Unveiling the Role of Edaphic Microalgae in Soil Carbon Sequestration: Potential for Agricultural Inoculants in Climate Change Mitigation
Abstract
:1. Introduction
2. Soil Carbon
3. Soil Carbon Sequestration
4. Microbial Inoculation
5. Soil Carbon Sequestration Pathways: Direct and Indirect Mechanisms
6. Direct Mechanisms
6.1. Synthesis of Various Carbon Compounds in the Biomass and Secretion of Carbon Compounds
6.2. Microalga Biomass and Necromass’ Contribution to Soil Carbon Sequestration
Inoculant | Crop | Results | Reference |
---|---|---|---|
Individual cyanobacterial strains: Anabaena sp., Calothrix sp., and Anabaena sp. | Wheat | Significant increase in MBC mid-crop stage and harvest stage compared to control. | [107] |
Individual cyanobacterial strains: Calothrix Ghosei (K1) + Hapalosiphon intricatus (K2) + Nostoc sp. (K3). | Wheat | Highest MBC found mid-crop growth stage in T10 (1/3 N + PK + K1K2K3). Lowest MBC—T3 (1/3 N + PK, uninoculated). | [108] |
Individual cyanobacterial strains with Trichoderma viride and Mesorhizobium ciceri biofilm-based formulation T. viride—M. ciceri biofilm-based formulation; T. viride—Bacillus subtilis biofilm-based formulation; Anabaena torulosa—M. ciceri biofilm-based formulation; Anabaena laxa-based formulation. | Chickpea | Significant increase in MBC in the inoculated treatments compared to control, with the application of Anabaena laxa alone—373.05 (μg C/g soil) of MBC; control 163.34 (μg C/g soil) of MBC. | [109] |
Different mixtures of bacteria and cyanobacteria combinations: BF1 Anabaena torulosa; BF2 Nostoc carneum; BF3 N. piscinale; BF4 A. doliolum; CR3 Anabaena oscillaroides; and bacterial strains Brevundimonas diminuta PR7, Ochrobactrum anthropi PR10, Pseudomonas fluorescens PF1, and Rhizobium sp. (Mesorhizobium ciceri; IC4059). | rice | The highest MBC values were recorded for biofilmed inoculants—T8 (50% N + full recommended dose of fertilizers (FD) PK + Anabaena –Pseudomonas biofilmed formulation) and T5 (50% N + FD PK + Anabaena torulosa + Nostoc carneum + N. piscinale + A. doliolum). | [110] |
Different mixtures of bacteria and cyanobacteria combinations: Three bacterial (PW1, PW5, and PW7) and three cyanobacterial isolates (CW1, CW2, and CW3). | Wheat | The highest MBC values were recorded for T28 (PW1 + PW5 + CW2) and T15 (CW1 + CW3). | [111] |
Different plant-beneficial microorganisms: cyanobacteria, Anabaena-based biofilms, cyanobacterium bacterium consortia, and bacterial strains. | Cotton | The highest MBC values were recorded in T2 (Calothrix sp.-based formulation), followed by T4 (Anabaena—B. subtilis biofilm-based formulation). | [112] |
Different plant-beneficial microorganisms: Microbial cultures of Azotobacter sp., Anabaena sp.—Providencia sp. (CW1 +PW5) consortium; Anabaena sp.—Azotobacter sp. biofilm (An-Az biofilm), Anabaena sp.—Providencia sp. (CR1 + PR3) consortium, and Calothrix sp. | Okra | Highest MBC was recorded in T5 (CR1 + PR3), followed by T6 (Calothrix sp.) and T4 (CW1 + PW5), during the mid-crop growth stage. Four–five-fold higher values in harvest stage of T2 (Azotobacter sp.), followed by T3 (An-Az biofilm) and T4 (CW1 + PW5), as compared to mid-crop values. | [113] |
Different plant-beneficial microorganisms: microbial biofilm inoculants (Anabaena–Azotobacter, Anabaena-Trichoderma and Trichoderma—Azotobacter). | Chrysanthemum (varieties: White Star, Thai Chen and Zembla) | Highest MBC values recorded in the Anabaena–Azotobacter inoculant in varieties Thai Chen Queen and Zembla. | [114] |
Different plant-beneficial microorganisms: Bacterial strains (Providencia sp., Brevundimonas sp., Ochrobacterium sp.) and cyanobacterial strains (Anabaena sp., Calothrix sp., Anabaena sp.). | Rice | Highest values recorded in T33 (Providencia sp., Ochrobacterium sp., Anabaena sp.) and T34 (Providencia sp., Ochrobacterium sp., Calothrix sp.) | [78] |
6.3. Microalga’s Contributions to Soil Aggregation, Aggregate Stability, and Carbon Sequestration
7. Indirect Mechanisms
7.1. Availability of Nutrients and Nutrient Use Efficiency in Soil
7.2. Synthesis of Polysaccharides, Phytohormones, Amino Acids, and Polyamines
7.3. Management of Pest and Diseases
7.4. Induced Tolerance to Abiotic Stresses
7.5. Plant Stoichiometry, Integration with Other Microorganism, and Microbial Community Composition
8. Future Perspectives and Recommendation
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Aggregated carbon | AggC |
Bicarbonate | HCO32− |
Carbon | C |
Carbon dioxide | CO2 |
Carbonate Carbon monoxide | CO32− CO |
Carbon dioxide concentrating mechanism | CCM |
Carbon use efficiency | CUE |
Damage-associated molecular patterns | DAMPs |
Dinitrogen | N2 |
Extracellular polymeric substances | EPSs |
Hydrogen | H |
Herbivore-associated molecular patterns | HAMPs |
Methane | CH4 |
Mineral-associated organic matter | MAOM |
Microbial biomass carbon | MBC |
Microbial carbon pump | MCP |
Nitrogen oxides | Nox |
Oxygen | O |
Particulate organic carbon | POC |
Particulate organic matter | POM |
Pattern-triggered immunity | PTI |
Pathogen-associated molecular patterns | PAMPs |
Periphytic biofilm | PB |
Phosphorous | P |
Potassium | K |
Reactive oxygen species | ROS |
Soil organic carbon | SOC |
Soil organic matter | SOM |
References
- IPCC; Robert, T.; Zinyowera, M.C.; Moss, R.H.; Dokker, D.J. Impact, Adaptations and Mitigation of Climate Change: Scientific Technical Analyses; Working Group 1; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Chataut, G.; Bhatta, B.; Joshi, D.; Subedi, K.; Kafle, K. Greenhouse gases emission from agricultural soil: A review. J. Agric. Food Res. 2023, 11, 100533. [Google Scholar] [CrossRef]
- Jauhiainen, J.; Hooijer, A.; Page, S. Carbon dioxide emissions from an Acacia plantation on peatland in Sumatra, Indonesia. Biogeosciences 2012, 9, 617–630. [Google Scholar] [CrossRef]
- Lal, R.; Negassa, W.; Lorenz, K. Carbon sequestration in soil. Curr. Opin. Environ. Sustain. 2015, 15, 79–86. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- FOA. Sustainable Food and Agriculture. 2022. Available online: https://www.fao.org/sustainability/news/detail/en/c/1274219/ (accessed on 1 December 2022).
