Study on Regional Differences, Dynamic Evolution and Convergence of Nutrition-Sensitive Agricultural Development in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Construction of Evaluation Indicator System for Nutrition-Sensitive Agriculture
2.1.2. Data Sources and Explanation
2.2. Methods
2.2.1. Methodology for Measuring Development of Nutrition-Sensitive Agriculture
2.2.2. Supply and Demand Fit Evaluation Model
- (1)
- The quantitative modeling of coupling is carried out as follows:
- (2)
- The quantitative modeling of coordination is carried out as follows:
- (3)
- The quantitative modeling of matching is carried out as follows:
2.2.3. Dagum Gini Coefficient and Its Decomposition
2.2.4. Kernel Density Estimation
2.2.5. Convergence Model
- (1)
- σ convergence
- (2)
- β convergence
3. Results
3.1. Results of the Measurement of the Development of Nutrition-Sensitive Agriculture
3.2. Analysis of Regional Differences in the Development of Nutrition-Sensitive Agriculture
3.2.1. Overall and Intraregional Differences
3.2.2. Inter-Regional Differences
3.2.3. Sources of and Contributions to Regional Differences
3.3. Dynamic Evolution Analysis of Nutrition-Sensitive Agriculture
3.4. Convergence Analysis of Nutrition-Sensitive Agriculture
3.4.1. σ Convergence Analysis
3.4.2. Absolute β Convergence Analysis
3.4.3. Conditional β Convergence Analysis
4. Conclusions and Policy Implications
4.1. Conclusions
4.2. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Region/Year | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
---|---|---|---|---|---|---|---|---|
Beijing | 0.1603 | 0.1549 | 0.1511 | 0.1720 | 0.2026 | 0.1983 | 0.1927 | 0.2155 |
Tianjin | 0.0978 | 0.1033 | 0.1072 | 0.1184 | 0.1174 | 0.1284 | 0.1255 | 0.1361 |
Hebei | 0.0985 | 0.1013 | 0.1057 | 0.1100 | 0.1138 | 0.1218 | 0.1238 | 0.1231 |
Shanxi | 0.0669 | 0.0656 | 0.0716 | 0.0711 | 0.0700 | 0.0701 | 0.0729 | 0.0753 |
Inner Mongolia | 0.1032 | 0.1052 | 0.1174 | 0.1254 | 0.1523 | 0.1827 | 0.2045 | 0.1962 |
Liaoning | 0.0961 | 0.0977 | 0.1016 | 0.1073 | 0.1070 | 0.1197 | 0.1202 | 0.1258 |
Jilin | 0.1081 | 0.1087 | 0.1219 | 0.1246 | 0.1132 | 0.1202 | 0.1134 | 0.1160 |
Heilongjiang | 0.1439 | 0.1509 | 0.1641 | 0.1684 | 0.1779 | 0.1863 | 0.1918 | 0.1743 |
Shanghai | 0.1176 | 0.1161 | 0.1201 | 0.1340 | 0.1358 | 0.1585 | 0.1663 | 0.1943 |
Jiangsu | 0.0894 | 0.0945 | 0.0963 | 0.0977 | 0.0966 | 0.1028 | 0.1061 | 0.1149 |
Zhejiang | 0.1050 | 0.1060 | 0.1075 | 0.1096 | 0.1099 | 0.1219 | 0.1274 | 0.1376 |
Anhui | 0.0820 | 0.0841 | 0.0894 | 0.0837 | 0.0859 | 0.0883 | 0.0955 | 0.0988 |
Fujian | 0.1116 | 0.1079 | 0.1107 | 0.1111 | 0.1111 | 0.1225 | 0.1233 | 0.1278 |
Jiangxi | 0.0801 | 0.0811 | 0.0812 | 0.0832 | 0.0813 | 0.0864 | 0.0908 | 0.0920 |
Shandong | 0.1218 | 0.1225 | 0.1259 | 0.1294 | 0.1304 | 0.1430 | 0.1499 | 0.1549 |
Henan | 0.0872 | 0.0894 | 0.0914 | 0.0892 | 0.0936 | 0.1028 | 0.1090 | 0.1164 |
Hubei | 0.0845 | 0.0869 | 0.0896 | 0.0892 | 0.0885 | 0.0917 | 0.0938 | 0.0964 |
Hunan | 0.0828 | 0.0835 | 0.0858 | 0.0843 | 0.0850 | 0.0906 | 0.0886 | 0.0929 |
Guangdong | 0.0955 | 0.0942 | 0.0954 | 0.1001 | 0.0993 | 0.1052 | 0.1063 | 0.1175 |
Guangxi | 0.0843 | 0.0854 | 0.0878 | 0.0883 | 0.0856 | 0.0936 | 0.0919 | 0.0954 |
Hainan | 0.0873 | 0.0889 | 0.0914 | 0.0937 | 0.0924 | 0.1001 | 0.0970 | 0.1048 |
Chongqing | 0.0663 | 0.0680 | 0.0717 | 0.0720 | 0.0742 | 0.0793 | 0.0744 | 0.0805 |
Sichuan | 0.0808 | 0.0812 | 0.0846 | 0.0849 | 0.0857 | 0.0900 | 0.0877 | 0.0876 |
