni Perianadar, Ragunath Kaliaperumal, N. K. Sathyamoorthy, and Vaithiyanathan Sendhilvel. 2024. "Climate Change as an Existential Threat to Tropical Fruit Crop Production—A Review" Agriculture 14, no. 11: 2018. https://doi.org/10.3390/agriculture14112018
APA StyleRaju, C., Pazhanivelan, S., Perianadar, I. V., Kaliaperumal, R., Sathyamoorthy, N. K., & Sendhilvel, V. (2024). Climate Change as an Existential Threat to Tropical Fruit Crop Production—A Review. Agriculture, 14(11), 2018. https://doi.org/10.3390/agriculture14112018