- Eswaran, H.; Van Den Berg, E.; Reich, P. Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 1993, 57, 192–194. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Kharecha, P.; Beerling, D.; Berner, R.; Masson-Delmotte, V.; Pagani, M.; Raymo, M.; Royer, D.L.; Zachos, J.C. Target atmospheric CO2: Where should humanity aim? arXiv 2008, arXiv:0804.1126. [Google Scholar]
- Chan, Y. Increasing soil organic carbon of agricultural land. Primefact 2008, 735, 1–5. [Google Scholar]
- Tittonell, P. Ecological intensification of agriculture—sustainable by nature. Curr. Opin. Environ. Sustain. 2014, 8, 53–61. [Google Scholar] [CrossRef]
- Bommarco, R.; Kleijn, D.; Potts, S.G. Ecological intensification: Harnessing ecosystem services for food security. Trends Ecol. Evol. 2013, 28, 230–238. [Google Scholar] [CrossRef]
- Schmidhuber, J.; Tubiello, F.N. Global food security under climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19703–19708. [Google Scholar] [CrossRef]
- Mason, A.; Salomon, M.; Lowe, A.; Cavagnaro, T. Microbial solutions to soil carbon sequestration. J. Clean. Prod. 2023, 417, 137993. [Google Scholar] [CrossRef]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. [Google Scholar] [CrossRef]
- Megharaj, M. Healthy Levels of Soil Algae Lift Plant Growth; CISRO Land and Water Farming Ahead: Canberra, Australia, 2001. [Google Scholar]
- Jassey, V.E.; Walcker, R.; Kardol, P.; Geisen, S.; Heger, T.; Lamentowicz, M.; Hamard, S.; Lara, E. Contribution of soil algae to the global carbon cycle. New Phytol. 2022, 234, 64–76. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Caballero, E.; Belnap, J.; Büdel, B.; Crutzen, P.J.; Andreae, M.O.; Pöschl, U.; Weber, B. Dryland photoautotrophic soil surface communities endangered by global change. Nat. Geosci. 2018, 11, 185–189. [Google Scholar] [CrossRef]
- Liang, C.; Schimel, J.P.; Jastrow, J.D. The importance of anabolism in microbial control over soil carbon storage. Nat. Microbiol. 2017, 2, 17105. [Google Scholar] [CrossRef]
- Ibraheem, I. Cyanobacteria as alternative biological conditioners for bioremediation of barren soil. Egypt. J. Phycol. 2007, 8, 99–117. [Google Scholar] [CrossRef]
- Stavi, I.; Lal, R. Achieving zero net land degradation: Challenges and opportunities. J. Arid Environ. 2015, 112, 44–51. [Google Scholar] [CrossRef]
- Rahman, M.M.; Alam, M.S.; Kamal, M.Z.U.; Rahman, G.M. Organic sources and tillage practices for soil management. In Resources Use Efficiency in Agriculture; Springer: Singapore, 2020; pp. 283–328. [Google Scholar]
- Stuart Chapin III, F.; McFarland, J.; David McGuire, A.; Euskirchen, E.S.; Ruess, R.W.; Kielland, K. The changing global carbon cycle: Linking plant–soil carbon dynamics to global consequences. J. Ecol. 2009, 97, 840–850. [Google Scholar] [CrossRef]
- Ferdush, J.; Paul, V. A review on the possible factors influencing soil inorganic carbon under elevated CO2. Catena 2021, 204, 105434. [Google Scholar] [CrossRef]
- Kirkby, C.A.; Richardson, A.E.; Wade, L.J.; Batten, G.D.; Blanchard, C.; Kirkegaard, J.A. Carbon-nutrient stoichiometry to increase soil carbon sequestration. Soil Biol. Biochem. 2013, 60, 77–86. [Google Scholar] [CrossRef]
- Moody, C.; Worrall, F. Modeling rates of DOC degradation using DOM composition and hydroclimatic variables. J. Geophys. Res. Biogeosciences 2017, 122, 1175–1191. [Google Scholar] [CrossRef]
- Lal, R. Residue management, conservation tillage and soil restoration for mitigating greenhouse effect by CO2-enrichment. Soil Tillage Res. 1997, 43, 81–107. [Google Scholar] [CrossRef]
- Lal, R. Carbon sequestration. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 815–830. [Google Scholar] [CrossRef] [PubMed]
- Six, J.; Frey, S.; Thiet, R.; Batten, K. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J. 2006, 70, 555–569. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.; Alva, A. Cropping systems to improve carbon sequestration for mitigation of climate change. J. Environ. Prot. 2010, 1, 207. [Google Scholar] [CrossRef]
- Singh, J.; Dhar, D.W. Overview of carbon capture technology: Microalgal biorefinery concept and state-of-the-art. Front. Mar. Sci. 2019, 6, 417505. [Google Scholar] [CrossRef]
- Jiao, N.Z.; Dai, M.H.; Jian, Z.M.; Wang, X.X.; Zhang, R. Research strategy of marine carbon storage mechanism and related biogeochemical processes. Sci. Bull 2022, 67, 15. (In Chinese) [Google Scholar]
- Ma, L.-C.; Zhao, H.-Q.; Wu, L.B.; Liu, C. Impacts of the microbiome on human, animal, and environmental health from a One Health perspective. Sci. One Health 2023, 2, 100037. [Google Scholar] [CrossRef]
- Bhola, V.; Swalaha, F.; Ranjith Kumar, R.; Singh, M.; Bux, F. Overview of the potential of microalgae for CO2 sequestration. Int. J. Environ. Sci. Technol. 2014, 11, 2103–2118. [Google Scholar] [CrossRef]
- Ighalo, J.; Dulta, K.; Kurniawan, S.; Omoarukhe, F.; Ewuzie, U.; Eshiemogie, S.; Ojo, A.; Abdullah, S. Progress in microalgae application for CO2 sequestration. Clean. Chem. Eng. 2022, 3, 100044. [Google Scholar] [CrossRef]
- Decaëns, T.; Jiménez, J.J.; Gioia, C.; Measey, G.; Lavelle, P. The values of soil animals for conservation biology. Eur. J. Soil Biol. 2006, 42, S23–S38. [Google Scholar] [CrossRef]
- Van Der Heijden, M.G.; Bardgett, R.D.; Van Straalen, N.M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 2008, 11, 296–310. [Google Scholar] [CrossRef] [PubMed]
- Gattinger, A.; Palojärvi, A.; Schloter, M. Soil microbial communities and related functions. In Perspectives for Agroecosystem Management; Elsevier: Amsterdam, The Netherlands, 2008; pp. 279–292. [Google Scholar]
- Singh, B.K.; Bardgett, R.D.; Smith, P.; Reay, D.S. Microorganisms and climate change: Terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 2010, 8, 779–790. [Google Scholar] [CrossRef] [PubMed]
- King, G.M. Enhancing soil carbon storage for carbon remediation: Potential contributions and constraints by microbes. Trends Microbiol. 2011, 19, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Babalola, O.O.; Glick, B.R. The use of microbial inoculants in African agriculture: Current practice and future prospects. J. Food Agric. Environ. 2012, 10, 540–549. [Google Scholar]
- Ahmed, A.A.Q.; Odelade, K.A.; Babalola, O.O. Microbial inoculants for improving carbon sequestration in agroecosystems to mitigate climate change. In Handbook of Climate Change Resilience; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–21. [Google Scholar]
- Gonçalves, J.; Freitas, J.; Fernandes, I.; Silva, P. Microalgae as biofertilizers: A sustainable way to improve soil fertility and plant growth. Sustainability 2023, 15, 12413. [Google Scholar] [CrossRef]
- Alori, E.T.; Babalola, O.O. Microbial inoculants for improving crop quality and human health in Africa. Front. Microbiol. 2018, 9, 2213. [Google Scholar] [CrossRef]
- Osorio-Reyes, J.G.; Valenzuela-Amaro, H.M.; Pizaña-Aranda, J.J.P.; Ramírez-Gamboa, D.; Meléndez-Sánchez, E.R.; López-Arellanes, M.E.; Castañeda-Antonio, M.D.; Coronado-Apodaca, K.G.; Gomes Araújo, R.; Sosa-Hernández, J.E. Microalgae-based biotechnology as alternative biofertilizers for soil enhancement and carbon footprint reduction: Advantages and implications. Mar. Drugs 2023, 21, 93. [Google Scholar] [CrossRef]
- Aktar, W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef]