Guizhou | 0.0571 | 0.0579 | 0.0603 | 0.0593 | 0.0583 | 0.0648 | 0.0649 | 0.0680 |
Yunnan | 0.0744 | 0.0814 | 0.0833 | 0.0828 | 0.0785 | 0.0851 | 0.0865 | 0.0871 |
Tibet | 0.0674 | 0.0693 | 0.0710 | 0.0733 | 0.0752 | 0.0775 | 0.0768 | 0.0817 |
Shaanxi | 0.0715 | 0.0743 | 0.0775 | 0.0768 | 0.0850 | 0.0884 | 0.0930 | 0.0953 |
Gansu | 0.0611 | 0.0635 | 0.0668 | 0.0649 | 0.0668 | 0.0714 | 0.0723 | 0.0693 |
Qinghai | 0.0599 | 0.0632 | 0.0657 | 0.0619 | 0.0644 | 0.0666 | 0.0655 | 0.0665 |
Ningxia | 0.0819 | 0.0856 | 0.0917 | 0.0896 | 0.0936 | 0.0995 | 0.1058 | 0.1166 |
Xinjiang | 0.0863 | 0.0891 | 0.0962 | 0.1003 | 0.1038 | 0.1092 | 0.1113 | 0.1189 |
National average | 0.0907 | 0.0923 | 0.0962 | 0.0986 | 0.1011 | 0.1086 | 0.1106 | 0.1154 |
Average annual growth rate | —— | 1.83% | 4.20% | 2.49% | 2.58% | 7.38% | 1.86% | 4.33% |
Region/Year | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
Beijing | 0.2205 | 0.1784 | 0.1989 | 0.2138 | 0.2477 | 0.2228 | 0.2274 | 0.2412 |
Tianjin | 0.1425 | 0.1426 | 0.1467 | 0.1592 | 0.1669 | 0.1655 | 0.1716 | 0.1702 |
Hebei | 0.1250 | 0.1285 | 0.1236 | 0.1267 | 0.1338 | 0.1372 | 0.1434 | 0.1452 |
Shanxi | 0.0755 | 0.0833 | 0.0849 | 0.0927 | 0.1012 | 0.1134 | 0.1181 | 0.1186 |
Inner Mongolia | 0.2087 | 0.2135 | 0.2216 | 0.2235 | 0.2276 | 0.2175 | 0.2218 | 0.2297 |
Liaoning | 0.1312 | 0.1367 | 0.1407 | 0.1478 | 0.1553 | 0.1612 | 0.1610 | 0.1576 |
Jilin | 0.1208 | 0.1266 | 0.1258 | 0.1278 | 0.1274 | 0.1319 | 0.1327 | 0.1359 |
Heilongjiang | 0.1977 | 0.2052 | 0.2151 | 0.2216 | 0.2225 | 0.2222 | 0.2371 | 0.2428 |
Shanghai | 0.1979 | 0.1997 | 0.2180 | 0.2222 | 0.2281 | 0.2354 | 0.2476 | 0.2675 |
Jiangsu | 0.1195 | 0.1292 | 0.1346 | 0.1393 | 0.1468 | 0.1534 | 0.1566 | 0.1597 |
Zhejiang | 0.1387 | 0.1410 | 0.1448 | 0.1485 | 0.1541 | 0.1599 | 0.1647 | 0.1684 |
Anhui | 0.0991 | 0.1090 | 0.1155 | 0.1188 | 0.1264 | 0.1337 | 0.1408 | 0.1454 |
Fujian | 0.1287 | 0.1349 | 0.1404 | 0.1459 | 0.1528 | 0.1612 | 0.1629 | 0.1682 |
Jiangxi | 0.0949 | 0.1024 | 0.1060 | 0.1116 | 0.1175 | 0.1271 | 0.1296 | 0.1327 |
Shandong | 0.1591 | 0.1646 | 0.1714 | 0.1883 | 0.2031 | 0.2142 | 0.2238 | 0.2292 |
Henan | 0.1208 | 0.1267 | 0.1323 | 0.1387 | 0.1443 | 0.1496 | 0.1518 | 0.1548 |
Hubei | 0.1007 | 0.1107 | 0.1141 | 0.1178 | 0.1260 | 0.1378 | 0.1512 | 0.1557 |
Hunan | 0.0963 | 0.1052 | 0.1087 | 0.1107 | 0.1170 | 0.1209 | 0.1252 | 0.1281 |
Guangdong | 0.1131 | 0.1265 | 0.1289 | 0.1277 | 0.1351 | 0.1436 | 0.1413 | 0.1485 |
Guangxi | 0.0947 | 0.1066 | 0.1109 | 0.1126 | 0.1228 | 0.1299 | 0.1355 | 0.1394 |
Hainan | 0.1117 | 0.1194 | 0.1220 | 0.1248 | 0.1310 | 0.1350 | 0.1351 | 0.1361 |
Chongqing | 0.0860 | 0.0947 | 0.0966 | 0.0982 | 0.1068 | 0.1142 | 0.1172 | 0.1218 |
Sichuan | 0.0879 | 0.0960 | 0.1040 | 0.1119 | 0.1211 | 0.1279 | 0.1350 | 0.1378 |
Guizhou | 0.0707 | 0.0800 | 0.0788 | 0.0764 | 0.0841 | 0.0869 | 0.0927 | 0.0984 |
Yunnan | 0.0911 | 0.0993 | 0.0975 | 0.1049 | 0.1125 | 0.1183 | 0.1260 | 0.1320 |
Tibet | 0.0832 | 0.0877 | 0.0881 | 0.0869 | 0.0895 | 0.0906 | 0.0925 | 0.0948 |
Shaanxi | 0.1048 | 0.1132 | 0.1140 | 0.1171 | 0.1234 | 0.1261 | 0.1302 | 0.1350 |
Gansu | 0.0696 | 0.0763 | 0.0780 | 0.0814 | 0.0902 | 0.0947 | 0.0975 | 0.1045 |
Qinghai | 0.0674 | 0.0730 | 0.0692 | 0.0690 | 0.0745 | 0.0773 | 0.0834 | 0.0877 |
Ningxia | 0.1277 | 0.1313 | 0.1372 | 0.1396 | 0.1469 | 0.1513 | 0.1683 | 0.1699 |
Xinjiang | 0.1105 | 0.1221 | 0.1240 | 0.1272 | 0.1343 | 0.1474 | 0.1535 | 0.1599 |
