Genetic Transformation of Common Beans (Phaseolus vulgaris): Achievements and Challenges
Abstract
:1. Introduction
2. Agrobacterium Method
Transformation Method | Genotype/Variety | Transformation Rate | Country | Reference | Genetic Engineered Trait/Expressed Foreign Genes | Regulated Traits of Exogenous Genes |
---|---|---|---|---|---|---|
Biolistic | not reported | 0.9% | USA | [47] | gus | Production of β-glucuronidase |
nptII | Resistance to kanamycin | |||||
Biolistic and electric-discharge | Navy bean | 0.03% | USA | [48] | gus | Production of β-glucuronidase |
bar | Tolerance to glufosinate ammonium | |||||
BGYMV cp | Synthesis of BGMV coat protein | |||||
Biolistic | Olathe | 0.9% | Brazil | [24] | gus-neo fusion | Resistance to aminoglycoside antibiotics |
gus | Production of β-glucuronidase | |||||
2S albumin | Production of 2S albumin protein | |||||
ACI, AC2, AC3, BCI genes isolate BGMV | Production of the antisense sequences of genes from BGMV | |||||
Biolistic | Olathe | 16 positives | Brazil | [49] | ACI, TrAP, REn, and BCI genes isolate BGMV-BR | Production of the antisense sequences of genes from BGMV |
gus | Production of β-glucuronidase | |||||
Biolistic | Olathe and Carioca | 0.5–0.6% | Brazil | [50] | bar | Tolerance to glufosinate ammonium |
neo | Resistance to bacterial kanamycin | |||||
Agrobacterium | Green Light | 2–12% | Japan | [35] | gus | Production of β-glucuronidase |
ME-leaN4 | Production of lea protein | |||||
Biolistic | Olathe Pinto | 0.66% | Brazil | [9] | ahas | Tolerance to the herbicide imazapyr |
BGMV-BR AC1 | dsRNA of the gene AC1 | |||||
Agrobacterium | Krasnoperaya, Nezhnost, and Chudesnaya | 2.8 to 17.4% | Ukraine | [36] | ahas | Tolerance to the herbicide imazapyr |
nptII | Resistance to kanamycin | |||||
Biolistic | Olathe Pinto, Pontal, and Jalo 308 | 2.7% | Brazil | [26] | ahas | Tolerance to the herbicide imazapyr |
bla | Resistence to ampicilin | |||||
Agrobacterium | Merlot | 4.1–18.2% | USA | [6] | nptII | Resistance to kanamycin |
gusA | Production of β-glucuronidase | |||||
Biolistic | Sedona | 0.1–8.4% | USA | [51] | gus | Production of β-glucuronidase |
HVA1 | Production of protein HVA1 | |||||
Agrobacterium | Fönix and Maxidor | 9–20% | Egypt | [33] | nptII | Resistance to kanamycin |
gus | Production of β-glucuronidase | |||||
bar | Tolerance to glufosinate ammonium | |||||
Agrobacterium | Flor de Mayo Anita and Pinto Saltillo | 3.9–28.6% | Mexico | [34] | Pdf1.2 | Production of protein defensine |
avp1 | Production of proton pump pyrophosphatase | |||||
nptII | Resistance to kanamycin | |||||
bar | Tolerance to glufosinate ammonium | |||||
Agrobacterium | CIAP7247F | 2.8% | Cuba | [22] | gusA | Production of β-glucuronidase |
bar | Tolerance to glufosinate ammonium | |||||
Agrobacterium | Brunca | 0.5% | Costa Rica | [23] | nptII | Resistance to kanamycin |
TPS1 | Production of enzyme trehalose-6-phosphate synthaseresistanc | |||||
gus | Production of β-glucuronidase | |||||
Agrobacterium | Olathe Pinto | 0.5–2.5% | USA | [38] | bar | Tolerance to glufosinate ammonium |
Agrobacterium | Akman 98 and Karacaşehir 90 | 2% | Turkey | [39] | cry1Ab | Production of insecticidal crystal protein |
nptII | Resistance to kanamycin | |||||
gus | Production of β-glucuronidase | |||||
Biolistic | Olathe Pinto | 0.1% | Brazil | [11] | ahas | Tolerance to the herbicide imazapyr |