- Pimentel, D. Environmental and economic costs of the application of pesticides primarily in the United States. Environ. Dev. Sustain. 2005, 7, 229–252. [Google Scholar] [CrossRef]
- Vermelho, A.B.; Moreira, J.V.; Akamine, I.T.; Cardoso, V.S.; Mansoldo, F.R. Agricultural Pest Management: The Role of Microorganisms in Biopesticides and Soil Bioremediation. Plants 2024, 13, 2762. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, A. Bacterial diversity in agroecosystems. In Invertebrate Biodiversity as Bioindicators of Sustainable Landscapes; Elsevier: Amsterdam, The Netherlands, 1999; pp. 65–76. [Google Scholar]
- Hayes, W.; Nair, N. The cultivation of Agaricus bisporus and other edible mushrooms. Filamentous Fungi 1975, 1, 212–248. [Google Scholar]
- Bashan, Y.; de-Bashan, L.E.; Prabhu, S.; Hernandez, J.-P. Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013). Plant Soil 2014, 378, 1–33. [Google Scholar] [CrossRef]
- Wani, P.A.; Khan, M.S. Nickel detoxification and plant growth promotion by multi metal resistant plant growth promoting Rhizobium species RL9. Bull. Environ. Contam. Toxicol. 2013, 91, 117–124. [Google Scholar] [CrossRef]
- Ortiz, N.; Armada, E.; Duque, E.; Roldán, A.; Azcón, R. Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: Effectiveness of autochthonous or allochthonous strains. J. Plant Physiol. 2015, 174, 87–96. [Google Scholar] [CrossRef]
- Miransari, M. Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol. 2010, 12, 563–569. [Google Scholar] [CrossRef]
- Babalola, O.O. Beneficial bacteria of agricultural importance. Biotechnol. Lett. 2010, 32, 1559–1570. [Google Scholar] [CrossRef]
- Zhu, C.; Naqvi, S.; Gomez-Galera, S.; Pelacho, A.M.; Capell, T.; Christou, P. Transgenic strategies for the nutritional enhancement of plants. Trends Plant Sci. 2007, 12, 548–555. [Google Scholar] [CrossRef]
- Hajjam, Y.; Cherkaoui, S. The influence of phosphate solubilizing microorganisms on symbiotic nitrogen fixation: Perspectives for sustainable agriculture. J. Mater. 2017, 8, 801–808. [Google Scholar]
- Berg, G. Plant–microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 2009, 84, 11–18. [Google Scholar] [CrossRef]
- Ali, S.; Xie, L. Plant growth promoting and stress mitigating abilities of soil born microorganisms. Recent Pat. Food Nutr. Agric. 2020, 11, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.A.Q.; McKay, T.J.M. Harnessing the power of microbes for sustainable development: Climate change mitigation and sustainable food security. Ecol. Res. 2024, 39, 159–168. [Google Scholar] [CrossRef]
- Pal, A.; Pandey, S. Role of glomalin in improving soil fertility: A review. Int. J. Plant Soil Sci. 2014, 3, 1112–1129. [Google Scholar] [CrossRef] [PubMed]
- Mainari, S.; Caporali, F. Soil Carbon Sequestration Under Organic Farming in the Mediterranean Environment; Transworld Research Network: Trivandrum, India, 2008. [Google Scholar]
- Miltner, A.; Bombach, P.; Schmidt-Brücken, B.; Kästner, M. SOM genesis: Microbial biomass as a significant source. Biogeochemistry 2012, 111, 41–55. [Google Scholar] [CrossRef]
- Kindler, R.; Miltner, A.; Richnow, H.-H.; Kästner, M. Fate of gram-negative bacterial biomass in soil—Mineralization and contribution to SOM. Soil Biol. Biochem. 2006, 38, 2860–2870. [Google Scholar] [CrossRef]
- Zhao, F.; Ren, C.; Zhang, L.; Han, X.; Yang, G.; Wang, J. Changes in soil microbial community are linked to soil carbon fractions after afforestation. Eur. J. Soil Sci. 2018, 69, 370–379. [Google Scholar] [CrossRef]
- Cary, S.C.; McDonald, I.R.; Barrett, J.E.; Cowan, D.A. On the rocks: The microbiology of Antarctic Dry Valley soils. Nat. Rev. Microbiol. 2010, 8, 129–138. [Google Scholar] [CrossRef]
- Calvin, M. Forty years of photosynthesis and related activities. Photosynth. Res. 1989, 21, 3–16. [Google Scholar] [CrossRef]
- Redmile-Gordon, M.; Gregory, A.; White, R.; Watts, C. Soil organic carbon, extracellular polymeric substances (EPS), and soil structural stability as affected by previous and current land-use. Geoderma 2020, 363, 114143. [Google Scholar] [CrossRef]
- Hussein, Y.; Abd-El-Wahab, S.; Hassan, M.; Shalan, S. The specific degradation of lignin by blue-green alga. Phyton 1989, 49, 13–15. [Google Scholar]
- Hussein, Y.; Shalan, S.; Abd-El-Wahab, S.; Hassan, M. The degradation of lignin by blue-green algae. Phyton 1989, 49, 1–4. [Google Scholar]
- Kumar, J.; Singh, D.; Tyagi, M.B.; Kumar, A. Cyanobacteria: Applications in biotechnology. In Cyanobacteria; Elsevier: Amsterdam, The Netherlands, 2019; pp. 327–346. [Google Scholar]
- Laurens, L.M.; Dempster, T.A.; Jones, H.D.; Wolfrum, E.J.; Van Wychen, S.; McAllister, J.S.; Rencenberger, M.; Parchert, K.J.; Gloe, L.M. Algal biomass constituent analysis: Method uncertainties and investigation of the underlying measuring chemistries. Anal. Chem. 2012, 84, 1879–1887. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Li, D.; Yuan, Y.; Zhou, L.; Li, X.; Wu, T.; Wang, L.; Zhao, Q.; Wei, W.; Sun, Y. Improving carbohydrate and starch accumulation in Chlorella sp. AE10 by a novel two-stage process with cell dilution. Biotechnol. Biofuels 2017, 10, 75. [Google Scholar] [CrossRef] [PubMed]
- Ronga, D.; Biazzi, E.; Parati, K.; Carminati, D.; Carminati, E.; Tava, A. Microalgal biostimulants and biofertilisers in crop productions. Agronomy 2019, 9, 192. [Google Scholar] [CrossRef]
- de Mulé, M.C.Z.; de Caire, G.Z.; de Cano, M.S.; Palma, R.M.; Colombo, K. Effect of cyanobacterial inoculation and fertilizers on rice seedlings and postharvest soil structure. Commun. Soil Sci. Plant Anal. 1999, 30, 97–107. [Google Scholar] [CrossRef]
- de Caire, G.Z.; De Cano, M.S.; Zaccaro de Mulé, M.; Palma, R.; Colombo, K. Exopolysaccharide of Nostoc muscorum (Cyanobacteria) in the aggregation of soil particles. J. Appl. Phycol. 1997, 9, 249–253. [Google Scholar] [CrossRef]
- Hu, J.; Guo, H.; Xue, Y.; Gao, M.-T.; Zhang, S.; Tsang, Y.F.; Li, J.; Wang, Y.-N.; Wang, L. Using a mixture of microalgae, biochar, and organic manure to increase the capacity of soil to act as carbon sink. J. Soils Sediments 2019, 19, 3718–3727. [Google Scholar] [CrossRef]
- Prasanna, R.; Jaiswal, P.; Nayak, S.; Sood, A.; Kaushik, B.D. Cyanobacterial diversity in the rhizosphere of rice and its ecological significance. Indian J. Microbiol. 2009, 49, 89–97. [Google Scholar] [CrossRef]
- Prasanna, R.; Joshi, M.; Rana, A.; Shivay, Y.S.; Nain, L. Influence of co-inoculation of bacteria-cyanobacteria on crop yield and C–N sequestration in soil under rice crop. World J. Microbiol. Biotechnol. 2012, 28, 1223–1235. [Google Scholar] [CrossRef]
- Ramakrishnan, B.; Maddela, N.R.; Venkateswarlu, K.; Megharaj, M. Potential of microalgae and cyanobacteria to improve soil health and agricultural productivity: A critical view. Environ. Sci. Adv. 2023, 2, 586–611. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, J.; Chen, P.; Ji, C.; Kang, Q.; Lu, B.; Li, K.; Liu, J.; Ruan, R. Bio-mitigation of carbon dioxide using microalgal systems: Advances and perspectives. Renew. Sustain. Energy Rev. 2017, 76, 1163–1175. [Google Scholar] [CrossRef]
- Jiang, P.; Xiao, L.; Wan, X.; Yu, T.; Liu, Y.; Liu, M. Research progress on microbial carbon sequestration in soil: A review. Eurasian Soil Sci. 2022, 55, 1395–1404. [Google Scholar] [CrossRef]
