Appraisal of Heavy Metal Risk Hazards of Eisenia fetida-Mediated Steel Slag Vermicompost on Oryza sativa L.: Insights from Agro-Scale Inspection and Machine Learning Analytics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Steel Waste Slag Vermicompost Preparation
2.2. Preparation of Field Experiment
Rice Field Experimental Layout and Crop Collection
2.3. Soil Sample Collection from Different Blocks of Applied Treatments
2.4. Assessment of Soil Physico-Chemical Parameters
2.5. Estimation of Soil Microbiological Parameters
2.6. Estimation of Bioavailable HM Fractions and Presence of HMs in Vegetative Parts of Rice
2.7. Quality Assurance and Control
2.8. HMs Content Prediction in Rice Grain Using Free Ion pH-Dependent Solubility Model
2.9. Evaluation of Health Risk Employing SAMOE-TCR
2.10. Health Risk Estimation Associated with Crude Steel Waste Amended Treatments Through Models
2.11. Evaluation of Biochemical Parameters and Agronomic Attributes of Rice Crops
2.12. Statistical Analysis
3. Results
3.1. Dynamics of Physico-Chemical Parameters Before and After Rice Cultivation
3.2. Periodic Variations of Microbial Dynamics and Enzymatic Attributes
3.3. Bioavailability of HMs and Its Accumulation in Rice Plants
3.4. Factors Affecting HMs Transportation in Rice Crops
3.5. Correlation-Coefficient Based HMs-Microbe Interactions of Rice Field Soil
3.6. Potential Threat Evaluation on Rice Crops Using the Frendullich Equation
3.7. Dietary Risk Prediction Using SAMOE and Risk Thermometer
3.8. Health Risk Assessment Through Different Models
3.8.1. ANN Sensitivity Analysis of Machine Learning Model
3.8.2. Sensitivity Analysis of Soil Microbiological Properties, Interactions, and HMs Absorption
3.9. Biochemical Quantification of Vegetative Parts of Rice Crop
3.10. Estimation of Different Agronomical Vegetative Attributes of Plants
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Tahir, M.A.; Sarwar, G.; Muhammad, S. Role of organic amendments to enhance soil fertility status and wheat growth in salt affected soil. Pak. J. Agric. Res. 2020, 33, 228–233. [Google Scholar]
- Sarkar, S.; Ghosh, S.; Banerjee, S.; Bhattacharyya, P. Evaluation of oil sludge vermicompost for integrated nutrient management in rain fed wetland rice (Oryza sativa L.): SAMOE, FIAM and Fuzzy TOPSIS approach. J. Crop Weed 2023, 19, 148–163. [Google Scholar]
- Dash, D.; Patro, H.; Tiwari, R.C.; Shahid, M. Effect of organic and inorganic sources of N on growth attributes, grain and straw yield of rice (Oryza sativa). Int. J. Pharm. Life Sci. 2011, 2, 655–660. [Google Scholar]
- Chowdhury, N.R.; Das, A.; Joardar, M. Flow of arsenic between rice grain and water: Its interaction, accumulation and distribution in different fractions of cooked rice. Sci. Total Environ. 2020, 731, 138937. [Google Scholar] [CrossRef]
- Desmedt, W.; Kudjordjie, E.N.; Chavan, S.N. Rice diterpenoid phytoalexins are involved in defence against parasitic nematodes and shape rhizosphere nematode communities. New Phytol. 2022, 235, 1231–1245. [Google Scholar] [CrossRef]
- Guo, J.; Bao, Y.; Wang, M. Steel slag in China: Treatment, recycling, and management. J. Waste Manag. 2018, 78, 318–330. [Google Scholar] [CrossRef]