Bemisia tabaci vATPase | dsRNA of the gene v-ATPase |
3. Hairy Root Transformation System in Common Beans
4. Biolistic Method
5. In Vitro Regeneration: Problems and Proposed Solutions
6. Gene Editing: What Comes Next?
7. Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Uebersax, M.A.; Cichy, K.A.; Gomez, F.E.; Porch, T.G.; Heitholt, J.; Osorno, J.M.; Kamfwa, K.; Snapp, S.S.; Bales, S. Dry beans (Phaseolus vulgaris L.) as a vital component of sustainable agriculture and food security—A review. Legume Sci. 2023, 5, e155. [Google Scholar] [CrossRef]
- Singh, R.J.; Jauhar, P.P. Genetic Resources, Chromosome Engineering, and Crop Improvement: Grain Legumes, Volume I; CRC Press: Boca Raton, FL, USA, 2005; ISBN 978-0-203-48928-4. [Google Scholar]
- Cortés, A.J. On the origin of the common bean (Phaseolus vulgaris L.). Am. J. Plant Sci. 2013, 04, 1998–2000. [Google Scholar] [CrossRef]
- Faria, L.C.; Melo, P.G.S.; Pereira, H.S.; Wendland, A.; Borges, S.F.; Filho, I.A.P.; Diaz, J.L.C.; Calgaro, M.; Melo, L.C. Genetic progress during 22 years of black bean improvement. Euphytica 2014, 199, 261–272. [Google Scholar] [CrossRef]
- Faria, L.C.; Melo, P.G.S.; Pereira, H.S.; Peloso, M.J.; Brás, A.J.B.P.; Moreira, J.A.A.; Carvalho, H.W.L.; Melo, L.C. Genetic progress during 22 years of improvement of carioca-type common bean in Brazil. Field Crops Res. 2013, 142, 68–74. [Google Scholar] [CrossRef]
- Mukeshimana, G.; Ma, Y.; Walworth, A.E.; Song, G.; Kelly, J.D. Factors influencing regeneration and Agrobacterium tumefaciens-mediated transformation of common bean (Phaseolus vulgaris L.). Plant Biotechnol. Rep. 2013, 7, 59–70. [Google Scholar] [CrossRef]
- Nadeem, M.A.; Yeken, M.Z.; Shahid, M.Q.; Habyarimana, E.; Yılmaz, H.; Alsaleh, A.; Hatipoğlu, R.; Çilesiz, Y.; Khawar, K.M.; Ludidi, N.; et al. Common bean as a potential crop for future food security: An overview of past, current and future contributions in genomics, transcriptomics, transgenics and proteomics. Biotechnol. Biotechnol. Equip. 2021, 35, 759–787. [Google Scholar] [CrossRef]
- Veltcheva, M.; Svetleva, D.; Petkova, S.; Perl, A. In vitro regeneration and genetic transformation of common bean (Phaseolus vulgaris L.)—Problems and progress. Sci. Hortic. 2005, 107, 2–10. [Google Scholar] [CrossRef]
- Bonfim, K.; Faria, J.C.; Nogueira, E.O.P.L.; Mendes, É.A.; Aragão, F.J.L. RNAi-mediated resistance to bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol. Plant. Microbe Interact. 2007, 20, 717–726. [Google Scholar] [CrossRef]
- Aragão, F.J.L.; Faria, J.C. First transgenic geminivirus-resistant plant in the field. Nat. Biotechnol. 2009, 27, 1086–1088. [Google Scholar] [CrossRef]
- Ferreira, A.L.; Faria, J.; Moura, M.C.; Zaidem, A.L.M.; Pizetta, C.S.R.; Freitas, E.; Coelho, G.R.; Silva, J.F.A.; Barrigossi, J.A.F.; Hoffmann, L.V.; et al. Whitefly-tolerant transgenic common bean (Phaseolus vulgaris) line. Front. Plant Sci. 2022, 13, 984804. [Google Scholar] [CrossRef]
- Popelka, J.C.; Gollasch, S.; Moore, A.; Molvig, L.; Higgins, T.J.V. Genetic transformation of cowpea (Vigna unguiculata L.) and stable transmission of the transgenes to progeny. Plant Cell Rep. 2006, 25, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Amugune, N.O.; Anyango, B.; Mukiama, T.K. Agrobacterium-mediated transformation of common bean. Afr. Crop Sci. J. 2011, 19, 137–147. [Google Scholar]
- Andrade-Torres, A.; Oropeza, C.; Sáenz, L.; González-Estrada, T.; Ramírez-Benítez, J.E.; Becerril, K.; Chan, J.L.; Rodríguez-Zapata, L.C. Transient genetic transformation of embryogenic callus of Cocos nucifera. Biologia 2011, 66, 790–800. [Google Scholar] [CrossRef]