- Warren, L.A.; Maurice, P.A.; Parmar, N.; Ferris, F.G. Microbially mediated calcium carbonate precipitation: Implications for interpreting calcite precipitation and for solid-phase capture of inorganic contaminants. Geomicrobiol. J. 2001, 18, 93–115. [Google Scholar]
- Fein, J.B.; Daughney, C.J.; Yee, N.; Davis, T.A. A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochim. Cosmochim. Acta 1997, 61, 3319–3328. [Google Scholar] [CrossRef]
- Zhu, T.; Dittrich, M. Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: A review. Front. Bioeng. Biotechnol. 2016, 4, 4. [Google Scholar] [CrossRef]
- Kremer, B.; Kazmierczak, J.; Stal, L. Calcium carbonate precipitation in cyanobacterial mats from sandy tidal flats of the North Sea. Geobiology 2008, 6, 46–56. [Google Scholar] [CrossRef]
- Sowers, T.D.; Stuckey, J.W.; Sparks, D.L. The synergistic effect of calcium on organic carbon sequestration to ferrihydrite. Geochem. Trans. 2018, 19, 4. [Google Scholar] [CrossRef]
- Dick, R.P.; Breakwell, D.P.; Turco, R.F. Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. Methods Assess. Soil Qual. 1997, 49, 247–271. [Google Scholar]
- Rice, C.W.; Moorman, T.B.; Beare, M. Role of microbial biomass carbon and nitrogen in soil quality. Methods Assess. Soil Qual. 1997, 49, 203–215. [Google Scholar]
- Gregorich, E.; Carter, M.; Angers, D.; Monreal, C.; Ellert, B. Towards a minimum data set to assess soil organic matter quality in agricultural soils. Can. J. Soil Sci. 1994, 74, 367–385. [Google Scholar] [CrossRef]
- Bossio, D.; Cook-Patton, S.; Ellis, P.; Fargione, J.; Sanderman, J.; Smith, P.; Wood, S.; Zomer, R.; Von Unger, M.; Emmer, I. The role of soil carbon in natural climate solutions. Nat. Sustain. 2020, 3, 391–398. [Google Scholar] [CrossRef]
- Liang, C.; Balser, T.C. Microbial production of recalcitrant organic matter in global soils: Implications for productivity and climate policy. Nat. Rev. Microbiol. 2011, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Kallenbach, C.; Grandy, A.S. Controls over soil microbial biomass responses to carbon amendments in agricultural systems: A meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 241–252. [Google Scholar] [CrossRef]
- Li, F.-W.; Brouwer, P.; Carretero-Paulet, L.; Cheng, S.; De Vries, J.; Delaux, P.-M.; Eily, A.; Koppers, N.; Kuo, L.-Y.; Li, Z. Fern genomes elucidate land plant evolution and cyanobacterial symbioses. Nat. Plants 2018, 4, 460–472. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.; Kapoor, R.; Kumar, R.; Siddiqi, T.; Kumar, A. CO2 utilizing microbes—A comprehensive review. Biotechnol. Adv. 2011, 29, 949–960. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, A.L.; Weyers, S.L.; Goemann, H.M.; Peyton, B.M.; Gardner, R.D. Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture. Algal Res. 2021, 54, 102200. [Google Scholar] [CrossRef]
- Manzoni, S.; Taylor, P.; Richter, A.; Porporato, A.; Ågren, G.I. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol. 2012, 196, 79–91. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Manzoni, S.; Moorhead, D.L.; Richter, A. Carbon use efficiency of microbial communities: Stoichiometry, methodology and modelling. Ecol. Lett. 2013, 16, 930–939. [Google Scholar] [CrossRef]
- Buckeridge, K.M.; Mason, K.E.; McNamara, N.P.; Ostle, N.; Puissant, J.; Goodall, T.; Griffiths, R.I.; Stott, A.W.; Whitaker, J. Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization. Commun. Earth Environ. 2020, 1, 36. [Google Scholar] [CrossRef]
- Kallenbach, C.M.; Wallenstein, M.D.; Schipanksi, M.E.; Grandy, A.S. Managing agroecosystems for soil microbial carbon use efficiency: Ecological unknowns, potential outcomes, and a path forward. Front. Microbiol. 2019, 10, 402886. [Google Scholar] [CrossRef]
- Tao, F.; Huang, Y.; Hungate, B.A.; Manzoni, S.; Frey, S.D.; Schmidt, M.W.; Reichstein, M.; Carvalhais, N.; Ciais, P.; Jiang, L. Microbial carbon use efficiency promotes global soil carbon storage. Nature 2023, 618, 981–985. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Hu, Y.; Zhang, S.; Noll, L.; Böckle, T.; Richter, A.; Wanek, W. Growth explains microbial carbon use efficiency across soils differing in land use and geology. Soil Biol. Biochem. 2019, 128, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.H.; Liu, L.; Hou, L. Soil organic carbon stabilization and formation: Mechanism and model. J. Beijing For. Univ. 2022, 44, 11–22. (In Chinese) [Google Scholar]
- Liang, C.; Amelung, W.; Lehmann, J.; Kästner, M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob. Chang. Biol. 2019, 25, 3578–3590. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Ge, T.; Chen, C.; O’Donnell, A.G.; Wu, J. Significant role for microbial autotrophy in the sequestration of soil carbon. Appl. Environ. Microbiol. 2012, 78, 2328–2336. [Google Scholar] [CrossRef]
- Derenne, S.; Largeau, C. A review of some important families of refractory macromolecules: Composition, origin, and fate in soils and sediments. Soil Sci. 2001, 166, 833–847. [Google Scholar] [CrossRef]
- Hu, Y.; Zheng, Q.; Noll, L.; Zhang, S.; Wanek, W. Direct measurement of the in situ decomposition of microbial-derived soil organic matter. Soil Biol. Biochem. 2020, 141, 107660. [Google Scholar] [CrossRef]
- Rana, A.; Joshi, M.; Prasanna, R.; Shivay, Y.S.; Nain, L. Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur. J. Soil Biol. 2012, 50, 118–126. [Google Scholar] [CrossRef]
- Karthikeyan, N.; Prasanna, R.; Nain, L.; Kaushik, B.D. Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. Eur. J. Soil Biol. 2007, 43, 23–30. [Google Scholar] [CrossRef]
- Bidyarani, N.; Prasanna, R.; Babu, S.; Hossain, F.; Saxena, A.K. Enhancement of plant growth and yields in Chickpea (Cicer arietinum L.) through novel cyanobacterial and biofilmed inoculants. Microbiol. Res. 2016, 188, 97–105. [Google Scholar] [CrossRef]
- Prasanna, R.; Adak, A.; Verma, S.; Bidyarani, N.; Babu, S.; Pal, M.; Shivay, Y.S.; Nain, L. Cyanobacterial inoculation in rice grown under flooded and SRI modes of cultivation elicits differential effects on plant growth and nutrient dynamics. Ecol. Eng. 2015, 84, 532–541. [Google Scholar] [CrossRef]
- Nain, L.; Rana, A.; Joshi, M.; Jadhav, S.D.; Kumar, D.; Shivay, Y.; Paul, S.; Prasanna, R. Evaluation of synergistic effects of bacterial and cyanobacterial strains as biofertilizers for wheat. Plant Soil 2010, 331, 217–230. [Google Scholar] [CrossRef]
- Prasanna, R.; Babu, S.; Bidyarani, N.; Kumar, A.; Triveni, S.; Monga, D.; Mukherjee, A.K.; Kranthi, S.; Gokte-Narkhedkar, N.; Adak, A. Prospecting cyanobacteria-fortified composts as plant growth promoting and biocontrol agents in cotton. Exp. Agric. 2015, 51, 42–65. [Google Scholar] [CrossRef]
- Manjunath, M.; Kanchan, A.; Ranjan, K.; Venkatachalam, S.; Prasanna, R.; Ramakrishnan, B.; Hossain, F.; Nain, L.; Shivay, Y.S.; Rai, A.B. Beneficial cyanobacteria and eubacteria synergistically enhance bioavailability of soil nutrients and yield of okra. Heliyon 2016, 2, e00066. [Google Scholar] [CrossRef] [PubMed]
- Kanchan, A.; Simranjit, K.; Ranjan, K.; Prasanna, R.; Ramakrishnan, B.; Singh, M.; Hasan, M.; Shivay, Y. Microbial biofilm inoculants benefit growth and yield of chrysanthemum varieties under protected cultivation through enhanced nutrient availability. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2019, 153, 306–316. [Google Scholar] [CrossRef]