National average | 0.1192 | 0.1247 | 0.1288 | 0.1333 | 0.1410 | 0.1454 | 0.1508 | 0.1554 |
Average annual growth rate | 3.31% | 4.56% | 3.31% | 3.51% | 5.76% | 3.14% | 3.71% | 3.02% |
Region/Year | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | Average |
Beijing | 0.2462 | 0.2847 | 0.3193 | 0.4043 | 0.3805 | 0.4301 | 0.4193 | 0.2471 |
Tianjin | 0.1661 | 0.1589 | 0.1558 | 0.1676 | 0.1877 | 0.1798 | 0.1773 | 0.1475 |
Hebei | 0.1472 | 0.1467 | 0.1483 | 0.1530 | 0.1584 | 0.1655 | 0.1696 | 0.1326 |
Shanxi | 0.1202 | 0.1260 | 0.1301 | 0.1327 | 0.1386 | 0.1472 | 0.1468 | 0.0997 |
Inner Mongolia | 0.2330 | 0.2208 | 0.2271 | 0.2414 | 0.2492 | 0.2508 | 0.2692 | 0.2018 |
Liaoning | 0.1589 | 0.1585 | 0.1610 | 0.1635 | 0.1642 | 0.1699 | 0.1713 | 0.1397 |
Jilin | 0.1413 | 0.1430 | 0.1407 | 0.1460 | 0.1456 | 0.1507 | 0.1512 | 0.1293 |
Heilongjiang | 0.2538 | 0.2685 | 0.2670 | 0.2862 | 0.3116 | 0.3027 | 0.3313 | 0.2236 |
Shanghai | 0.3031 | 0.3410 | 0.3565 | 0.3766 | 0.4099 | 0.4582 | 0.4703 | 0.2467 |
Jiangsu | 0.1617 | 0.1649 | 0.1670 | 0.1698 | 0.1762 | 0.1863 | 0.1889 | 0.1370 |
Zhejiang | 0.1678 | 0.1742 | 0.1813 | 0.1897 | 0.1992 | 0.2101 | 0.2137 | 0.1513 |
Anhui | 0.1482 | 0.1511 | 0.1575 | 0.1618 | 0.1717 | 0.1828 | 0.1878 | 0.1242 |
Fujian | 0.1695 | 0.1765 | 0.1848 | 0.1867 | 0.1961 | 0.2073 | 0.2092 | 0.1500 |
Jiangxi | 0.1340 | 0.1384 | 0.1410 | 0.1451 | 0.1493 | 0.1578 | 0.1594 | 0.1140 |
Shandong | 0.2375 | 0.2430 | 0.2450 | 0.2500 | 0.2581 | 0.2682 | 0.2701 | 0.1914 |
Henan | 0.1589 | 0.1618 | 0.1662 | 0.1709 | 0.1804 | 0.1877 | 0.1927 | 0.1355 |
Hubei | 0.1614 | 0.1680 | 0.1731 | 0.1753 | 0.1783 | 0.1903 | 0.1953 | 0.1294 |
Hunan | 0.1298 | 0.1350 | 0.1426 | 0.1476 | 0.1587 | 0.1653 | 0.1700 | 0.1154 |
Guangdong | 0.1541 | 0.1582 | 0.1660 | 0.1693 | 0.1662 | 0.1718 | 0.1805 | 0.1324 |
Guangxi | 0.1440 | 0.1501 | 0.1569 | 0.1609 | 0.1713 | 0.1826 | 0.1926 | 0.1227 |
Hainan | 0.1364 | 0.1380 | 0.1449 | 0.1473 | 0.1521 | 0.1609 | 0.1698 | 0.1226 |
Chongqing | 0.1243 | 0.1247 | 0.1279 | 0.1315 | 0.1375 | 0.1465 | 0.1483 | 0.1027 |
Sichuan | 0.1404 | 0.1433 | 0.1493 | 0.1504 | 0.1562 | 0.1668 | 0.1677 | 0.1165 |
Guizhou | 0.1043 | 0.1117 | 0.1185 | 0.1272 | 0.1374 | 0.1449 | 0.1487 | 0.0892 |
Yunnan | 0.1359 | 0.1392 | 0.1417 | 0.1429 | 0.1463 | 0.1526 | 0.1569 | 0.1111 |
Tibet | 0.0941 | 0.1020 | 0.1030 | 0.1074 | 0.1105 | 0.1170 | 0.1179 | 0.0894 |
Shaanxi | 0.1393 | 0.1420 | 0.1445 | 0.1473 | 0.1497 | 0.1569 | 0.1595 | 0.1159 |
Gansu | 0.1071 | 0.1122 | 0.1172 | 0.1231 | 0.1312 | 0.1416 | 0.1483 | 0.0917 |
Qinghai | 0.0906 | 0.0933 | 0.0939 | 0.0958 | 0.0956 | 0.1000 | 0.0986 | 0.0775 |
Ningxia | 0.1721 | 0.1813 | 0.1859 | 0.1947 | 0.2016 | 0.2302 | 0.2506 | 0.1458 |
Xinjiang | 0.1680 | 0.1694 | 0.1691 | 0.1724 | 0.1758 | 0.1829 | 0.1863 | 0.1356 |
National average | 0.1596 | 0.1654 | 0.1704 | 0.1787 | 0.1853 | 0.1957 | 0.2006 | 0.1377 |
Average annual growth rate | 2.75% | 3.58% | 3.06% | 4.83% | 3.73% | 5.58% | 2.53% | —— |
References
- Sun, J.; Lu, S.; Jiang, X.; Wu, M.; Huang, J. Domestic and International Policy Planning for Nutrition-sensitive Agriculture and Its Implications. J. Sci. Agric. Sin. 2019, 52, 3089–3096. (In Chinese) [Google Scholar]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2024; Food and Agriculture Organization: Rome, Italy, 2024; Available online: https://www.fao.org/publications/home/fao-flagship-publications/the-state-of-food-security-and-nutrition-in-the-world/en (accessed on 1 October 2024).