- Azizi-Dargahlou, S.; Pouresmaeil, M. Agrobacterium tumefaciens-mediated plant transformation: A review. Mol. Biotechnol. 2024, 66, 1563–1580. [Google Scholar] [CrossRef] [PubMed]
- Mariotti, D.; Fontana, G.; Santini, L. Genetic transformation of grain legumes: Phaseolus vulgaris L. and P. coccineus L. J. Genet. Breed. 1989, 43, 77–81. [Google Scholar]
- Genga, A.; Allavena, A. Factors affecting morphogenesis from immature cotyledons of Phaseolus coccineus L. Plant Cell Tissue Organ Cult. 1991, 27, 189–196. [Google Scholar] [CrossRef]
- Aragão, F.J.L.; Grossi De Sa, M.F.; Almeida, E.R.; Gander, E.S.; Rech, E.L. Particle bombardment-mediated transient expression of a Brazil nut methionine-rich albumin in bean (Phaseolus vulgaris L.). Plant Mol. Biol. 1992, 20, 357–359. [Google Scholar] [CrossRef]
- Dillen, W.; Engler, G.; Van Montagu, M.; Angenon, G. Electroporation-mediated DNA delivery to seedling tissues of Phaseolus vulgaris L. (common bean). Plant Cell Rep. 1995, 15, 119–124. [Google Scholar] [CrossRef]
- Grossi de Sá, M.F.; Weinberg, D.F.; Rech, E.L.; Barros, L.M.G.; Aragao, F.J.L.; Holmstroem, K.-O.; Gander, E.S. Functional studies on a seed-specific promoter from a Brazil nut 2S gene. Plant Sci. 1994, 103, 189–198. [Google Scholar] [CrossRef]
- McClean, P.; Chee, P.; Held, B.; Simental, J.; Drong, R.F.; Slightom, J. Susceptibility of dry bean (Phaseolus vulgaris L.) to Agrobacterium infection: Transformation of cotyledonary and hypocotyl tissues. Plant Cell Tissue Organ Cult. 1991, 24, 131–138. [Google Scholar] [CrossRef]
- Collado, R.; Bermúdez-Caraballoso, I.; García, L.R.; Veitía, N.; Torres, D.; Romero, C.; Martirena-Ramírez, A.; Angenon, G. Agrobacterium-mediated transformation of Phaseolus vulgaris L. using indirect organogenesis. Sci. Hortic. 2015, 195, 89–100. [Google Scholar] [CrossRef]
- Solís-Ramos, L.-Y.; Ortiz-Pavón, J.-C.; Andrade-Torres, A.; Porras-Murillo, R.; Brenes-Angulo, A.; Castaño De La Serna, E. Agrobacterium tumefaciens-mediated transformation of common bean (Phaseolus vulgaris) var. Brunca. Rev. Biol. Trop. 2019, 67, S83–S94. [Google Scholar] [CrossRef]
- Aragão, F.J.L.; Barros, L.M.G.; Brasileiro, A.C.M.; Ribeiro, S.G.; Smith, F.D.; Sanford, J.C.; Faria, J.C.; Rech, E.L. Inheritance of foreign genes in transgenic bean (Phaseolus vulgaris L.) co-transformed via particle bombardment. Theor. Appl. Genet. 1996, 93, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Faria, J.C.; Albino, M.M.C.; Dias, B.B.A.; Cançado, L.J.; da Cunha, N.B.; Silva, L.D.M.; Vianna, G.R.; Aragão, F.J.L. Partial resistance to bean golden mosaic virus in a transgenic common bean (Phaseolus vulgaris L.) line expressing a mutated rep gene. Plant Sci. 2006, 171, 565–571. [Google Scholar] [CrossRef]
- Rech, E.L.; Vianna, G.R.; Aragão, F.J.L. High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat. Protoc. 2008, 3, 410–418. [Google Scholar] [CrossRef]
- Geetha, N.; Venkatachalam, P.; Sita, G.L. Agrobacterium-mediated genetic transformation of pigeonpea (Cajanus cajan L.) and development of transgenic plants via direct organogenesis. Plant Biotechnol. 1999, 16, 213–218. [Google Scholar] [CrossRef]
- Soares, C.; Meneses, C.; Henriques, A.; Araújo, J.; Vidal, M. Um Panorama Sobre Regeneração In Vitro e Transformação Genética de Feijão Comum (Phaseolus vulgaris L.); Embrapa Agrobiologia: Seropédica, Brazil, 2010; Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/104246/1/DOC269-10.pdf (accessed on 7 November 2024).