- Storni de Cano, M.; Zulpa de Caire, G.; Zaccaro de Mulé, M.; Palma, R. Effect of Tolypothrix tenuis and Microchaete tenera on biochemical soil properties and maize growth. J. Plant Nutr. 2002, 25, 2421–2431. [Google Scholar] [CrossRef]
- Rana, A.; Kabi, S.R.; Verma, S.; Adak, A.; Pal, M.; Shivay, Y.S.; Prasanna, R.; Nain, L. Prospecting plant growth promoting bacteria and cyanobacteria as options for enrichment of macro-and micronutrients in grains in rice–wheat cropping sequence. Cogent Food Agric. 2015, 1, 1037379. [Google Scholar] [CrossRef]
- Frankenberger, W., Jr.; Dick, W. Relationships between enzyme activities and microbial growth and activity indices in soil. Soil Sci. Soc. Am. J. 1983, 47, 945–951. [Google Scholar] [CrossRef]
- Lal, R. Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degrad. Dev. 2006, 17, 197–209. [Google Scholar] [CrossRef]
- Rabot, E.; Wiesmeier, M.; Schlüter, S.; Vogel, H.-J. Soil structure as an indicator of soil functions: A review. Geoderma 2018, 314, 122–137. [Google Scholar] [CrossRef]
- Lawson, F. Physical aspects. Tour. Manag. 1987, 8, 143–146. [Google Scholar] [CrossRef]
- Tisdall, J.M.; Oades, J.M. Organic matter and water-stable aggregates in soils. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Bhattacharyya, S.S.; Ros, G.H.; Furtak, K.; Iqbal, H.M.; Parra-Saldívar, R. Soil carbon sequestration—An interplay between soil microbial community and soil organic matter dynamics. Sci. Total Environ. 2022, 815, 152928. [Google Scholar] [CrossRef] [PubMed]
- Puget, P.; Angers, D.; Chenu, C. Nature of carbohydrates associated with water-stable aggregates of two cultivated soils. Soil Biol. Biochem. 1998, 31, 55–63. [Google Scholar] [CrossRef]
- Wilson, G.W.; Rice, C.W.; Rillig, M.C.; Springer, A.; Hartnett, D.C. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: Results from long-term field experiments. Ecol. Lett. 2009, 12, 452–461. [Google Scholar] [CrossRef]
- Chan, K.; Heenan, D. Microbial-induced soil aggregate stability under different crop rotations. Biol. Fertil. Soils 1999, 30, 29–32. [Google Scholar] [CrossRef]
- Bossuyt, H.; Denef, K.; Six, J.; Frey, S.; Merckx, R.; Paustian, K. Influence of microbial populations and residue quality on aggregate stability. Appl. Soil Ecol. 2001, 16, 195–208. [Google Scholar] [CrossRef]
- Issa, O.M.; Le Bissonnais, Y.; Défarge, C.; Trichet, J. Role of a cyanobacterial cover on structural stability of sandy soils in the Sahelian part of western Niger. Geoderma 2001, 101, 15–30. [Google Scholar] [CrossRef]
- Belnap, J.; Lange, O.L. Biological Soil Crusts: Structure, Function, and Management; Springer: Berlin/Heidelberg, Germany, 2001; Volume 150. [Google Scholar]
- Shimmel, S.M.; Darley, W.M. Productivity and density of soil algae in an agricultural system. Ecology 1985, 66, 1439–1447. [Google Scholar] [CrossRef]
- Veluci, R.M.; Neher, D.A.; Weicht, T.R. Nitrogen fixation and leaching of biological soil crust communities in mesic temperate soils. Microb. Ecol. 2006, 51, 189–196. [Google Scholar] [CrossRef]
- Bailey, D.; Mazurak, A.P.; Rosowski, J.R. Aggregation of soil particles by algae 1. J. Phycol. 1973, 9, 99–101. [Google Scholar] [CrossRef]
- Peng, X.; Bruns, M.A. Development of a nitrogen-fixing cyanobacterial consortium for surface stabilization of agricultural soils. J. Appl. Phycol. 2019, 31, 1047–1056. [Google Scholar] [CrossRef]
- Crouzet, O.; Consentino, L.; Pétraud, J.-P.; Marrauld, C.; Aguer, J.-P.; Bureau, S.; Le Bourvellec, C.; Touloumet, L.; Bérard, A. Soil photosynthetic microbial communities mediate aggregate stability: Influence of cropping systems and herbicide use in an agricultural soil. Front. Microbiol. 2019, 10, 1319. [Google Scholar] [CrossRef] [PubMed]
- Büdel, B. Biological soil crusts in European temperate and Mediterranean regions. In Biological Soil Crusts: Structure, Function, and Management; Springer: Berlin/Heidelberg, Germany, 2003; pp. 75–86. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Mazor, G.; Kidron, G.J.; Vonshak, A.; Abeliovich, A. The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiol. Ecol. 1996, 21, 121–130. [Google Scholar] [CrossRef]
- Pointing, S.B.; Belnap, J. Microbial colonization and controls in dryland systems. Nat. Rev. Microbiol. 2012, 10, 551–562. [Google Scholar] [CrossRef]
- Barclay, W.R.; Lewin, R.A. Microalgal polysaccharide production for the conditioning of agricultural soils. Plant Soil 1985, 88, 159–169. [Google Scholar] [CrossRef]
- Falchini, L.; Sparvoli, E.; Tomaselli, L. Effect of Nostoc (Cyanobacteria) inoculation on the structure and stability of clay soils. Biol. Fertil. Soils 1996, 23, 346–352. [Google Scholar] [CrossRef]
- Malam Issa, O.; Défarge, C.; Le Bissonnais, Y.; Marin, B.; Duval, O.; Bruand, A.; d’Acqui, L.P.; Nordenberg, S.; Annerman, M. Effects of the inoculation of cyanobacteria on the microstructure and the structural stability of a tropical soil. Plant Soil 2007, 290, 209–219. [Google Scholar] [CrossRef]
- Redmile-Gordon, M.; Brookes, P.; Evershed, R.; Goulding, K.; Hirsch, P. Measuring the soil-microbial interface: Extraction of extracellular polymeric substances (EPS) from soil biofilms. Soil Biol. Biochem. 2014, 72, 163–171. [Google Scholar] [CrossRef]
- Chenu, C. Extracellular Polysaccharides: An Interface Between Microorganisms and Soil Constituents; CRC Press Inc.: Boca Raton, FL, USA, 1995; Volume 1. [Google Scholar]
- Rossi, F.; Mugnai, G.; De Philippis, R. Complex role of the polymeric matrix in biological soil crusts. Plant Soil 2018, 429, 19–34. [Google Scholar] [CrossRef]
- Flemming, H.-C.; Wingender, J. Relevance of microbial extracellular polymeric substances (EPSs)-Part I: Structural and ecological aspects. Water Sci. Technol. 2001, 43, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Osman, M.E.H.; El-Sheekh, M.M.; El-Naggar, A.H.; Gheda, S.F. Effect of two species of cyanobacteria as biofertilizers on some metabolic activities, growth, and yield of pea plant. Biol. Fertil. Soils 2010, 46, 861–875. [Google Scholar] [CrossRef]
- Serdyuk, O.; Smolygina, L.; Kobzar’, E.; Gogotov, I. Phytohormones formed by the nitrogen-fixing association of Azolla-Anabaena azollae. Doklady, Biochemistry. 1992, 25, 149–151. [Google Scholar]
- Stirk, W.A.; Ördög, V.; Van Staden, J. Identification of the cytokinin isopentenyladenine in a strain of Arthronema africanum (Cyanobacteria). J. Phycol. 1999, 35, 89–92. [Google Scholar] [CrossRef]
- Wen, Z.; Li, H.; Shen, Q.; Tang, X.; Xiong, C.; Li, H.; Pang, J.; Ryan, M.H.; Lambers, H.; Shen, J. Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species. New Phytol. 2019, 223, 882–895. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, H.; Yang, F.; Dai, X.; Meng, S.; Hu, M.; Kou, L.; Fu, X. Relationships between root exudation and root morphological and architectural traits vary with growing season. Tree Physiol. 2024, 44, tpad118. [Google Scholar] [CrossRef]
- Maqubela, M.P.; Mnkeni, P.N.; Muchaonyerwa, P.; D’Acqui, L.P.; Pardo, M.T. Effects of cyanobacteria strains selected for their bioconditioning and biofertilization potential on maize dry matter and soil nitrogen status in a South African soil. Soil Sci. Plant Nutr. 2010, 56, 552–559. [Google Scholar] [CrossRef]
