Effects of Inoculation of Thermotolerant Bacillus Strains on Lignocellulose Degradation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Composting Material
2.2. Composting Experiment Design and Sampling
2.3. Determination of Lignocellulose Degradation
2.4. Determination of Lignocellulose-Degrading Enzyme Activities
2.5. Microbial Community Composition and Diversity Analysis
3. Results and Discussion
3.1. Effect of Inoculants on the Overall Lignocellulose Degradation Rate
3.2. Influence of the Inoculants on Lignocellulose-Degrading Enzyme Activities
3.3. Influence of Thermotolerant Bacteria on Microbial Community Composition and Diversity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumla, A.; Suwannarach, N.; Sujarit, K.; Penkhrue, W.; Kakumyan, P.; Jatuwong, K.; Vadthanarat, S.; Lumyong, S.; Zervakis, G. Cultivation of mushrooms and their lignocellulolytic enzyme production through the utilization of agro-industrial waste. Molecules 2020, 25, 2811. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Jiang, Z.; Li, M.; Li, Q. A compost-derived thermophilic microbial consortium enhances the humification process and alters the microbial diversity during composting. J. Environ. Manag. 2019, 243, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhu, Q.; Niu, Q.; Meng, Q.; Yan, H.; Wang, S.; Li, Q. The degradation of organic matter coupled with the functional characteristics of microbial community during composting with different surfactants. Bioresour. Technol. 2021, 321, 124446. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Lu, Q.; Wei, Y.; Cui, H.; Zhang, X.; Wang, X.; Shan, S.; Wei, Z. Effect of actinobacteria agent inoculation methods on cellulose degradation during composting based on redundancy analysis. Bioresour. Technol. 2016, 219, 8. [Google Scholar] [CrossRef]
- Nigussie, A.; Dume, B.; Ahmed, M.; Mamuye, M.; Ambaw, G.; Berhiun, G.; Biresaw, A.; Aticho, A. Effect of microbial inoculation on nutrient turnover and lignocellulose degradation during composting: A meta-analysis. Waste Manag. 2021, 125, 15. [Google Scholar] [CrossRef]
- Jurado, M.M.; Suarez-Estrella, F.; Lopez, M.J.; Vargas-Garcia, M.C.; Lopez-Gonzalez, J.A.; Moreno, J. Enhanced turnover of organic matter fractions by microbial stimulation during lignocellulosic waste composting. Bioresour. Technol. 2015, 186, 10. [Google Scholar] [CrossRef]
- Zeng, G.; Yu, M.; Chen, Y.; Huang, D.; Zhang, J.; Huang, H.; Jiang, R.; Yu, Z. Effects of inoculation with Phanerochaete chrysosporium at various time points on enzyme activities during agricultural waste composting. Bioresour. Technol. 2010, 101, 222–227. [Google Scholar] [CrossRef]
- Wongwilaiwalin, S.; Rattanachomsri, U.; Laothanachareon, T.; Eurwilaichitr, L.; Igarashi, Y.; Champreda, V. Analysis of a thermophilic lignocellulose degrading microbial consortium and multi-species lignocellulolytic enzyme system. Enzym. Microb. Technol. 2010, 47, 283–290. [Google Scholar] [CrossRef]
- Lu, X.L.; Wu, H.; Song, S.L.; Bai, H.Y.; Tang, M.J.; Xu, F.J.; Ma, Y.; Dai, C.C.; Jia, Y. Effects of multi-phase inoculation on the fungal community related with the improvement of medicinal herbal residues composting. Environ. Sci. Pollut. Res. Int. 2021, 28, 27998–28013. [Google Scholar] [CrossRef]
- Ma, J.; Ma, N.L.; Fei, S.; Liu, G.; Wang, Y.; Su, Y.; Wang, X.; Wang, J.; Xie, Z.; Chen, G.; et al. Enhanced humification via lignocellulosic pretreatment in remediation of agricultural solid waste. Environ. Pollut. 2024, 346, 123646. [Google Scholar] [CrossRef]