- Albino, M.; Vianna, G.R.; Falcão, R.; Aragão, F.J.L. De novo regeneration of fertile common bean (Phaseolus vulgaris L.) plants. J. Plant Biotechnol. 2005, 7, 267–272. [Google Scholar]
- Hnatuszko-Konka, K.; Kowalczyk, T.; Gerszberg, A.; Wiktorek-Smagur, A.; Kononowicz, A.K. Phaseolus vulgaris—Recalcitrant potential. Biotechnol. Adv. 2014, 32, 1205–1215. [Google Scholar] [CrossRef]
- Bennur, P.L.; O’Brien, M.; Fernando, S.C.; Doblin, M.S. Improving transformation and regeneration efficiency in medicinal plants: Insights from other recalcitrant species. J. Exp. Bot. 2024, erae189. [Google Scholar] [CrossRef]
- Brasileiro, A.C.M.; Aragão, F.J.L.; Rossi, S.; Dusi, D.M.A.; Barros, L.M.G.; Rech, E.L. Susceptibility of common and tepary beans to Agrobacterium spp. strains and improvement of Agrobacterium-mediated transformation using microprojectile bombardment. J. Am. Soc. Hortic. Sci. 1996, 121, 810–815. [Google Scholar] [CrossRef]
- Eissa, E. Genetic transformation and regeneration of common bean (Phaseolus vulgaris L.) using Agrobacterium system. Egypt. J. Genet. Cytol. 2013, 42, 127–150. [Google Scholar] [CrossRef]
- Espinosa-Huerta, E.; Quintero-Jiménez, A.; Cabrera-Becerra, K.; Mora-Avilés, M.A. Stable and efficient Agrobacterium tumefaciens mediated transformation of Phaseolus vulgaris. Agrociencia 2013, 47, 319–333. [Google Scholar]
- Liu, Z.; Park, B.-J.; Kanno, A.; Kameya, T. The novel use of a combination of sonication and vacuum infiltration in Agrobacterium-mediated transformation of kidney bean (Phaseolus vulgaris L.) with lea gene. Mol. Breed. 2005, 16, 189–197. [Google Scholar] [CrossRef]
- Nifantova, S.N.; Komarnickiy, I.K.; Kuchuk, N.V. Obtaining of transgenic french bean plants (Phaseolus vulgaris L.) resistant to the herbicide pursuit by Agrobacterium-mediated transformation. Cytol. Genet. 2011, 45, 97–100. [Google Scholar] [CrossRef]
- Nivya, V.M.; Shah, J.M. Recalcitrance to transformation, a hindrance for genome editing of legumes. Front. Genome Ed. 2023, 5, 1247815. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Han, X.; Wiersma, A.T.; Zong, X.; Awale, H.E.; Kelly, J.D. Induction of competent cells for Agrobacterium tumefaciens-mediated stable transformation of common bean (Phaseolus vulgaris L.). PLoS ONE 2020, 15, e0229909. [Google Scholar] [CrossRef]
- Yılmaz, S.S.; Khawar, K.M.; Çiftçi, C.Y. Genetic transformation of common beans (Phaseolus vulgaris L.) through Agrobacterium tumefaciens carrying cry1Ab gene. Mol. Biol. Rep. 2022, 49, 7195–7203. [Google Scholar] [CrossRef]
- Wilkins, T.A.; Rajasekaran, K.; Anderson, D.M. Cotton Biotechnology. Crit. Rev. Plant Sci. 2000, 19, 511–550. [Google Scholar] [CrossRef]
- Martins, I.S.; Sondahl, M.R. Early stages of somatic embryo differentiation from callus cells of bean (Phaseolus vulgaris L.) grown in liquid medium. J. Plant Physiol. 1984, 117, 97–103. [Google Scholar] [CrossRef]
- Mohamed, M.F.; Coyne, D.P.; Read, P.E. Shoot organogenesis in callus induced from pedicel explants of common bean (Phaseolus vulgaris L.). J. Am. Soc. Hortic. Sci. 1993, 118, 158–162. [Google Scholar] [CrossRef]
- Franklin, C.I.; Trieu, T.N.; Cassidy, B.G.; Dixon, R.A.; Nelson, R.S. Genetic transformation of green bean callus via Agrobacterium-mediated DNA transfer. Plant Cell Rep. 1993, 12, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Sánchez, P.; Saucedo-Ruiz, M.; Guzmán-Maldonado, S.H.; Villordo-Pineda, E.; González-Chavira, M.; Fraire-VelÁzquez, S.; Acosta-Gallegos, J.A.; Mora-Avilés, A. An organogenic plant regeneration system for common bean (Phaseolus vulgaris L.). Plant Sci. 2006, 170, 822–827. [Google Scholar] [CrossRef]