- Maqubela, M.P.; Muchaonyerwa, P.; Mnkeni, P.N. Inoculation effects of two South African cyanobacteria strains on aggregate stability of a silt loam soil. Afr. J. Biotechnol. 2012, 11, 10726–10735. [Google Scholar]
- Rogers, S.L.; Burns, R.G. Changes in aggregate stability, nutrient status, indigenous microbial populations, and seedling emergence, following inoculation of soil with Nostoc muscorum. Biol. Fertil. Soils 1994, 18, 209–215. [Google Scholar] [CrossRef]
- Roychoudhury, P.; Pillai, G.; Pandey, S.; Murti, G.K.; Venkataraman, G. Effect of blue-green algae on aggregate stability and rice yield under different irrigation and nitrogen levels. Soil Tillage Res. 1983, 3, 61–65. [Google Scholar] [CrossRef]
- Doerr, S.H.; Shakesby, R.; Walsh, R. Soil water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth-Sci. Rev. 2000, 51, 33–65. [Google Scholar] [CrossRef]
- Issa, O.M.; Défarge, C.; Trichet, J.; Valentin, C.; Rajot, J.-L. Microbiotic soil crusts in the Sahel of Western Niger and their influence on soil porosity and water dynamics. Catena 2009, 77, 48–55. [Google Scholar] [CrossRef]
- Metting, B.; Rayburn, W.R. The influence of a microalgal conditioner on selected Washington soils: An empirical study. Soil Sci. Soc. Am. J. 1983, 47, 682–685. [Google Scholar] [CrossRef]
- Metting, B. Dynamics of wet and dry aggregate stability from a three-year microalgal soil conditioning experiment in the field. Soil Sci. 1987, 143, 139–143. [Google Scholar] [CrossRef]
- Shanthakumar, S.; Abinandan, S.; Venkateswarlu, K.; Subashchandrabose, S.R.; Megharaj, M. Algalization of acid soils with acid-tolerant strains: Improvement in pH, carbon content, exopolysaccharides, indole acetic acid and dehydrogenase activity. Land Degrad. Dev. 2021, 32, 3157–3166. [Google Scholar] [CrossRef]
- Chamizo, S.; Mugnai, G.; Rossi, F.; Certini, G.; De Philippis, R. Cyanobacteria inoculation improves soil stability and fertility on different textured soils: Gaining insights for applicability in soil restoration. Front. Environ. Sci. 2018, 6, 49. [Google Scholar] [CrossRef]
- Harper, K.T.; Belnap, J. The influence of biological soil crusts on mineral uptake by associated vascular plants. J. Arid Environ. 2001, 47, 347–357. [Google Scholar] [CrossRef]
- Adessi, A.; de Carvalho, R.C.; De Philippis, R.; Branquinho, C.; da Silva, J.M. Microbial extracellular polymeric substances improve water retention in dryland biological soil crusts. Soil Biol. Biochem. 2018, 116, 67–69. [Google Scholar] [CrossRef]
- Nichols, K.; Olson, M.; Ayers, A.D. Microalgae as a Beneficial Soil Amendment; Compani LLC: Arizona, MD, USA, 2020. [Google Scholar]
- Kreis, C.T.; Grangier, A.; Bäumchen, O. In vivo adhesion force measurements of Chlamydomonas on model substrates. Soft Matter 2019, 15, 3027–3035. [Google Scholar] [CrossRef]
- Kaushik, B. Developments in cyanobacterial biofertilizer. In Algal Biology and Biotechnology; IK International Publishing House Pvt. Ltd.: New Delhi, India, 2009; pp. 97–108. [Google Scholar]
- Costa, O.Y.; Raaijmakers, J.M.; Kuramae, E.E. Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation. Front. Microbiol. 2018, 9, 337094. [Google Scholar] [CrossRef] [PubMed]
- Mager, D.; Thomas, A. Extracellular polysaccharides from cyanobacterial soil crusts: A review of their role in dryland soil processes. J. Arid Environ. 2011, 75, 91–97. [Google Scholar] [CrossRef]
- Azim, M. Photosynthetic Periphyton and Surfaces; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Flipo, N.; Rabouille, C.; Poulin, M.; Even, S.; Tusseau-Vuillemin, M.-H.; Lalande, M. Primary production in headwater streams of the Seine basin: The Grand Morin river case study. Sci. Total Environ. 2007, 375, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y. Periphyton: Functions and Application in Environmental Remediation; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Zhu, N.; Wu, Y.; Tang, J.; Duan, P.; Yao, L.; Rene, E.R.; Wong, P.K.; An, T.; Dionysiou, D.D. A new concept of promoting nitrate reduction in surface waters: Simultaneous supplement of denitrifiers, electron donor pool, and electron mediators. Environ. Sci. Technol. 2018, 52, 8617–8626. [Google Scholar] [CrossRef]
- Leopold, A.; Marchand, C.; Deborde, J.; Chaduteau, C.; Allenbach, M. Influence of mangrove zonation on CO2 fluxes at the sediment–air interface (New Caledonia). Geoderma 2013, 202, 62–70. [Google Scholar] [CrossRef]
- Wang, S.; Sun, P.; Zhang, G.; Gray, N.; Dolfing, J.; Esquivel-Elizondo, S.; Peñuelas, J.; Wu, Y. Contribution of periphytic biofilm of paddy soils to carbon dioxide fixation and methane emissions. Innovation 2022, 3, 100192. [Google Scholar] [CrossRef]
- Mori, T.; Miyagawa, Y.; Onoda, Y.; Kayaba, Y. Flow-velocity-dependent effects of turbid water on periphyton structure and function in flowing water. Aquat. Sci. 2018, 80, 6. [Google Scholar] [CrossRef]
- Klein, T.A.; Ahmad, S.; Whitney, J.C. Contact-dependent interbacterial antagonism mediated by protein secretion machines. Trends Microbiol. 2020, 28, 387–400. [Google Scholar] [CrossRef]
- Spaepen, S.; Vanderleyden, J.; Remans, R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 2007, 31, 425–448. [Google Scholar] [CrossRef]
- Malyan, S.K.; Bhatia, A.; Kumar, A.; Gupta, D.K.; Singh, R.; Kumar, S.S.; Tomer, R.; Kumar, O.; Jain, N. Methane production, oxidation and mitigation: A mechanistic understanding and comprehensive evaluation of influencing factors. Sci. Total Environ. 2016, 572, 874–896. [Google Scholar] [CrossRef]
- Thauer, R.K.; Kaster, A.-K.; Seedorf, H.; Buckel, W.; Hedderich, R. Methanogenic archaea: Ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 2008, 6, 579–591. [Google Scholar] [CrossRef] [PubMed]
- Malgioglio, G.; Rizzo, G.F.; Nigro, S.; Lefebvre du Prey, V.; Herforth-Rahmé, J.; Catara, V.; Branca, F. Plant-microbe interaction in sustainable agriculture: The factors that may influence the efficacy of PGPM application. Sustainability 2022, 14, 2253. [Google Scholar] [CrossRef]
- Malusá, E.; Sas-Paszt, L.; Ciesielska, J. Technologies for beneficial microorganisms inocula used as biofertilizers. Sci. World J. 2012, 2012, 491206. [Google Scholar] [CrossRef] [PubMed]
- Syiem, M.B.; Singh, A.K.; Rai, A.N. biofertilizer. In Agro-Environmental Sustainability: Volume 1: Managing Crop Health; Springer: Berlin/Heidelberg, Germany, 2017; pp. 43–61. [Google Scholar]
- Mahanty, T.; Bhattacharjee, S.; Goswami, M.; Bhattacharyya, P.; Das, B.; Ghosh, A.; Tribedi, P. Biofertilizers: A potential approach for sustainable agriculture development. Environ. Sci. Pollut. Res. 2017, 24, 3315–3335. [Google Scholar] [CrossRef] [PubMed]
- Vessey, J.K. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 2003, 255, 571–586. [Google Scholar] [CrossRef]
- Barminski, R.; Storteboom, H.; Davis, J.G. Development and evaluation of an organically certifiable growth medium for cultivation of cyanobacteria. J. Appl. Phycol. 2016, 28, 2623–2630. [Google Scholar] [CrossRef]
- Erwiha, G.M.; Ham, J.; Sukor, A.; Wickham, A.; Davis, J.G. Organic fertilizer source and application method impact ammonia volatilization. Commun. Soil Sci. Plant Anal. 2020, 51, 1469–1482. [Google Scholar] [CrossRef]
- Santini, G.; Biondi, N.; Rodolfi, L.; Tredici, M.R. Plant biostimulants from cyanobacteria: An emerging strategy to improve yields and sustainability in agriculture. Plants 2021, 10, 643. [Google Scholar] [CrossRef]