- Zhuo, L.; Li, H.; Cheng, F.Q.; Shi, Y.L.; Zhang, Q.H.; Shi, W.Y. Co-remediation of cadmium-polluted soil using stainless steel slag and ammonium humate. Environ. Sci. Pollut. Res. 2012, 19, 2842–2848. [Google Scholar] [CrossRef]
- Chakraborty, P.; Sarkar, S.; Mondal, S. Eisenia fetida mediated vermi-transformation of tannery waste sludge into value added eco-friendly product: An insight on microbial diversity, enzyme activation, and metal detoxification. J. Clean. Prod. 2022, 348, 131368. [Google Scholar] [CrossRef]
- Mondal, A.; Goswami, L.; Hussain, N.; Barman, S.; Kalita, E.; Bhattacharyya, P.; Bhattacharya, S.S. Detoxification and eco-friendly recycling of brick kiln coal ash using Eisenia fetida: A clean approach through vermitechnology. Chemosphere 2020, 244, 125470. [Google Scholar] [CrossRef]
- Goswami, L.; Sarkar, S.; Mukherjee, S. Vermicomposting of tea factory coal ash: Metal accumulation and metallothionein response in Eisenia fetida (Savigny) and Lampito mauritii (Kinberg). Bioresour. Technol. 2014, 166, 96–102. [Google Scholar] [CrossRef]
- Hickman, Z.A.; Reid, B.J. Earthworm assisted bioremediation of organic contaminants. Environ. Int. 2008, 34, 1072–1081. [Google Scholar] [CrossRef] [PubMed]
- Medina-Sauza, R.M.; Álvarez-Jiménez, M.; Delhal, A. Earthworms building up soil microbiota, a review. Front. Environ. Sci. 2019, 7, 81. [Google Scholar] [CrossRef]
- Goswami, L.; Nath, A.; Sutradhar, S. Application of drum compost and vermicompost to improve soil health, growth, and yield parameters for tomato and cabbage plants. J. Environ. Manag. 2017, 200, 243–252. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Tam, N.F.; Yao, A.; Qiu, R.; Li, W.C.; Ye, Z. Effects of alkaline and bioorganic amendments on cadmium, lead, zinc, and nutrient accumulation in brown rice and grain yield in acidic paddy fields contaminated with a mixture of heavy metals. Environ. Sci. Pollut. Res. 2016, 23, 23551–23560. [Google Scholar] [CrossRef]
- Gupta, N.; Yadav, K.K.; Kumar, V. Trace elements in soil-vegetables interface: Translocation, bioaccumulation, toxicity and amelioration-a review. Sci. Total Environ. 2019, 651, 2927–2942. [Google Scholar] [CrossRef]
- Banerjee, S.; Ghosh, S.; Jha, S.; Kumar, S.; Mondal, G.; Sarkar, D.; Datta, R.; Mukherjee, A.; Bhattacharyya, P. Assessing pollution and health risks from chromite mine tailings contaminated soils in India by employing synergistic statistical approaches. Sci. Total Environ. 2023, 880, 163228. [Google Scholar] [CrossRef]
- Cho, K.H.; Sthiannopkao, S.; Pachepsky, Y.A. Prediction of contamination potential of groundwater arsenic in Cambodia, Laos, and Thailand using artificial neural network. Water Res. 2011, 45, 5535–5544. [Google Scholar] [CrossRef]
- Sobol, I.M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 2001, 55, 271–280. [Google Scholar] [CrossRef]
- Page, A.L.; Miller, R.H.; Keeny, D.R. Methods of Soil and Plant Analysis; American Society of Agronomy: Madison, WI, USA, 1982; Volume 4, pp. 167–179. [Google Scholar]
- Joergensen, R.G.; Wu, J.; Brookes, P.C. Measuring soil microbial biomass using an automated procedure. Soil Biol. Biochem. 2011, 43, 873–876. [Google Scholar] [CrossRef]
- Alef, K. Enzyme activities. In Methods in Applied Soil Microbiology and Biochemistry; Academic Press, Harcourt Brace and Company, Publisher: London, UK, 1995; pp. 311–373. [Google Scholar]