- Arias, A.M.; Muñoz Valverde, J.; Ramírez Fonseca, P.; Valdez Melara, M. In vitro plant regeneration system for common bean (Phaseolus vulgaris): Effect of N6-benzylaminopurine and adenine sulphate. Electron. J. Biotechnol. 2010, 13, 6–7. [Google Scholar] [CrossRef]
- Zambre, M.A.; De Clercq, J.; Vranová, E.; Van Montagu, M.; Angenon, G.; Dillen, W. Plant regeneration from embryo-derived callus in Phaseolus vulgaris L. (common bean) and P. acutifolius A. Gray (tepary bean). Plant Cell Rep. 1998, 17, 626–630. [Google Scholar] [CrossRef] [PubMed]
- Smith, F.; Jofre-Garfias, A.; Sanford, J. Transformation of bean apical dome cells by microprojectile bombardment. Phytopathol. 1992, 92, 1167–1168. [Google Scholar]
- Russell, D.R.; Wallace, K.M.; Bathe, J.H.; Martinell, B.J.; McCabe, D.E. Stable transformation of Phaseolus vulgaris via electric-discharge mediated particle acceleration. Plant Cell Rep. 1993, 12, 165–169. [Google Scholar] [CrossRef]
- Aragão, F.J.L.; Ribeiro, S.G.; Barros, L.M.G.; Brasileiro, A.C.M.; Maxwell, D.P.; Faria, J.C. Transgenic beans (Phaseolus vulgaris L.) engineered to express viral antisense RNAs show delayed and attenuated symptoms to bean golden mosaic geminivirus. Mol. Breed. 1998, 4, 491–499. [Google Scholar] [CrossRef]
- Aragão, F.J.L.; Vianna, G.R.; Albino, M.M.C.; Rech, E.L. Transgenic dry bean tolerant to the herbicide glufosinate ammonium. Crop Sci. 2002, 42, 1298–1302. [Google Scholar] [CrossRef]
- Kwapata, K.; Nguyen, T.; Sticklen, M. Genetic transformation of common bean (Phaseolus vulgaris L.) with the gus color marker, the bar herbicide resistance, and the barley (Hordeum vulgare) HVA1 drought tolerance genes. Int. J. Agron. 2012, 2012, 1–8. [Google Scholar] [CrossRef]
- Ron, M.; Kajala, K.; Pauluzzi, G.; Wang, D.; Reynoso, M.A.; Zumstein, K.; Garcha, J.; Winte, S.; Masson, H.; Inagaki, S.; et al. Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol. 2014, 166, 455–469. [Google Scholar] [CrossRef]
- Fonseca-García, C.; Nava, N.; Lara, M.; Quinto, C. An NADPH oxidase regulates carbon metabolism and the cell cycle during root nodule symbiosis in common bean (Phaseolus vulgaris). BMC Plant Biol. 2021, 21, 274. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, R.; Estrada-Navarrete, G.; Solis-Miranda, J.; Nava, N.; Juárez-Verdayes, M.; Ortega-Ortega, Y.; Quinto, C. A comprehensive, improved protocol for generating common bean (Phaseolus vulgaris L.) transgenic hairy roots and their use in reverse-genetics studies. PLoS ONE 2024, 19, e0294425. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Navarrete, G.; Alvarado-Affantranger, X.; Olivares, J.-E.; Díaz-Camino, C.; Santana, O.; Murillo, E.; Guillén, G.; Sánchez-Guevara, N.; Acosta, J.; Quinto, C.; et al. Agrobacterium rhizogenes transformation of the Phaseolus spp.: A tool for functional genomics. Mol. Plant Microbe Interact. 2006, 19, 1385–1393. [Google Scholar] [CrossRef] [PubMed]
- De Koning, R.; Daryanavard, H.; Garmyn, J.; Kiekens, R.; Toili, M.E.M.; Angenon, G. Fine-tuning CRISPR/Cas9 gene editing in common bean (Phaseolus vulgaris L.) using a hairy root transformation system and in silico prediction models. Front. Plant Sci. 2023, 14, 1233418. [Google Scholar] [CrossRef] [PubMed]
- Voß, L.; Heinemann, K.J.; Herde, M.; Medina-Escobar, N.; Witte, C.-P. Enzymes and cellular interplay required for flux of fixed nitrogen to ureides in bean nodules. Nat. Commun. 2022, 13, 5331. [Google Scholar] [CrossRef]
- Estrada-Navarrete, G.; Alvarado-Affantranger, X.; Olivares, J.-E.; Guillén, G.; Díaz-Camino, C.; Campos, F.; Quinto, C.; Gresshoff, P.M.; Sanchez, F. Fast, efficient and reproducible genetic transformation of Phaseolus spp. by Agrobacterium rhizogenes. Nat. Protoc. 2007, 2, 1819–1824. [Google Scholar] [CrossRef]