- Fan, S.; Gao, H.; Feng, X.; Wang, J. Transformation of Agriculture and Food Systems and Rural Revitalization. J. South China Agric. Univ. 2022, 21, 1–8. (In Chinese) [Google Scholar]
- Ding, G.; Ma, A. Scientific Research Report on the Dietary Guidelines for Chinese Residents; People’s Health Publishing House: Beijing, China, 2021. (In Chinese) [Google Scholar]
- Thompson, B.; Amoroso, L. FAO’s Approach to Nutrition-Sensitive Agricultural Development; FAO: Rome, Italy, 2011; Available online: https://www.fao.org/fileadmin/user_upload/agn/pdf/FAO_Approach_to_Nutrition_sensitive_agricultural_development.pdf (accessed on 1 October 2024).
- Herforth, A.; Dufour, C. Key Recommendations for Improving Nutrition through Agriculture: Establishing a global consensus. J. SCN News 2013, 40, 33–38. [Google Scholar]
- Ruel, M.T.; Alderman, H.; Maternal and Child Nutrition Study Group. Nutrition-sensitive interventions and programmes: How can they help to accelerate progress in improving maternal and child nutrition? J. Lancet 2013, 382, 536–551. [Google Scholar] [CrossRef] [PubMed]
- Jaenicke, H.; Virchow, D. Entry points into a nutrition-sensitive agriculture. J. Food Secur. 2013, 5, 679–692. [Google Scholar] [CrossRef]
- Keding, G.B.; Schneider, K.; Jordan, I. Production and processing of foods as core aspects of nutrition-sensitive agriculture and sustainable diets. J. Food Secur. 2013, 5, 825–846. [Google Scholar] [CrossRef]
- Lu, S.J.; Huang, J.Z.; Wu, M.; Shen, D.J.; Sun, J.M. The Concept, Development, and Implications of Nutrition-sensitive Agriculture. J. Sci. Agric. Sin. 2019, 52, 3083–3088. (In Chinese) [Google Scholar]
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs. 2022 Report on Food and Nutrition Development in China; China Agricultural Science and Technology Press: Beijing, China, 2023. (In Chinese) [Google Scholar]
- Dury, S.; Bichard, A. What risks do agricultural interventions entail for nutrition? UMR Moïsa 2014, 3, 1–12. [Google Scholar]
- Berti, P.R.; Desrochers, R.E.; Van, H.P.; Văn, A.L.; Ngo, T.D.; The, K.H.; Thi, N.L.; Wangpakapattanawonget, P. The process of developing a nutrition-sensitive agriculture intervention: A multi-site experience. J. Food Secur. 2016, 8, 1053–1068. [Google Scholar] [CrossRef]
- Herforth, A.; Ballard, T.J. Nutrition indicators in agriculture projects: Current measurement, priorities, and gaps. J. Glob. Food Secur. 2016, 10, 1–10. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, L.; Cheng, G. Compilation of Indicators for Nutrition-Sensitive Agriculture; China Agricultural Science and Technology Press: Beijing, China, 2021; Volume 70. (In Chinese) [Google Scholar]
- Wesana, J.; De Steur, H.; Dora, M.K.; Wesana, J.; De Steur, H.; Dora, M.K.; Mutenyo, E.; Muyama, L.; Gellynck, X. Towards nutrition sensitive agriculture. Actor readiness to reduce food and nutrient losses or wastes along the dairy value chain in Uganda. J. Clean. Prod. 2018, 182, 46–56. [Google Scholar] [CrossRef]
- Yu, T.; Yu, F. Evaluation of High-Quality Agricultural Development and Diagnosis of Obstacle Factors Based on the Entropy Weight TOPSIS Method. J. Soc. Sci. Yunnan 2021, 5, 76–83. (In Chinese) [Google Scholar]
- Liu, T.; Zhou, H. Regional Differences and Dynamic Evolution of Rural High-Quality Development. J. South China Agric. Univ. 2022, 21, 1–11. (In Chinese) [Google Scholar]
- Gao, X.; Yin, C. Measurement and Evaluation of High-Quality Agricultural Development in China under the New Development Concept. Agric. Resour. Reg. Plan. 2023, 44, 75–83. (In Chinese) [Google Scholar]
- Yang, N.; Wang, W. Construction and Measurement of Evaluation Indicators for High-Quality Agricultural Development. J. Stat. Decis. 2022, 38, 26–30. (In Chinese) [Google Scholar]
- Xin, L.; An, X. Construction and Measurement Analysis of Evaluation System for High-Quality Agricultural Development in China. J. Econ. Rev. 2019, 5, 109–118. (In Chinese) [Google Scholar]
- Zhang, X.; Bao, J.; Xu, S. Research on the Evaluation of China’s Food Security Based on the Entropy Weight TOPSIS Model. J. Chin. J. Agric. Resour. Reg. Plan. 2023, 44, 35–44. (In Chinese) [Google Scholar]
- Xiang, Y.; Li, Z.; Lu, Q. Spatial Inequality and Convergence of High-Quality Agricultural Economic Development in China. Agric. Univ. 2022, 27, 305–316. (In Chinese) [Google Scholar]
- Li, Q.; Li, G.; Yin, C. Regional Differences and Convergence of China’s Agricultural Green Development Level—An Empirical Study Based on Prefecture-Level City Panel Data. J. China Agric. Univ. 2022, 27, 230–242. (In Chinese) [Google Scholar]
- Xu, X.; Sun, Z.; Liu, J. Analysis of Regional Differences and Convergence of High-Quality Agricultural Development in Major Grain-Producing Areas of China. J. Technol. Econ. 2022, 41, 86–95. (In Chinese) [Google Scholar]
- Yang, C.; Liu, W.; Zhang, J. Measurement, Regional Differences, and Convergence of High-Quality Agricultural Development Based on Agricultural Ecological Zoning. J. China Agric. Univ. 2023, 28, 194–213. (In Chinese) [Google Scholar]