- Schnrer, J.; Rosswall, T. Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl. Environ. Microbiol. 1982, 43, 1256–1261. [Google Scholar] [CrossRef]
- Casida, L.E., Jr.; Klein, D.A.; Santoro, T. Soil dehydrogenase activity. Soil Sci. 1964, 98, 371–376. [Google Scholar] [CrossRef]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Li, T.; Song, Y.; Yuan, X.; Li, J.; Ji, J.; Fu, X.; Zang, Q.; Guo, S. Incorporating bioaccessibility into human health risk assessment of heavy metals in rice (Oryza sativa L.): A probabilistic-based analysis. J. Agric. Food Chem. 2018, 66, 5683–5690. [Google Scholar] [PubMed]
- Islam, M.D.; Hasan, M.M.; Rahaman, A. Translocation and bioaccumulation of trace metals from industrial effluent to locally grown vegetables and assessment of human health risk in Bangladesh. SN Appl. Sci. 2020, 2, 1315. [Google Scholar] [CrossRef]
- Mirecki, N.; Agic, R.; Sunic, L. Transfer factor as indicator of heavy metals content in plants. Fresenius Environ. Bull. 2015, 24, 4212–4219. [Google Scholar]
- Mukherjee, I.; Singh, U.K. Environmental fate and health exposures of the geogenic and anthropogenic contaminants in potable groundwater of Lower Ganga Basin, India. Geosci. Front. 2022, 13, 101365. [Google Scholar] [CrossRef]
- Coombs, J.; Hall, D.O.; Long, S.P.; Scurlock, J.M.O. Techniques in Bio-Productivity and Photosynthesis; Pergamon Press: Oxford, UK, 1982. [Google Scholar]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Somogyi, M. Notes on sugar determination. J. Biol. Chem. 1952, 195, 19–23. [Google Scholar] [CrossRef]
- Mehmood, S.; Saeed, D.A.; Rizwan, M. Impact of different amendments on biochemical responses of sesame (Sesamum indicum L.) plants grown in lead-cadmium contaminated soil. Plant Physiol. Biochem. 2018, 132, 345–355. [Google Scholar] [CrossRef]
- Zeb, A.; Li, S.; Wu, J.; Lian, J.; Liu, W.; Sun, Y. Insights into the mechanisms underlying the remediation potential of earthworms in contaminated soil: A critical review of research progress and prospects. Sci. Total Environ. 2020, 740, 140145. [Google Scholar] [CrossRef]
- Lazcano, C.; Gómez-Brandón, M.; Domínguez, J. Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere 2008, 72, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Singh, P.; Sharma, J. Rice straw management through biofuel, biochar, mushroom cultivation, and paper production to overcome environmental pollution in North India. Waste Dispos. Sustain. Energy 2023, 5, 483–510. [Google Scholar] [CrossRef]
- Ferreras, L.; Gomez, E.; Toresani, S. Effect of organic amendments on some physical, chemical and biological properties in a horticultural soil. Bioresour. Technol. 2006, 97, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Chivenge, P.; Vanlauwe, B.; Six, J. Does the combined application of organic and mineral nutrient sources influence maize productivity? A meta-analysis. Plant Soil. 2011, 342, 1–30. [Google Scholar] [CrossRef]
- Turrión, M.B.; Lafuente, F.; Mulas, R.; Lopez, O.; Ruip’erez, C.; Pando, V. Effects on soil organic matter mineralization and microbiological properties of applying compost to burned and unburned soils. J. Environ. Manag. 2020, 95, S245–S249. [Google Scholar] [CrossRef]