- Colpaert, N.; Tilleman, S.; van Montagu, M.; Gheysen, G. Composite Phaseolus vulgaris plants with transgenic roots as research tool. Afr. J. Biotechnol. 2008, 7, 404–408. [Google Scholar]
- Khandual, S.; Reddy, P.M. Rapid, efficient and high-performance protocol for Agrobacterium rhizogenes mediated hairy root transformation of the common bean Phaseolus vulgaris. Adv. Biosci. Biotechnol. 2014, 05, 333–339. [Google Scholar] [CrossRef]
- Sanford, J.C.; Klein, T.M.; Wolf, E.D.; Allen, N. Delivery of substances into cells and tissues using a particle bombardment process. Part. Sci. Technol. 1987, 5, 27–37. [Google Scholar] [CrossRef]
- Altpeter, F.; James, V.A. Genetic transformation of turf-type bahiagrass (Paspalum notatum Flugge) by biolistic gene transfer. Int. Turfgrass Soc. 2005, 10, 485–489. [Google Scholar]
- Bower, R.; Birch, R.G. Transgenic sugarcane plants via microprojectile bombardment. Plant J. 1992, 2, 409–416. [Google Scholar] [CrossRef]
- Abdallah, N.A.; Shah, D.; Abbas, D.; Madkour, M. Stable integration and expression of a plant defensin in tomato confers resistance to fusarium wilt. GM Crops 2010, 1, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Ivo, N.L.; Nascimento, C.P.; Vieira, L.S.; Campos, F.A.P.; Aragão, F.J.L. Biolistic-mediated genetic transformation of cowpea (Vigna unguiculata) and stable mendelian inheritance of transgenes. Plant Cell Rep. 2008, 27, 1475–1483. [Google Scholar] [CrossRef] [PubMed]
- Faria, J.; Aragao, F.J.L.; Souza, T.L.P.O.; Quintela, E.D.; Kitajima, E.W.; Ribeiro, S.G. Golden mosaic of common beans in Brazil: Management with a transgenic approach. APS Featur. 2016. [Google Scholar] [CrossRef]
- ISAAA GM Approval Database|ISAAA.Org. Available online: https://www.isaaa.org/gmapprovaldatabase/default.asp (accessed on 8 October 2024).
- Vianna, G.R.; Albino, M.M.C.; Dias, B.B.A.; De Mesquita Silva, L.; Rech, E.L.; Aragão, F.J.L. Fragment DNA as vector for genetic transformation of bean (Phaseolus vulgaris L.). Sci. Hortic. 2004, 99, 371–378. [Google Scholar] [CrossRef]
- Hadi, M.Z.; McMullen, M.D.; Finer, J.J. Transformation of 12 different plasmids into soybean via particle bombardment. Plant Cell Rep. 1996, 15, 500–505. [Google Scholar] [CrossRef]
- Rajeevkumar, S.; Anunanthini, P.; Sathishkumar, R. Epigenetic silencing in transgenic plants. Front. Plant Sci. 2015, 6, 693. [Google Scholar] [CrossRef]
- Kim, J.W.; Minamikawa, T. Transformation and regeneration of French bean plants by the particle bombardment process. Plant Sci. 1996, 117, 131–138. [Google Scholar] [CrossRef]
- Aragão, F.J.L.; Barros, L.M.G.; Sousa, M.V.D.; Grossi De Sá, M.F.; Almeida, E.R.P.; Gander, E.S.; Rech, E.L. Expression of a methionine-rich storage albumin from the Brazil nut (Bertholletia excelsa H.B.K., Lecythidaceae) in transgenic bean plants (Phaseolus vulgaris L., Fabaceae). Genet. Mol. Biol. 1999, 22, 445–449. [Google Scholar] [CrossRef]
- Faria, J.C.; Carneiro, G.E.S.; Aragão, F.J.L. Gene flow from transgenic common beans expressing the bar gene. GM Crops 2010, 1, 94–98. [Google Scholar] [CrossRef]
- Souza, T.L.P.O.; Faria, J.C.; Aragao, F.J.L.; Del Peloso, M.J.; Faria, L.C.; Aguiar, M.S.; Wendland, A.; Quintela, E.D.; Diaz, J.L.C.; Magaldi, M.; et al. BRS FC401 RMD: Cultivar de Feijão Carioca Geneticamente Modificada com Resistência ao Mosaico-Dourado; Embrapa Arroz e Feijão: Santo Antônio de Goiás, Brazil, 2016; Available online: https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1055465/1/CNPAF2016ct235.pdf (accessed on 7 November 2024).