- Xie, T.; Zhang, J.; Wu, F. Empirical Analysis of the Mutual Influence Between Education and Population Migration—Based on Panel Data of 31 Provinces from 2004 to 2008. J. Shanghai Univ. Financ. Econ. 2011, 13, 70–76. (In Chinese) [Google Scholar]
- Chinese Nutrition Society. Dietary Guidelines for Chinese Residents; People’s Medical Publishing House: Beijing, China, 2022. (In Chinese) [Google Scholar]
- Ma, X.; Hu, S. Spatial-Temporal Adaptation Characteristics and Influencing Factors of Tourism City Resilience and Resident Happiness Level—A Case Study of Zhangjiajie. J. Resour. Sci. 2022, 44, 2373–2385. (In Chinese) [Google Scholar]
- Zhang, J. Research on the Path of High-Quality Development of Tibet’s Tourism Economy; Tibet University: Lhasa, China, 2021. (In Chinese) [Google Scholar]
- Yu, G. Urban-Rural Income Gap, Economic Development Level, and Consumer Demand—An Empirical Study Based on Provincial Panel Cointegration. J. Xiangtan Univ. 2011, 35, 42–47. (In Chinese) [Google Scholar]
- Wen, X.; Xiong, X.; Liu, S. An Empirical Study on the Relationship Between Urbanization and Consumer Demand in Western China—Based on 1995–2012 Pannel Data Model Analysis. J. Consum. Econ. 2015, 31, 20–24. (In Chinese) [Google Scholar]
- Peng, J.; Peng, T.; Ling, J. Can Expanding Urban Consumption Demand Promote FDI Inflows Under the New Development Pattern?—An Empirical Study Based on the Yangtze River Delta Region. J. East China Econ. Manag. 2024, 38, 32–43. (In Chinese) [Google Scholar]
- Cao, J.; Wang, Y. Digital Villages, Technological Innovation, and High-Quality Agricultural Development. J. Manag. 2024, 37, 128–142. (In Chinese) [Google Scholar]
- Liangjun, G. Digital Economy, Urbanization, and High-Quality Development of Agriculture and Rural Areas—An Empirical Study Based on Anhui Province. Stat. Decis. 2024, 40, 22–27. (In Chinese) [Google Scholar]
- Wang, X.; Qu, H. Thoughts and Suggestions on Promoting High-Quality Agricultural Development Through Technological Innovation. J. Study Explor. 2020, 11, 120–127. (In Chinese) [Google Scholar]
- Ren, J. A Weighting Method to Improve the Objectivity of Multi-Indicator Decision-Making. J. Manag. Rev. 2012, 24, 160–169. (In Chinese) [Google Scholar]
- Song, J.; Wu, C. Evaluation Study on Coordinated Development Between Urbanization and Ecological Environment—A Case Study of the Yangtze River Delta Urban Agglomeration. J. China Soft Sci. 2010, 2, 78–87. (In Chinese) [Google Scholar]
- Li, G.; Cheng, Y.; Dong, L.; Wenjun, W. Study on the Objective Weighting Method of Gini Coefficient. Manag. Rev. 2014, 26, 12–22. (In Chinese) [Google Scholar]
- Yin, J.; Wang, P. College Performance Evaluation in Higher Education Institutions Based on Data Envelopment Analysis. Manag. Rev. 2011, 23, 108–115. (In Chinese) [Google Scholar]
- Zhu, Z.; Zhu, S.; Zhou, L.; Zhang, T. Evaluation of the Sustainable Development Level of China’s Pig Industry under the New Pattern of High-Quality Development. J. Issues Agric. Econ. 2023, 4, 105–122. (In Chinese) [Google Scholar]
- Xiao, C. Comprehensive Evaluation of Urban Resilience in China; Jiangxi University of Finance and Economics: Nanchang, China, 2021. (In Chinese) [Google Scholar]
- Dagum, C. A new approach to the decomposition of the Gini income inequality ratio. J. Empir. Econ. 1997, 22, 515–531. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, T.; Feng, D. Study on Regional Differences, Dynamic Evolution, and Convergence of China’s Carbon Emission Intensity. J. Quant. Tech. Econ. 2022, 39, 67–87. (In Chinese) [Google Scholar]
- Gu, Y.; Qi, C.; Liu, F.; Lei, Q.; Ding, Y. Spatiotemporal Evolution and Spatial Convergence Analysis of Total Factor Productivity of Citrus in China. Agriculture 2023, 13, 1258. [Google Scholar] [CrossRef]
System Layer | Criterion Layer | Element Layer | Index Layer | Basic Index Interpretation | Indicator Attributes | Data Sources |
---|---|---|---|---|---|---|
Nutrition-sensitive agricultural production system | Usability | Capacity for comprehensive production of agricultural primary products | Cultivated land resources | Cultivated land area/resident population at year-end | Positive | Database of the National Bureau of Statistics, etc. |
Forestry resources | Rate of forest cover | Positive | Database of the National Bureau of Statistics, etc. | |||
Water resources | Effective irrigated area/total cultivated area | Positive | Database of the National Bureau of Statistics, etc. | |||
Labor input | Number of persons employed in primary sector/number of persons employed in society as a whole | Positive | China Statistical Yearbook, etc. | |||
Financial support for agriculture | Expenditure on agriculture, forestry and water affairs/total fiscal expenditure | Positive | Database of the National Bureau of Statistics | |||