- Das, S.; Bora, J.; Goswami, L. Vermiremediation of water treatment plant sludge employing Metaphire posthuma: A soil quality and metal solubility prediction approach. Ecol. Eng. 2015, 81, 200–206. [Google Scholar] [CrossRef]
- Tang, Y.; Yu, L.; Guan, A.; Zhou, X.; Wang, Z.; Gou, Y.; Wang, J. Soil mineral nitrogen and yield-scaled soil N2O emissions lowered by reducing nitrogen application and intercropping with soybean for sweet maize production in southern China. J. Integr. Agric. 2017, 16, 2586–2596. [Google Scholar] [CrossRef]
- Bhattacharyya, P.; Chakrabarti, K.; Chakraborty, A. Effect of municipal solid waste compost on microbiological and biochemical soil quality indicators. Compost. Sci. Util. 2003, 11, 220–227. [Google Scholar] [CrossRef]
- Bhattacharya, S.S.; Iftikar, W.; Sahariah, B.; Chattopadhyay, G.N. Vermicomposting converts fly ash to enrich soil fertility and sustain crop growth in red and lateritic soils. Res. Conserv. Recycl. 2012, 65, 100–106. [Google Scholar] [CrossRef]
- Bhattacharyya, P.; Chakrabarti, K.; Chakraborty, A. Microbial biomass and enzyme activities in submerged rice soil amended with municipal solid waste compost and decomposed cow manure. Chemosphere 2005, 60, 310–318. [Google Scholar] [CrossRef]
- Thepbandit W, Athinuwat D Rhizosphere microorganisms supply availability of soil nutrients and induce plant defence. Microorganisms 2024, 12, 558. [CrossRef] [PubMed]
- Dilly, O. Microbial energetics in soils. In Microorganisms in Soils: Roles in Genesis and Functions; Soil Biology; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3, pp. 123–138. [Google Scholar]
- Roy, S.; Sarkar, D.; Datta, R.; Bhattacharya, S.S.; Bhattacharyya, P. Assessing the arsenic-saturated biochar recycling potential of vermitechnology: Insights on nutrient recovery, metal benignity, and microbial activity. Chemosphere 2022, 286, 131660. [Google Scholar] [CrossRef] [PubMed]
- Rusinowski, S.; Szada-Borzyszkowska, A.; Zieleźnik Rusinowska, P.; Małkowski, E.; Krzyżak, J.; Woźniak, G.; Sitko, K.; Szopiński, M.; McCalmont, J.P.; Kalaji, H.M. How autochthonous microorganisms influence physiological status of Zea mays L. cultivated on heavy metal contaminated soils? Environ. Sci. Pollut. Res. 2019, 26, 4746–4763. [Google Scholar] [CrossRef] [PubMed]
- Charan, K.; Bhattacharya, P. Vermicomposted red mud-An up-and-coming approach towards soil fertility and crop quality. J. Crop Weed 2023, 19, 36–51. [Google Scholar]
- Nannipieri, P.; Ascher, J.; Ceccherini, M.; Landi, L.; Pietramellara, G.; Renella, G. Microbial diversity and soil functions. Eur. J. Soil Sci. 2003, 54, 655–670. [Google Scholar] [CrossRef]
- Ghosh, S.; Mondal, S.; Mandal, J. Effect of metal fractions on rice grain metal uptake and biological parameters in mica mines waste contaminated soils. J. Environ. Sci. 2024, 136, 313–324. [Google Scholar] [CrossRef]
- Atakpa, E.O.; Zhou, H.; Jiang, L.; Ma, Y.; Liang, Y.; Li, Y. Improved degradation of petroleum hydrocarbons by co-culture of fungi and biosurfactant-producing bacteria. Chemosphere 2022, 290, 133337. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, P.; Kong, C.H. Urease, invertase, dehydrogenase and polyphenoloxidase activities in paddy soil influenced by allelopathic rice variety. Eur. J. Soil Biol. 2009, 45, 436–441. [Google Scholar] [CrossRef]