- Souza, T.L.P.O.; Faria, J.C.; Aragão, F.J.L.; Peloso, M.J.D.; Faria, L.C.; Wendland, A.; Aguiar, M.S.; Quintela, E.D.; Melo, C.L.P.; Hungria, M.; et al. Agronomic performance and yield stability of the RNA interference-based bean golden mosaic virus-resistant common bean. Crop Sci. 2018, 58, 579–591. [Google Scholar] [CrossRef]
- Rivera, N.G.R.; García-Salinas, C.; Aragão, F.J.L.; Díaz De La Garza, R.I. Metabolic engineering of folate and its precursors in Mexican common bean (Phaseolus vulgaris L.). Plant Biotechnol. J. 2016, 14, 2021–2032. [Google Scholar] [CrossRef] [PubMed]
- Gamborg, O.L.; Phillips, G.C. Plant Cell, Tissue and Organ Culture: Fundamental Methods; Springer: Berlin/Heidelberg, Germany, 1995; ISBN 978-3-642-48974-7. [Google Scholar]
- Cooley, J.; Ford, T.; Christou, P. Molecular and genetic characterization of elite transgenic rice plants produced by electric-discharge particle acceleration. Theor. Appl. Genet. 1995, 90, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Crepy, L.; Barros, L.M.G.; Valente, V.R.N. Callus production from leaf protoplasts of various cultivars of bean (Phaseolus vulgaris L.). Plant Cell Rep. 1986, 5, 124–126. [Google Scholar] [CrossRef] [PubMed]
- Damm, B.; Schmidt, R.; WiUmitzer, L. Efficient transformation of Arabidopsis thaliana using direct gene transfer to protoplasts. Mol. Genet. Genom. 1989, 217, 6–12. [Google Scholar] [CrossRef]
- Nagl, W.; Ignacimuthu, S.; Becker, J. Genetic engineering and regeneration of Phaseolus and Vigna. State of the art and new attempts. J. Plant Physiol. 1997, 150, 625–644. [Google Scholar] [CrossRef]
- Kartha, K.K.; Pahl, K.; Leung, N.L.; Mroginski, L.A. Plant regeneration from meristems of grain legumes: Soybean, cowpea, peanut, chickpea, and bean. Can. J. Bot. 1981, 59, 1671–1679. [Google Scholar] [CrossRef]
- Lambardi, M.; Harry, I.S.; Menabeni, D.; Thorpe, T.A. Organogenesis and somatic embryogenesis in Cupressus sempervirens. Plant Cell Tissue Organ Cult. 1995, 40, 179–182. [Google Scholar] [CrossRef]
- Allavena, A.; Rossetti, L. Effects in somatic embryogenesis of Phaseolus vulgaris L. Genet. Agrar. 1983, 37, 142–143. [Google Scholar]
- Saunders, J.W.; Hosfield, G.L.; Levi, A. Morphogenetic effects of 2,4-dichlorophenoxyacetic acid on pinto bean (Phaseolus vulgaris L.) leaf explants in vitro. Plant Cell Rep. 1987, 6, 46–49. [Google Scholar] [CrossRef]
- Malik, K.A.; Saxena, P.K. Short communications regeneration in Phaseolus vulgaris L. Planta 1991, 184, 148–150. [Google Scholar] [PubMed]
- Saam, M.M.; Hosfield, G.L.; Saunders, J.W. In vitro propagation of dry bean from seedling shoot tips. J. Am. Soc. Hortic. Sci. 1987, 112, 852–855. [Google Scholar] [CrossRef]
- Franklin, C.I.; Trieu, T.N.; Gonzales, R.A.; Dixon, R.A. Plant regeneration from seedling explants of green bean (Phaseolus vulgaris L.) via organogenesis. Plant Cell Tissue Organ Cult. 1991, 24, 199–206. [Google Scholar] [CrossRef]
- McClean, P.; Grafton, K.F. Regeneration of dry bean (Phaseolus vulgaris L.) via organogenesis. Plant Sci. 1989, 60, 117–122. [Google Scholar] [CrossRef]
- Mohamed, M.F.; Read, P.E.; Coyne, D.P. Plant regeneration from in vitro culture of embryonic axis explants in common and tepary beans. J. Am. Soc. Hortic. Sci. 1992, 117, 332–336. [Google Scholar] [CrossRef]
- Crocomo, O.; Sharp, W.; Peters, J. Plantlet morphogenesis and the control of callus growth and root induction of Phaseolus vulgaris with the addition of bean seed extract. Z. Pflanzenphysiol. 1976, 78, 456–460. [Google Scholar] [CrossRef]
- Hildebrandt, A.; Wilmar, J.; Jones, H.; Riker, J. Growth of edible chlorophyllous plant tissues in vitro. Am. J. Bot. 1963, 50, 248–254. [Google Scholar] [CrossRef]
- Quintero-Jiménez, A.; Espinosa-Huerta, E.; Acosta-Gallegos, J.; Guzmán-Maldonado, H.; Mora-Avilés, M. An improved method for in vitro regeneration of common bean (Phaseolus vulgaris L.). Agrociencia 2010, 44, 57–64. [Google Scholar]
- Ulukapi, K.; Secima, A.; Onus, N. Studies on in vitro regeneration of some common bean (Phaseolus vulgaris L.) cultivars. In Proceedings of the International Symposium on Sustainable Development, Sarajevo, Bosnia and Herzegovina, 9–10 June 2009; pp. 445–449. Available online: https://omeka.ibu.edu.ba/items/show/3370 (accessed on 7 November 2024).