Scientific and technological investment | Science and technology expenditure/total fiscal expenditure | Positive | Database of the National Bureau of Statistics | |||
Land productivity | Gross agricultural output/area sown for crops | Positive | Database of the National Bureau of Statistics | |||
Labor productivity | Gross output value of agriculture, forestry, animal husbandry and fishery/number of persons employed in the primary sector | Positive | Database of the National Bureau of Statistics | |||
Post-harvest handling and processing capacity | Number of agro-processing enterprises | Stock of enterprises in agro-processing industry | Positive | China Academy for Rural Development—Qiyan China Agri-Research Database (CCAD) | ||
Agricultural processing conversion rate | Main business income from agro-processing/gross output value of agriculture, forestry, animal husbandry and fisheries | Positive | Yearbook of China’s agricultural products processing industries, etc. | |||
Accessibility | Diversified food supply capacity | Grain production per capita | Grain production/resident population at year-end | Positive | Database of the National Bureau of Statistics | |
Vegetable production per capita | Vegetable production/resident population at year-end | Positive | Database of the National Bureau of Statistics | |||
Fruit production per capita | Fruit production/resident population at year-end | Positive | Database of the National Bureau of Statistics | |||
Animal food production per capita | (Meat production + fish production + egg production)/resident population at year-end | Positive | Database of the National Bureau of Statistics | |||
Milk production per capita | Milk production/resident population at year-end | Positive | Database of the National Bureau of Statistics | |||
Bean production per capita | Bean production/resident population at year-end | Positive | Database of the National Bureau of Statistics | |||
Quality of specialty agricultural products | Number of geographical indications for agricultural products | Positive | Ministry of Agriculture and Rural Affairs of the People’s Republic of China | |||
Agricultural industry structural adjustment index | Agricultural output/gross output of agriculture, forestry, livestock and fisheries | Positive | Database of the National Bureau of Statistics | |||
Grain supply deviation | (Per capita grain production − grain dietary standards)/grain dietary standards | Positive | Database of the National Bureau of Statistics | |||
Vegetable supply deviation | (Vegetable production per capita − vegetable dietary standards)/vegetable dietary standards | Positive | Database of the National Bureau of Statistics | |||
Fruit supply deviation | (Per capita fruit production − fruit dietary standards)/fruit dietary standards | Positive | Database of the National Bureau of Statistics | |||
Animal food supply deviation | (Per capita production of animal food − dietary standards for animal food)/dietary standards for animal food | Positive | Database of the National Bureau of Statistics | |||
Milk and milk products supply deviation | (Per capita production of milk and milk products − dietary standards for milk and milk products)/dietary standards for milk and milk products | Positive | Database of the National Bureau of Statistics | |||
Bean supply deviation | (Per capita production of beans − dietary standards for beans)/dietary standards for beans | Positive | Database of the National Bureau of Statistics | |||
Circulation regulation system for domestic agricultural products market | Reachability | Modern distribution capacity | Number of employees in the transportation sector | Number of employees in transportation and postal services | Positive | Database of the National Bureau of Statistics |
Density of hierarchical road network | Miles of graded roads/area of provinces and municipalities | Positive | Database of the National Bureau of Statistics | |||
Controllability | Storage and regulation capacity | Stabilization of food retail prices | (Absolute value of (retail price index for food commodities − 100) | Negative | Database of the National Bureau of Statistics | |
Stabilization of consumer food prices | Absolute value of (food consumer price index − 100) | Negative | Database of the National Bureau of Statistics | |||
International trade system for agricultural products | Substitutability | International market regulation capacity | Scale of agricultural imports | Agricultural imports/gross agricultural product | Positive | The Ministry of Commerce of China, etc. |
Scale of agricultural exports | Agricultural exports/gross agricultural product | Positive | The Ministry of Commerce of China, etc. | |||
Dependence of agriculture on foreign trade | Total agricultural imports and exports/value added in primary sector | Positive | The Ministry of Commerce of China, etc. | |||