- Zhang, N.; He, X.; Gao, Y.; Li, Y.; Wang, H.; Ma, D.; Zhang, R.; Yang, S. Pedogenic carbonate and soil dehydrogenase activity in response to soil organic matter in Artemisia ordosica community. Pedosphere 2010, 20, 229–235. [Google Scholar] [CrossRef]
- Macci, C.; Doni, S.; Peruzzi, E. Almond tree and organic fertilization for soil quality improvement in southern Italy. J. Environ. Manag. 2012, 95, S215–S222. [Google Scholar] [CrossRef]
- Kızılkaya, R.; Aşkın, T.; Bayraklı, B.; Sağlam, M. Microbiological characteristics of soils contaminated with heavy metals. Eur. J. Soil Biol. 2004, 40, 95–102. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Shaheen, S.M.; Chen, S.S.; Tsang, D.C.; Hashimoto, Y.; Hou, D.; Bolan, N.S.; Rinklebe, J.; Ok, Y.S. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environ. Int. 2020, 134, 105046. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Xiong, X.; Wang, L. A critical review on performance indicators for evaluating soil biota and soil health of biochar-amended soils. J. Hazard. Mater. 2021, 414, 125378. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, P.; Rathinasabapathi, B.; Ma, L.Q. Arsenic-resistant bacteria solubilized arsenic in the growth media and increased growth of arsenic hyperaccumulator Pteris vittata L. Bioresour. Technol. 2011, 102, 8756–8761. [Google Scholar] [CrossRef]
- Banerjee, S.; Ghosh, S.; Chakraborty, S.; Sarkar, D.; Datta, R.; Bhattacharyya, P. Synergistic impact of bioavailable PHEs and alkalinity on microbial diversity and traits in agricultural soil adjacent to chromium-asbestos mines. Environ. Pollut. 2024, 350, 124021. [Google Scholar] [CrossRef]
- He, M.; Wang, N.; Long, X.; Zhang, C.; Ma, C.; Zhong, Q.; Wang, A.; Wang, Y.; Pervaiz, A.; Shan, J. Antimony speciation in the environment: Recent advances in understanding the biogeochemical processes and ecological effects. J. Environ. Sci. 2019, 75, 14–39. [Google Scholar] [CrossRef]
- Goswami, L.; Ekblad, A.; Choudhury, R.; Bhattacharya, S.S. Vermi-converted Tea Industry Coal Ash efficiently substitutes chemical fertilization for growth and yield of cabbage (Brassica oleracea var. capitata) in an alluvial soil: A field-based study on soil quality, nutrient translocation, and metal-risk remediation. Sci. Total Environ. 2024, 907, 168088. [Google Scholar]
- Charan, K.; Bhattacharyya, P.; Bhattacharya, S.S. Vermitechnology transforms hazardous red mud into benign organic input for agriculture: Insights on earthworm-microbe interaction, metal removal, and soil-crop improvement. J. Environ. Manag. 2024, 354, 120320. [Google Scholar] [CrossRef]
- Chakraborty, P.; Ghosh, S.; Banerjee, S.; Bhattacharya, S.; Bhattacharyya, P. Evaluating the efficacy of vermicomposted products in rain-fed wetland rice and predicting potential hazards from metal-contaminated tannery sludge using novel machine learning tactic. Chemosphere 2024, 358, 142272. [Google Scholar] [CrossRef]
- Mandal, J.; Golui, D.; Raj, A.; Ganguly, P. Risk assessment of arsenic in wheat and maize grown in organic matter amended soils of Indo-Gangetic plain of Bihar, India. Soil Sediment Contam. Int. J. 2019, 28, 757–772. [Google Scholar] [CrossRef]