- Chanda, M.-j.; Merghoub, N.; El Arroussi, H. Microalgae polysaccharides: The new sustainable bioactive products for the development of plant bio-stimulants? World J. Microbiol. Biotechnol. 2019, 35, 177. [Google Scholar] [CrossRef]
- Ethics Committee Re-Registration. Laying down rules on the making available on the market of EU fertilising products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC). Off. J. Eur. Union 2019, 62, 1–114. [Google Scholar]
- Costa, J.A.V.; Freitas, B.C.B.; Cruz, C.G.; Silveira, J.; Morais, M.G. Potential of microalgae as biopesticides to contribute to sustainable agriculture and environmental development. J. Environ. Sci. Health Part B 2019, 54, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Mazhar, S.; Cohen, J.D.; Hasnain, S. Auxin producing non-heterocystous Cyanobacteria and their impact on the growth and endogenous auxin homeostasis of wheat. J. Basic Microbiol. 2013, 53, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- Grzesik, M.; Romanowska-Duda, Z. Ability of cyanobacteria and green algae to improve metabolic activity and development of willow plants. Pol. J. Environ. Stud. 2015, 24, 1003–1012. [Google Scholar] [CrossRef] [PubMed]
- Yoder, N.; Davis, J.G. Organic fertilizer comparison on growth and nutrient content of three kale cultivars. HortTechnology 2020, 30, 176–184. [Google Scholar] [CrossRef]
- Uysal, O.; Uysal, F.O.; Ekinci, K. Evaluation of microalgae as microbial fertilizer. Eur. J. Sustain. Dev. 2015, 4, 77. [Google Scholar] [CrossRef]
- Mukherjee, C.; Chowdhury, R.; Ray, K. Phosphorus recycling from an unexplored source by polyphosphate accumulating microalgae and cyanobacteria—A step to phosphorus security in agriculture. Front. Microbiol. 2015, 6, 169420. [Google Scholar] [CrossRef]
- Whitton, B.; Grainger, S.; Hawley, G.; Simon, J. Cell-bound and extracellular phosphatase activities of cyanobacterial isolates. Microb. Ecol. 1991, 21, 85–98. [Google Scholar] [CrossRef]
- Borowitzka, M.A. Algal Physiology and Large-Scale Outdoor Cultures of Microalgae; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Markou, G.; Vandamme, D.; Muylaert, K. Microalgal and cyanobacterial cultivation: The supply of nutrients. Water Res. 2014, 65, 186–202. [Google Scholar] [CrossRef]
- Svircev, Z.; Tamas, I.; Nenin, P.; Drobac, A. Co-cultivation of N2-fixing cyanobacteria and some agriculturally important plants in liquid and sand cultures. Appl. Soil Ecol. 1997, 6, 301–308. [Google Scholar]
- Toribio, A.; Suárez-Estrella, F.; Jurado, M.; López, M.; López-González, J.; Moreno, J. Prospection of cyanobacteria producing bioactive substances and their application as potential phytostimulating agents. Biotechnol. Rep. 2020, 26, e00449. [Google Scholar] [CrossRef]
- Chakraborty, S.; Verma, E.; Singh, S.S. Cyanobacterial siderophores: Ecological and biotechnological significance. In Cyanobacteria; Elsevier: Amsterdam, The Netherlands, 2019; pp. 383–397. [Google Scholar]
- Chatterjee, A.; Singh, S.; Agrawal, C.; Yadav, S.; Rai, R.; Rai, L. Role of algae as a biofertilizer. In Algal Green Chemistry; Elsevier: Amsterdam, The Netherlands, 2017; pp. 189–200. [Google Scholar]
- Prasanna, R.; Bidyarani, N.; Babu, S.; Hossain, F.; Shivay, Y.S.; Nain, L. Cyanobacterial inoculation elicits plant defense response and enhanced Zn mobilization in maize hybrids. Cogent Food Agric. 2015, 1, 998507. [Google Scholar] [CrossRef]
- Mala, R.; Celsia, A.R.; Mahalakshmi, R.; Rajeswari, S. Agronomic biofortification of Amaranthus dubius with macro nutrients and vitamin A. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; p. 012214. [Google Scholar]
- Cakmak, I.; Pfeiffer, W.H.; McClafferty, B. Biofortification of durum wheat with zinc and iron. Cereal Chem. 2010, 87, 10–20. [Google Scholar] [CrossRef]
- Mutale-Joan, C.; Redouane, B.; Najib, E.; Yassine, K.; Lyamlouli, K.; Laila, S.; Zeroual, Y.; Hicham, E.A. Screening of microalgae liquid extracts for their bio stimulant properties on plant growth, nutrient uptake and metabolite profile of Solanum lycopersicum L. Sci. Rep. 2020, 10, 2820. [Google Scholar] [CrossRef] [PubMed]
- Wani, S.H.; Kumar, V.; Shriram, V.; Sah, S.K. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J. 2016, 4, 162–176. [Google Scholar] [CrossRef]
- Hartung, W.; Gimmler, H. A stress physiological role for abscisic acid (ABA) in lower plants. In Progress in Botany: Structural Botany Physiology Genetics Taxonomy Geobotany/Fortschritte der Botanik Struktur Physiologie Genetik Systematik Geobotanik; Springer: Berlin/Heidelberg, Germany, 1994; pp. 157–173. [Google Scholar]
- Abinandan, S.; Subashchandrabose, S.R.; Venkateswarlu, K.; Megharaj, M. Soil microalgae and cyanobacteria: The biotechnological potential in the maintenance of soil fertility and health. Crit. Rev. Biotechnol. 2019, 39, 981–998. [Google Scholar] [CrossRef]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Tarakhovskaya, E.; Maslov, Y.I.; Shishova, M. Phytohormones in algae. Russ. J. Plant Physiol. 2007, 54, 163–170. [Google Scholar] [CrossRef]
- McAdam, S.A.; Brodribb, T.J.; Ross, J.J. Shoot-derived abscisic acid promotes root growth. Plant Cell Environ. 2016, 39, 652–659. [Google Scholar] [CrossRef]
- Collier, M.; Fotelli, M.; Nahm, M.; Kopriva, S.; Rennenberg, H.; Hanke, D.; Gessler, A. Regulation of nitrogen uptake by Fagus sylvatica on a whole plant level–interactions between cytokinins and soluble N compounds. Plant Cell Environ. 2003, 26, 1549–1560. [Google Scholar] [CrossRef]
- Ohkama, N.; Takei, K.; Sakakibara, H.; Hayashi, H.; Yoneyama, T.; Fujiwara, T. Regulation of sulfur-responsive gene expression by exogenously applied cytokinins in Arabidopsis thaliana. Plant Cell Physiol. 2002, 43, 1493–1501. [Google Scholar] [CrossRef]
- Wally, O.S.; Critchley, A.T.; Hiltz, D.; Craigie, J.S.; Han, X.; Zaharia, L.I.; Abrams, S.R.; Prithiviraj, B. Regulation of phytohormone biosynthesis and accumulation in Arabidopsis following treatment with commercial extract from the marine macroalga Ascophyllum nodosum. J. Plant Growth Regul. 2013, 32, 324–339. [Google Scholar] [CrossRef]
- Lee, S.-M.; Ryu, C.-M. Algae as new kids in the beneficial plant microbiome. Front. Plant Sci. 2021, 12, 599742. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-J.; Shim, C.-K.; Kim, Y.-K.; Park, J.-H.; Hong, S.-J.; Ji, H.-J.; Han, E.-J.; Yoon, J.-C. Effect of Chlorella vulgaris CHK0008 fertilization on enhancement of storage and freshness in organic strawberry and leaf vegetables. Hortic. Sci. Technol. 2014, 32, 872–878. [Google Scholar] [CrossRef]
- Michalak, I.; Chojnacka, K. Algae as production systems of bioactive compounds. Eng. Life Sci. 2015, 15, 160–176. [Google Scholar] [CrossRef]
- Zhou, Y.; Bao, J.; Zhang, D.; Li, Y.; Li, H.; He, H. Effect of heterocystous nitrogen-fixing cyanobacteria against rice sheath blight and the underlying mechanism. Appl. Soil Ecol. 2020, 153, 103580. [Google Scholar] [CrossRef]
- López, A.; Ming, D.S.; Towers, G.N. Antifungal activity of benzoic acid derivatives from Piper lanceaefolium. J. Nat. Prod. 2002, 65, 62–64. [Google Scholar] [CrossRef]