Health and sustainability system | Sustainability | Capacity for health and environmental protection | Level of rural health personnel | Average village health center staff per village | Positive | National Health Commission, etc. |
Fertilizer application intensity | Fertilizer application/area sown for crops | Negative | Database of the National Bureau of Statistics, etc. | |||
Intensity of pesticide use | Pesticide use/area sown for crops | Negative | Database of the National Bureau of Statistics, etc. | |||
Capacity for women’s empowerment | Proportion of female employee representatives in trade unions | Proportion of female representatives in the workers’ conference | Positive | Database of the National Bureau of Statistics, etc. | ||
Percentage of rural women in politics | Proportion of women on the village committee | Positive | Economy Prediction System (EPS) | |||
Capacity for income security | Disposable income of rural residents | Disposable income per rural household | Positive | China Rural Statistical Yearbook | ||
Quality of life of rural residents | Engel’s coefficient for rural households | Negative | China Statistical Yearbook | |||
Capacity for nutrition awareness | Educational level of rural labor force | Average years of schooling of the rural labor force | Positive | China Population and Employment Statistics Yearbook | ||
Level of healthcare consumption | The proportion of rural residents’ healthcare expenditure in their consumption expenditure | Positive | Database of the National Bureau of Statistics, etc. | |||
Consumer nutritional demand adaptation system | Adaptability | Nutrition demand adaptation capacity | Supply and demand coupling | Quantitative modeling of coupling | Positive | Database of the National Bureau of Statistics, etc. |
Supply and demand coordination | Quantitative modeling of coordination | Positive | Database of the National Bureau of Statistics, etc. | |||
Supply and demand matching | Quantitative modeling of matching | Positive | Database of the National Bureau of Statistics, etc. |
Variables | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
Nutrition-sensitive agricultural development level | 713 | 0.1377 | 0.0575 | 0.0571 | 0.4703 |
Economic development level | 713 | 3.8575 | 3.1398 | 0.2759 | 19.0313 |
Industrialization level | 713 | 0.3449 | 0.0972 | 0.0705 | 0.5738 |
Informatization level | 713 | 0.0620 | 0.0413 | 0.0151 | 0.2901 |
Tax burden level | 713 | 0.0782 | 0.0260 | 0.0339 | 0.1882 |
Financial development level | 713 | 1.2775 | 0.4452 | 0.5499 | 2.9959 |
Industrial structure | 713 | 0.4639 | 0.0916 | 0.2964 | 0.8386 |
Government intervention level | 713 | 0.2446 | 0.1824 | 0.0691 | 1.3537 |
Year/Region | Eastern Average | Central Average | Western Average | Northeastern Average | National Average |
---|---|---|---|---|---|
2000 | 0.1085 | 0.0806 | 0.0745 | 0.1160 | 0.0907 |
2001 | 0.1090 | 0.0818 | 0.0770 | 0.1191 | 0.0923 |
2002 | 0.1111 | 0.0848 | 0.0812 | 0.1292 | 0.0962 |
2003 | 0.1176 | 0.0834 | 0.0816 | 0.1334 | 0.0986 |
2004 | 0.1209 | 0.0840 | 0.0853 | 0.1327 | 0.1011 |
2005 | 0.1303 | 0.0883 | 0.0923 | 0.1421 | 0.1086 |
2006 | 0.1318 | 0.0918 | 0.0946 | 0.1418 | 0.1106 |
2007 | 0.1426 | 0.0953 | 0.0969 | 0.1387 | 0.1154 |
2008 | 0.1457 | 0.0979 | 0.1002 | 0.1499 | 0.1192 |
2009 | 0.1465 | 0.1062 | 0.1078 | 0.1562 | 0.1247 |
2010 | 0.1529 | 0.1103 | 0.1100 | 0.1605 | 0.1288 |
2011 | 0.1596 | 0.1150 | 0.1124 | 0.1657 | 0.1333 |
2012 | 0.1699 | 0.1221 | 0.1195 | 0.1684 | 0.1410 |
2013 | 0.1728 | 0.1304 | 0.1235 | 0.1717 | 0.1454 |
2014 | 0.1774 | 0.1361 | 0.1295 | 0.1769 | 0.1508 |
2015 | 0.1834 | 0.1392 | 0.1342 | 0.1787 | 0.1554 |
2016 | 0.1890 | 0.1421 | 0.1377 | 0.1847 | 0.1596 |
2017 | 0.1986 | 0.1467 | 0.1408 | 0.1900 | 0.1654 |
2018 | 0.2069 | 0.1518 | 0.1446 | 0.1895 | 0.1704 |
2019 | 0.2214 | 0.1556 | 0.1496 | 0.1986 | 0.1787 |
2020 | 0.2284 | 0.1628 | 0.1552 | 0.2072 | 0.1853 |
2021 | 0.2438 | 0.1718 | 0.1644 | 0.2078 | 0.1957 |
2022 | 0.2469 | 0.1753 | 0.1704 | 0.2179 | 0.2006 |
Average | 0.1659 | 0.1197 | 0.1167 | 0.1642 | 0.1377 |
Year/Region | Eastern–Central | Eastern–Western | Eastern–Northeastern | Central–Western | Central–Northeastern | Western–Northeastern |
---|---|---|---|---|---|---|
2000 | 0.1035 | 0.1803 | 0.2200 | 0.1475 | 0.1899 | 0.0821 |
2001 | 0.1028 | 0.1859 | 0.2168 | 0.1426 | 0.1756 | 0.0801 |
2002 | 0.1168 | 0.2073 | 0.2324 | 0.1343 | 0.1656 | 0.0833 |
2003 | 0.1159 | 0.2305 | 0.2459 | 0.1699 | 0.1930 | 0.0882 |
2004 | 0.1333 | 0.2390 | 0.2245 | 0.2043 | 0.1802 | 0.1016 |
2005 | 0.1221 | 0.2421 | 0.2334 | 0.2123 | 0.1923 | 0.1133 |
2006 | 0.1299 | 0.2441 | 0.2141 | 0.2206 | 0.1817 | 0.1288 |
2007 | 0.1167 | 0.2318 | 0.2007 | 0.2189 | 0.1856 | 0.1306 |
2008 | 0.1254 | 0.2396 | 0.2101 | 0.2314 | 0.1987 | 0.1360 |
2009 | 0.1089 | 0.2205 | 0.1905 | 0.1977 | 0.1604 | 0.1253 |
2010 | 0.1213 | 0.1883 | 0.2267 | 0.1650 | 0.2095 | 0.1326 |