- Golui, D.; Datta, S.P.; Dwivedi, B.S. A new approach to establish safe levels of available metals in soil with respect to potential health hazard of human. Environ. Earth Sci. 2021, 80, 667. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Yadav, A.; Garg, V.K. Influence of vermicompost application in potting media on growth and flowering of marigold crop. Int. J. Recycl. Org. Waste Agric. 2014, 3, 1–7. [Google Scholar] [CrossRef]
- Ievinsh, G. Vermicompost treatment differentially affects seed germination, seedling growth and physiological status of vegetable crop species. Plant Growth Regul. 2011, 65, 169–181. [Google Scholar] [CrossRef]
- Shahid, M.; Dumat, C.; Khalid, S.; Schreck, E.; Xiong, T.; Niazi, N.K. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. J. Hazard. Mater. 2017, 325, 36–58. [Google Scholar] [CrossRef] [PubMed]
- Bejbaruah, R.; Sharma, R.C.; Banik, P. Split application of vermicompost to rice (Oryza sativa L.): Its effect on productivity, yield components, and N dynamics. Org. Agric. 2013, 3, 123–128. [Google Scholar] [CrossRef]
- Farhangi-Abriz, S.; Torabian, S. Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicol. Environ. Saf. 2017, 137, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Xia, G.; Cheng, L. Foliar urea application in the fall affects both nitrogen and carbon storage in youngConcord’grapevines grown under a wide range of nitrogen supply. J. Am. Soc. Hortic. Sci. 2004, 129, 653–659. [Google Scholar] [CrossRef]
- Elhanafi, L.; Houhou, M.; Rais, C.; Mansouri, I.; Elghadraoui, L.; Greche, H. Impact of excessive nitrogen fertilization on the biochemical quality, phenolic compounds, and antioxidant power of Sesamum indicum L seeds. J. Food Qual. 2019, 2019, 9428092. [Google Scholar] [CrossRef]
- Sarkar, M.A.R.; Pramanik, M.Y.A.; Faruk, G.M.; Ali, M.Y. Effect of gren manures and levels of nitrogen on some growth attributes of transplant aman rice. Pak. J. Biol. Sci. 2004, 7, 739–742. [Google Scholar] [CrossRef]
- Sarwar, G.; Schmeisky, H.; Hussain, N.; Mohammad, S.; Safdar, E. Improvement of soil physical and chemical properties with compost application in rice-wheat cropping system. Pak. J. Bot. 2008, 40, 275–282. [Google Scholar]
- Hasanuzzaman, M.; Ahamed, K.U.; Rahmatullah, N.M. Plant growth characters and productivity of wetland rice (Oryza sativa L.) as affected by application of different manures. Emir. J. Food Agric. 2010, 22, 46–58. [Google Scholar]
- Yang, C.M.; Yang, L.Z.; Yang, Y.X.; Ouyang, Z. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agric. Water Manag. 2004, 70, 67–81. [Google Scholar] [CrossRef]
- Tejada, M.; González, J.L. Application of two vermicomposts on a rice crop: Effects on soil biological properties and rice quality and yield. Agron. J. 2009, 101, 336–344. [Google Scholar] [CrossRef]
T1 | Full dose fertilizer [100% recommended dose of fertilizer] |
T2 | Control soil or CS (without the addition of any inorganic fertilizer or vermicompost) |
T3 | 1:1 Full dose vermicompost [100% recommended dose of 1:1 vermicompost (20 t/ha)] |
T4 | 1:1 Half dose vermicompost + fertilizer [50% 1:1 vermicompost supplemented with 50% fertilizer (w/w)] |
T5 | 1:2 Full dose vermicompost [100% recommended dose of 1:2 vermicompost (20 t/ha)] |
T6 | 1:2 Half dose vermicompost + fertilizer [50% 2:1 vermicompost supplemented with 50% fertilizer (w/w)] |
T7 | Full dose of cow dung [100% recommended dose of cow dung (20 t/ha)] |
T8 | Half dose of cow dung + fertilizer [50% cow dung supplemented with 50% fertilizer (w/w)] |