- Chang, H.; Zhu, X.; Jie, W.; Guo, D.; Zhang, L.; Yao, F. Dynamics of microbial diversity during the composting of agricultural straw. J. Integr. Agric. 2024, 20, 1121–1136. [Google Scholar] [CrossRef]
- Lopez-Gonzalez, J.A.; Lopez, M.J.; Vargas-Garcia, M.C.; Suarez-Estrella, F.; Jurado, M.; Moreno, J. Tracking organic matter and microbiota dynamics during the stages of lignocellulosic waste composting. Bioresour. Technol. 2013, 146, 574–584. [Google Scholar] [CrossRef] [PubMed]
- Kausar, H.; Ismail, M.R.; Saud, H.M. A novel lignocellulolytic bacterium for bioconversion of rice straw. Pak. J. Agric. Sci. 2016, 53, 523–533. [Google Scholar]
- Niu, J.; Li, X.; Qi, X.; Ren, Y. Pathway analysis of the biodegradation of lignin by Brevibacillus thermoruber. Bioresour. Technol. 2021, 341, 125875. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Si, H.; Fan, Y.; Wang, B.; Hua, D.; Wang, Z.; Dong, C. Microbiological Community Analysis of the Composting of Poplar Processing Residues. IOP Conf. Ser. Earth Environ. Sci. 2021, 781, 052025. [Google Scholar] [CrossRef]
- Abdel-Rahman, M.A.; Abdel-Shakour, E.H.; El-Din, M.N.; Refaa1, B.M.; Ewais, E.E.-D.; Alrefaey, H.M.A. Novel Promising Thermotolerant Cellulase-Producing Bacillus licheniformis 1-1v strain Suitable for Composting of Rice Straw. Int. J. Adv. Res. 2015, 3, 11. [Google Scholar]
- Zhang, H. Screening and Degradation Effect of Thermostable Lignin Degrading Bacteria in Vegetable Waste Composting. Master’s Thesis, Hebei Agricultural University, Baoding, China, 2021. [Google Scholar]
- Wei, Y.; Wu, D.; Wei, D.; Zhao, Y.; Wu, J.; Xie, X.; Zhang, R.; Wei, Z. Improved lignocellulose-degrading performance during straw composting from diverse sources with actinomycetes inoculation by regulating the key enzyme activities. Bioresour. Technol. 2019, 271, 66–74. [Google Scholar] [CrossRef]
- Viel, M.; Sayag, D.; Peyre, A.; André, L. Optimization of In-vessel Co-composting through heat recovery. Biol. Wastes 1987, 20, 167–185. [Google Scholar] [CrossRef]
- NY525-2002; Organic Fertilizers. Ministry of Agriculture of the People’s Republic of China; China Standards Press: Beijing, China, 2002.
- Zhu, N.; Zhu, Y.; Li, B.; Jin, H.; Dong, Y. Increased enzyme activities and fungal degraders by Gloeophyllum trabeum inoculation improve lignocellulose degradation efficiency during manure-straw composting. Bioresour. Technol. 2021, 337, 10. [Google Scholar] [CrossRef]
- Rousk, J.; Baath, E.; Brookes, P.C.; Lauber, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef]
- Xu, N.; Tan, G.; Wang, H.; Gai, X. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur. J. Soil Biol. 2016, 74, 1–8. [Google Scholar] [CrossRef]
- Feng, X.; Qiu, M.; Zhang, L. Construction of lignocellulose-degrading compound microbial inoculum and its effects on green waste composting. J. Environ. Manag. 2024, 370, 122502. [Google Scholar] [CrossRef] [PubMed]
- Hemati, A.; Aliasgharzad, N.; Khakvar, R.; Khoshmanzar, E.; Asgari Lajayer, B.; van Hullebusch, E.D. Role of lignin and thermophilic lignocellulolytic bacteria in the evolution of humification indices and enzymatic activities during compost production. Waste Manag. 2021, 119, 122–134. [Google Scholar] [CrossRef]
- Zhang, S.; Xiao, J.; Wang, G.; Liu, Y.; Zhang, X. Enzymatic hydrolysis of lignin by ligninolytic enzymes and analysis of the hydrolyzed lignin products. Bioresour. Technol. 2020, 304, 122975. [Google Scholar] [CrossRef]
- Zhang, G.; Dong, Y. Design and application of an efficient cellulose-degrading microbial consortium and carboxymethyl cellulase production optimization. Front. Microbiol. 2022, 13, 957444. [Google Scholar] [CrossRef]