2011 | 0.1245 | 0.1848 | 0.2287 | 0.1668 | 0.2154 | 0.1313 |
2012 | 0.1297 | 0.1678 | 0.2113 | 0.1660 | 0.2093 | 0.1231 |
2013 | 0.1162 | 0.1438 | 0.1965 | 0.1461 | 0.1967 | 0.1176 |
2014 | 0.1283 | 0.1398 | 0.1901 | 0.1466 | 0.1945 | 0.1195 |
2015 | 0.1346 | 0.1454 | 0.1895 | 0.1412 | 0.1855 | 0.1167 |
2016 | 0.1438 | 0.1515 | 0.1934 | 0.1464 | 0.1883 | 0.1175 |
2017 | 0.1638 | 0.1635 | 0.2039 | 0.1499 | 0.1899 | 0.1088 |
2018 | 0.1744 | 0.1683 | 0.2098 | 0.1415 | 0.1826 | 0.1075 |
2019 | 0.1946 | 0.1871 | 0.2280 | 0.1499 | 0.1900 | 0.1074 |
2020 | 0.2045 | 0.1826 | 0.2247 | 0.1642 | 0.2004 | 0.1067 |
2021 | 0.2105 | 0.1907 | 0.2319 | 0.1477 | 0.1814 | 0.1068 |
2022 | 0.2164 | 0.1870 | 0.2290 | 0.1680 | 0.1994 | 0.1156 |
Average | 0.1408 | 0.1922 | 0.2153 | 0.1686 | 0.1898 | 0.1122 |
Region | Distribution Position | Main Peak Distribution Shape | Distribution Extensibility | Number of Peaks |
---|---|---|---|---|
National | Shift to the right | Height decreases, width increases | Right tailing, extended dispersion | Single or double peak |
Eastern | Shift to the right | Height decreases, width increases | Right tailing, extended dispersion | Single or double peak |
Central | Shift to the right | Height decreases, width increases | Right tailing, extended convergence | Single peak |
Western | Shift to the right | Height decreases, width increases | Right tailing, extended dispersion | Single or double peak |
Northeastern | Shift to the right | Height unchanged, width decreases | Right tailing, extended dispersion | Single or double peak |
Variables | (1) National | (2) Eastern | (3) Central | (4) Western | (5) Northeastern |
---|---|---|---|---|---|
β | −0.0912 *** | −0.0739 ** | −0.1649 *** | −0.0993 *** | −0.1662 ** |
(0.0185) | (0.0339) | (0.0532) | (0.0288) | (0.0708) | |
v | 0.0042 | 0.0033 | 0.0078 | 0.0045 | 0.0079 |
Time effects | controlled | controlled | controlled | controlled | controlled |
Individual effects | controlled | controlled | controlled | controlled | controlled |
Constant | −0.2013 *** | −0.1032 | −0.3938 *** | −0.2292 *** | −7.5539 * |
(0.0455) | (0.0658) | (0.1326) | (0.0765) | (4.0424) | |
Observations | 682 | 220 | 132 | 264 | 66 |
R2 | 0.1621 | 0.2465 | 0.5756 | 0.3289 | 0.1423 |
Variables | (1) National | (2) Eastern | (3) Central | (4) Western | (5) Northeastern |
---|---|---|---|---|---|
β | −0.1130 *** | −0.1162 *** | −0.1716 *** | −0.1475 *** | −0.3854 *** |
(0.0205) | (0.0398) | (0.0549) | (0.0332) | (0.1279) | |
Economic development level | 0.0549 *** | 0.0288 | 0.0334 | 0.1048 *** | −0.0939 |
(0.0156) | (0.0391) | (0.0442) | (0.0316) | (0.1408) | |
Industrialization level | −0.0687 *** | −0.0180 | −0.1365 ** | 0.0191 | −0.1980 |
(0.0238) | (0.0633) | (0.0643) | (0.0473) | (0.1377) | |
Informationization level | 0.0084 | 0.0107 | −0.0006 | 0.0251 | −0.1413 |
(0.0108) | (0.0219) | (0.0276) | (0.0176) | (0.0938) | |
Tax burden level | −0.0105 | 0.0364 | 0.0224 | −0.0427 ** | 0.1360 |
(0.0145) | (0.0655) | (0.0335) | (0.0193) | (0.0991) | |
Financial development level | −0.0100 | −0.1032 ** | 0.0429 | 0.0190 | 0.0333 |
(0.0121) | (0.0420) | (0.0331) | (0.0152) | (0.1001) | |
Industrial structure | −0.0789 ** | −0.1055 | −0.1612 ** | 0.1006 | -0.2375 |
(0.0355) | (0.0852) | (0.0778) | (0.0666) | (0.1976) | |
Government intervention level | 0.0195 | −0.0011 | −0.0611 | 0.0358 | 0.0382 |
(0.0196) | (0.0507) | (0.0691) | (0.0334) | (0.1127) | |
v | 0.0052 | 0.0054 | 0.0082 | 0.0069 | 0.0212 |
Time effects | controlled | controlled | controlled | controlled | controlled |
Individual effects | controlled | controlled | controlled | controlled | controlled |
Constant | −0.3513 *** | −0.1604 | −0.7607 *** | −0.1460 | −1.3273 ** |
(0.0880) | (0.1684) | (0.2244) | (0.1670) | (0.6487) | |
Observations | 682 | 220 | 132 | 264 | 66 |
R2 | 0.1859 | 0.2914 | 0.6178 | 0.3994 | 0.6332 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, Y.; Qi, C.; Liu, F.; Dong, Y.; Zhang, H. Study on Regional Differences, Dynamic Evolution and Convergence of Nutrition-Sensitive Agricultural Development in China. Agriculture 2024, 14, 2034. https://doi.org/10.3390/agriculture14112034
Gu Y, Qi C, Liu F, Dong Y, Zhang H. Study on Regional Differences, Dynamic Evolution and Convergence of Nutrition-Sensitive Agricultural Development in China. Agriculture. 2024; 14(11):2034. https://doi.org/10.3390/agriculture14112034
Chicago/Turabian StyleGu, Yumeng, Chunjie Qi, Fuxing Liu, Yani Dong, and Haixia Zhang. 2024. "Study on Regional Differences, Dynamic Evolution and Convergence of Nutrition-Sensitive Agricultural Development in China" Agriculture 14, no. 11: 2034. https://doi.org/10.3390/agriculture14112034
APA StyleGu, Y., Qi, C., Liu, F., Dong, Y., & Zhang, H. (2024). Study on Regional Differences, Dynamic Evolution and Convergence of Nutrition-Sensitive Agricultural Development in China. Agriculture, 14(11), 2034. https://doi.org/10.3390/agriculture14112034