- Hnatuszko-Konka, K.; Kowalczyk, T.; Gerszberg, A.; Glińska, S.; Grzegorczyk-Karolak, I. Regeneration of Phaseolus vulgaris from epicotyls and hypocotyls via direct organogenesis. Sci. Rep. 2019, 9, 6248. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, D.; Liu, C.; Yan, Z.; Yang, X.; Feng, G. In vitro regeneration of Phaseolus vulgaris L. via direct and indirect organogenesis. Plant Biotechnol. Rep. 2021, 15, 279–288. [Google Scholar] [CrossRef]
- Aasim, M.; Katirci, R.; Baloch, F.S.; Mustafa, Z.; Bakhsh, A.; Nadeem, M.A.; Ali, S.A.; Hatipoğlu, R.; Çiftçi, V.; Habyarimana, E.; et al. Innovation in the breeding of common bean through a combined approach of in vitro regeneration and machine learning algorithms. Front. Genet. 2022, 13, 897696. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Valdes, N.; Häkkinen, S.T.; Lemasson, C.; Guillet, M.; Oksman-Caldentey, K.-M.; Ritala, A.; Cardon, F. Hairy root cultures—A versatile tool with multiple applications. Front. Plant Sci. 2020, 11, 33. [Google Scholar] [CrossRef] [PubMed]
- Alamillo, J.M.; López, C.M.; Martínez Rivas, F.J.; Torralbo, F.; Bulut, M.; Alseekh, S. Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein and hairy roots: A perfect match for gene functional analysis and crop improvement. Curr. Opin. Biotechnol. 2023, 79, 102876. [Google Scholar] [CrossRef] [PubMed]
- Chilebio. Investigadores Chilenos Desarrollan Poroto Tolerante a la Sequía Mediante Edición del Genoma. Available online: https://chilebio.cl/2024/06/07/investigadores-chilenos-desarrollan-poroto-tolerante-a-la-sequia-mediante-edicion-del-genoma/ (accessed on 11 October 2024).
- Chen, L.; Cai, Y.; Liu, X.; Yao, W.; Wu, S.; Hou, W. The RUBY reporter for visual selection in soybean genome editing. aBIOTECH 2024, 5, 209–213. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moura, M.d.C.; Pinheiro, P.V.; Vianello, R.P.; Sousa, N.L.d.; Faria, J.C.d.; Aragão, F.J.L. Genetic Transformation of Common Beans (Phaseolus vulgaris): Achievements and Challenges. Agriculture 2024, 14, 2060. https://doi.org/10.3390/agriculture14112060
Moura MdC, Pinheiro PV, Vianello RP, Sousa NLd, Faria JCd, Aragão FJL. Genetic Transformation of Common Beans (Phaseolus vulgaris): Achievements and Challenges. Agriculture. 2024; 14(11):2060. https://doi.org/10.3390/agriculture14112060
Chicago/Turabian StyleMoura, Matheus da Costa, Patricia Valle Pinheiro, Rosana Pereira Vianello, Natália Lima de Sousa, Josias Correa de Faria, and Francisco José Lima Aragão. 2024. "Genetic Transformation of Common Beans (Phaseolus vulgaris): Achievements and Challenges" Agriculture 14, no. 11: 2060. https://doi.org/10.3390/agriculture14112060
APA StyleMoura, M. d. C., Pinheiro, P. V., Vianello, R. P., Sousa, N. L. d., Faria, J. C. d., & Aragão, F. J. L. (2024). Genetic Transformation of Common Beans (Phaseolus vulgaris): Achievements and Challenges. Agriculture, 14(11), 2060. https://doi.org/10.3390/agriculture14112060