- Tuomela, M.; Vikman, M.; Hatakka, A.; Itävaara, M. Biodegradation of lignin in a compost environment: A review. Bioresour. Technol. 2000, 72, 169–183. [Google Scholar] [CrossRef]
- Sanchez, C. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol. Adv. 2009, 27, 185–194. [Google Scholar] [CrossRef]
- Zhang, S.; Xia, T.; Wang, J.; Zhao, Y.; Xie, X.; Wei, Z.; Zhang, X.; Song, C.; Song, X. Role of Bacillus inoculation in rice straw composting and bacterial community stability after inoculation: Unite resistance or individual collapse. Bioresour. Technol. 2021, 337, 125464. [Google Scholar] [CrossRef]
- Satheeja Santhi, V.; Bhagat, A.K.; Saranya, S.; Govindarajan, G.; Jebakumar, S.R.D. Seaweed (Eucheuma cottonii) associated microorganisms, a versatile enzyme source for the lignocellulosic biomass processing. Int. Biodeterior. Biodegrad. 2014, 96, 144–151. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Z.; Xia, J.; Zhang, Y.; Li, H. Effect of microbial inoculation on physicochemical properties and bacterial community structure of citrus peel composting. Bioresour. Technol. 2019, 291, 121843. [Google Scholar] [CrossRef]
- Vauterin, L.; Yang, P.; Alvarez, A.; Takikawa, Y.; Roth, D.A.; Vidaver, A.K.; Stall, R.E.; Kersters, K.; Swings, J. Identification of Non-Pathogenic Xanthomonas Strains Associated with Plants. Syst. Appl. Microbiol. 1996, 19, 96–105. [Google Scholar] [CrossRef]
- Martinkova, L.; Uhnakova, B.; Patek, M.; Nesvera, J.; Kren, V. Biodegradation potential of the genus Rhodococcus. Environ. Int. 2009, 35, 162–177. [Google Scholar] [CrossRef] [PubMed]
- Larousse, M.; Rancurel, C.; Syska, C.; Palero, F.; Etienne, C.; Industri, B.; Nesme, X.; Bardin, M.; Galiana, E. Tomato root microbiota and Phytophthora parasitica-associated disease. Microbiome 2017, 5, 56. [Google Scholar] [CrossRef] [PubMed]
Bacterial Diversity Index | Fungal Diversity Index | |||||||
---|---|---|---|---|---|---|---|---|
Treatment | Chao | Ace | Shannon | Simpson | Chao | Ace | Shannon | Simpson |
CK | 401.7 a | 391.4 a | 3.8 a | 0.061 a | 117.0 ab | 123.9 a | 0.945 b | 0.689 b |
F11 | 373.7 a | 364.1 a | 3.9 a | 0.060 a | 139.3 a | 125.4 a | 1.365 a | 0.408 c |
Q1 | 360.9 b | 356.6 a | 3.5 b | 0.096 a | 96.7 b | 98.0 b | 0.666 c | 0.798 a |
FP4 | 375.6 ab | 362.7 a | 3.7 ab | 0.079 a | 97.7 b | 99.5 b | 0.589 c | 0.819 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Gao, J.; Ning, G.; Zhang, H.; Duan, Y.; Li, J.; Wu, Y.; Qi, M.; Huang, Y.; Yang, Z. Effects of Inoculation of Thermotolerant Bacillus Strains on Lignocellulose Degradation. Agriculture 2024, 14, 2044. https://doi.org/10.3390/agriculture14112044
Wang X, Gao J, Ning G, Zhang H, Duan Y, Li J, Wu Y, Qi M, Huang Y, Yang Z. Effects of Inoculation of Thermotolerant Bacillus Strains on Lignocellulose Degradation. Agriculture. 2024; 14(11):2044. https://doi.org/10.3390/agriculture14112044
Chicago/Turabian StyleWang, Xiaomin, Jiayuan Gao, Guohui Ning, Hui Zhang, Yajun Duan, Jiahui Li, Yajie Wu, Mingyue Qi, Yali Huang, and Zhixin Yang. 2024. "Effects of Inoculation of Thermotolerant Bacillus Strains on Lignocellulose Degradation" Agriculture 14, no. 11: 2044. https://doi.org/10.3390/agriculture14112044
APA StyleWang, X., Gao, J., Ning, G., Zhang, H., Duan, Y., Li, J., Wu, Y., Qi, M., Huang, Y., & Yang, Z. (2024). Effects of Inoculation of Thermotolerant Bacillus Strains on Lignocellulose Degradation. Agriculture, 14(11), 2044. https://doi.org/10.3390/agriculture14112044