T9 | Full dose steel waste slag [100% recommended dose of steel waste (20 t/ha)] |
T10 | Half dose steel waste slag + fertilizer [50% steel waste supplemented with 50% fertilizer (w/w)] |
Treatment | 0 Day | ||||
---|---|---|---|---|---|
pH | OC (%) | Avl. N | Avl. P | Exc. K | |
(mg kg−1) | |||||
T1 | 6.58 ± 0.37 | 0.42 ± 0.034 | 0.47 ± 0.028 | 37.4 ± 2.13 | 130.56 ± 9.81 |
T2 | 6.59 ± 0.42 | 0.43 ± 0.025 | 0.44 ± 0.026 | 42.47 ± 3.64 | 125.89 ± 8.33 |
T3 | 6.54 ± 0.45 | 0.47 ± 0.032 | 0.48 ± 0.033 | 41.56 ± 4.73 | 132.48 ± 11.44 |
T4 | 6.54 ± 0.34 | 0.45 ± 0.025 | 0.45 ± 0.031 | 46.99 ± 5.84 | 137.89 ± 12.65 |
T5 | 6.57 ± 0.46 | 0.46 ± 0.031 | 0.49 ± 0.025 | 44.12 ± 3.95 | 130.25 ± 10.24 |
T6 | 6.54 ± 0.54 | 0.41 ± 0.022 | 0.44 ± 0.017 | 43.47 ± 2.46 | 134.12 ± 9.76 |
T7 | 6.59 ± 0.58 | 0.49 ± 0.033 | 0.48 ± 0.019 | 45.47 ± 2.37 | 130.12 ± 9.65 |
T8 | 6.54 ± 0.61 | 0.50 ± 0.030 | 0.47 ± 0.022 | 47.47 ± 3.19 | 132.12 ± 8.84 |
T9 | 6.54 ± 0.54 | 0.32 ± 0.021 | 0.46 ± 0.020 | 29.75 ± 2.18 | 130.12 ± 11.13 |
T10 | 6.58 ± 0.41 | 0.39 ± 0.026 | 0.43 ± 0.023 | 28.56 ± 2.11 | 137.45 ± 11.21 |
After Harvest | |||||
T1 | 7.28 ± 0.41 | 0.47 ± 0.039 | 0.68 ± 0.049 | 55.4 ± 4.14 | 142.56 ± 11.83 |
T2 | 7.33 ± 0.34 | 0.49 ± 0.021 | 0.57 ± 0.037 | 59.6 ± 3.19 | 158.45 ± 13.91 |
T3 | 7.32 ± 0.56 | 0.53 ± 0.043 | 0.62 ± 0.032 | 65.89 ± 4.38 | 157.89 ± 14.74 |
T4 | 7.22 ± 0.63 | 0.56 ± 0.035 | 0.68 ± 0.054 | 69.97 ± 5.13 | 168.45 ± 11.85 |
T5 | 7.26 ± 0.53 | 0.51 ± 0.040 | 0.61 ± 0.037 | 59.89 ± 4.72 | 149.56 ± 13.66 |
T6 | 7.38 ± 0.44 | 0.54 ± 0.034 | 0.65 ± 0.041 | 63.47 ± 5.61 | 152.76 ± 14.77 |
T7 | 7.35 ± 0.85 | 0.55 ± 0.035 | 0.72 ± 0.053 | 67.89 ± 5.47 | 150.37 ± 11.89 |
T8 | 7.54 ± 0.66 | 0.54 ± 0.041 | 0.79 ± 0.042 | 69.17 ± 4.63 | 169.37 ± 13.62 |
T9 | 6.85 ± 0.59 | 0.34 ± 0.027 | 0.51 ± 0.031 | 30.22 ± 2.73 | 139.49 ± 11.73 |
T10 | 6.96 ± 0.43 | 0.44 ± 0.038 | 0.59 ± 0.027 | 31.12 ± 2.61 | 146.48 ± 13.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jha, S.; Banerjee, S.; Ghosh, S.; Verma, A.; Bhattacharyya, P. Appraisal of Heavy Metal Risk Hazards of Eisenia fetida-Mediated Steel Slag Vermicompost on Oryza sativa L.: Insights from Agro-Scale Inspection and Machine Learning Analytics. Agriculture 2024, 14, 2020. https://doi.org/10.3390/agriculture14112020
Jha S, Banerjee S, Ghosh S, Verma A, Bhattacharyya P. Appraisal of Heavy Metal Risk Hazards of Eisenia fetida-Mediated Steel Slag Vermicompost on Oryza sativa L.: Insights from Agro-Scale Inspection and Machine Learning Analytics. Agriculture. 2024; 14(11):2020. https://doi.org/10.3390/agriculture14112020
Chicago/Turabian StyleJha, Sonam, Sonali Banerjee, Saibal Ghosh, Anjana Verma, and Pradip Bhattacharyya. 2024. "Appraisal of Heavy Metal Risk Hazards of Eisenia fetida-Mediated Steel Slag Vermicompost on Oryza sativa L.: Insights from Agro-Scale Inspection and Machine Learning Analytics" Agriculture 14, no. 11: 2020. https://doi.org/10.3390/agriculture14112020
APA StyleJha, S., Banerjee, S., Ghosh, S., Verma, A., & Bhattacharyya, P. (2024). Appraisal of Heavy Metal Risk Hazards of Eisenia fetida-Mediated Steel Slag Vermicompost on Oryza sativa L.: Insights from Agro-Scale Inspection and Machine Learning Analytics. Agriculture, 14(11), 2020. https://doi.org/10.3390/agriculture14112020