- Prasanna, R.; Kanchan, A.; Ramakrishnan, B.; Ranjan, K.; Venkatachalam, S.; Hossain, F.; Shivay, Y.S.; Krishnan, P.; Nain, L. Cyanobacteria-based bioinoculants influence growth and yields by modulating the microbial communities favourably in the rhizospheres of maize hybrids. Eur. J. Soil Biol. 2016, 75, 15–23. [Google Scholar] [CrossRef]
- Hamouda, R.A.; El-Ansary, M. Potential of Plant-Parasitic Nematode Control in Banana Plants by Microalgae as a New Approach Towards Resistance. Egypt. J. Biol. Pest Control 2017, 27, 165–172. [Google Scholar]
- Mankiewicz, J.; Tarczynska, M.; Walter, Z.; Zalewski, M. Natural toxins from cyanobacteria. Acta Biol. Cracoviensia Ser. Bot. 2003, 45, 9–20. [Google Scholar]
- Khan, Z.; Park, S.; Shin, S.; Bae, S.; Yeon, I.; Seo, Y. Management of Meloidogyne incognita on tomato by root-dip treatment in culture filtrate of the blue-green alga, Microcoleus vaginatus. Bioresour. Technol. 2005, 96, 1338–1341. [Google Scholar] [CrossRef]
- Gimenez, E.; Salinas, M.; Manzano-Agugliaro, F. Worldwide research on plant defense against biotic stresses as improvement for sustainable agriculture. Sustainability 2018, 10, 391. [Google Scholar] [CrossRef]
- Poveda, J. Use of plant-defense hormones against pathogen-diseases of postharvest fresh produce. Physiol. Mol. Plant Pathol. 2020, 111, 101521. [Google Scholar] [CrossRef]
- Poveda, J.; Díez-Méndez, A. Use of elicitors from macroalgae and microalgae in the management of pests and diseases in agriculture. Phytoparasitica 2023, 51, 667–701. [Google Scholar] [CrossRef]
- Kusvuran, S. Microalgae (Chlorella vulgaris Beijerinck) alleviates drought stress of broccoli plants by improving nutrient uptake, secondary metabolites, and antioxidative defense system. Hortic. Plant J. 2021, 7, 221–231. [Google Scholar] [CrossRef]
- Kusvuran, A.; Can, A. Effects of microalga (Chlorella vulgaris beijerinck) on seconder metabolites and antioxidative defense system improve plant growth and salt tolerance in guar [Cyamopsis tetragonoloba (L.) taub.]. Legume Res. Int. J. 2020, 43, 56–60. [Google Scholar] [CrossRef]
- Augustiniene, E.; Valanciene, E.; Matulis, P.; Syrpas, M.; Jonuskiene, I.; Malys, N. Bioproduction of L-and D-lactic acids: Advances and trends in microbial strain application and engineering. Crit. Rev. Biotechnol. 2022, 42, 342–360. [Google Scholar] [CrossRef]
- Lee, S.M.; Kim, S.K.; Lee, N.; Ahn, C.Y.; Ryu, C.M. d-Lactic acid secreted by Chlorella fusca primes pattern-triggered immunity against Pseudomonas syringae in Arabidopsis. Plant J. 2020, 102, 761–778. [Google Scholar] [CrossRef]
- Chauhan, H.; Khurana, N.; Agarwal, P.; Khurana, J.P.; Khurana, P. A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment. PLoS ONE 2013, 8, e79577. [Google Scholar] [CrossRef]
- Singh, S. A review on possible elicitor molecules of cyanobacteria: Their role in improving plant growth and providing tolerance against biotic or abiotic stress. J. Appl. Microbiol. 2014, 117, 1221–1244. [Google Scholar] [CrossRef]
- Seigler, D.S. Plant Secondary Metabolism; Kluwer Academic Publishers: Boston, UK, 1998; pp. 1–759. [Google Scholar]
- Singh, D.P.; Prabha, R.; Yandigeri, M.S.; Arora, D.K. Cyanobacteria-mediated phenylpropanoids and phytohormones in rice (Oryza sativa) enhance plant growth and stress tolerance. Antonie Van Leeuwenhoek 2011, 100, 557–568. [Google Scholar] [CrossRef]
- Panda, D.; Pramanik, K.; Nayak, B. Use of sea weed extracts as plant growth regulators for sustainable agriculture. Int. J. Bio-Resour. Stress Manag. 2012, 3, 404–411. [Google Scholar]
- Chen, H.; Yu, S.; Yu, Z.; Ma, M.; Liu, M.; Pei, H. Phycoremediation Potential of Salt-Tolerant Microalgal Species: Motion, Metabolic Characteristics, and Their Application for Saline–Alkali Soil Improvement in Eco-Farms. Microorganisms 2024, 12, 676. [Google Scholar] [CrossRef]
- Pei, H.; Yu, Z. Microalgae: A revolution for salt-affected soil remediation. Trends Biotechnol. 2023, 41, 147–149. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.W.; Reed, E.Y.; Chadwick, D.R.; Hill, P.W.; Jones, D.L. Agronomic amendments drive a diversity of real and apparent priming responses within a grassland soil. Soil Biol. Biochem. 2024, 189, 109265. [Google Scholar] [CrossRef]
- Singh, J.S.; Kumar, A.; Rai, A.N.; Singh, D.P. Cyanobacteria: A precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front. Microbiol. 2016, 7, 186282. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Valiente, E.; Quesada, A. A shallow water ecosystem: Rice-fields. The relevance of cyanobacteria in the ecosystem. Limnetica 2004, 23, 95–107. [Google Scholar] [CrossRef]
- Arora, N.K.; Mehnaz, S.; Balestrini, R. Bioformulations: For Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Kallenbach, C.; Grandy, A.S.; Frey, S.; Diefendorf, A. Microbial physiology and necromass regulate agricultural soil carbon accumulation. Soil Biol. Biochem. 2015, 91, 279–290. [Google Scholar] [CrossRef]
- Zechmeister-Boltenstern, S.; Keiblinger, K.M.; Mooshammer, M.; Peñuelas, J.; Richter, A.; Sardans, J.; Wanek, W. The application of ecological stoichiometry to plant–microbial–soil organic matter transformations. Ecol. Monogr. 2015, 85, 133–155. [Google Scholar] [CrossRef]
- Sood, A.; Singh, P.K.; Kumar, A.; Singh, R.; Prasanna, R. Growth and biochemical characterization of associations between cyanobionts and wheat seedlings in co-culturing experiments. Biologia 2011, 66, 104–110. [Google Scholar] [CrossRef]
- Nilsson, M.; Bhattacharya, J.; Rai, A.; Bergman, B. Colonization of roots of rice (Oryza sativa) by symbiotic Nostoc strains. New Phytol. 2002, 156, 517–525. [Google Scholar] [CrossRef]
- Bharti, A.; Prasanna, R.; Kumar, G.; Kumar, A.; Nain, L. Co-cultivation of cyanobacteria for raising nursery of chrysanthemum using a hydroponic system. J. Appl. Phycol. 2019, 31, 3625–3635. [Google Scholar] [CrossRef]
- Gantar, M.; Kerby, N.; Rowell, P.; Obreht, Z. Colonization of wheat (Triticum vulgare L.) by N2-fixing cyanobacteria: I. A survey of soil cyanobacterial isolates forming associations with roots. New Phytol. 1991, 118, 477–483. [Google Scholar] [CrossRef]
- Gantar, M.; Kerby, N.; Rowell, P. Colonization of wheat (Triticum vulgare L.) by N2-fixing cyanobacteria: II. An ultrastructural study. New Phytol. 1991, 118, 485–492. [Google Scholar] [CrossRef]
- Gusev, M.; Baulina, O.; Gorelova, O.; Lobakova, E.; Korzhenevskaya, T. Artificial cyanobacterium-plant symbioses. In Cyanobacteria Symbiosis; Springer: Berlin/Heidelberg, Germany, 2002; pp. 253–312. [Google Scholar]
- Obreht, Z.; Kerby, N.W.; Gantar, M.; Rowell, P. Effects of root-associated N2-fixing cyanobacteria on the growth and nitrogen content of wheat (Triticum vulgare L.) seedlings. Biol. Fertil. Soils 1993, 15, 68–72. [Google Scholar] [CrossRef]
- Gantar, M.; Elhai, J. Colonization of wheat para-nodules by the N2-fixing cyanobacterium Nostoc sp. strain 2S9B. New Phytol. 1999, 141, 373–379. [Google Scholar] [CrossRef]
- Ferreira, A.; Bastos, C.R.; Marques-dos-Santos, C.; Acién-Fernandez, F.G.; Gouveia, L. Algaeculture for agriculture: From past to future. Front. Agron. 2023, 5, 1064041. [Google Scholar] [CrossRef]
- Hussain, A.; Shah, S.T.; Rahman, H.; Irshad, M.; Iqbal, A. Effect of IAA on in vitro growth and colonization of Nostoc in plant roots. Front. Plant Sci. 2015, 6, 46. [Google Scholar] [CrossRef]
- Gantar, M. Mechanical damage of roots provides enhanced colonization of the wheat endorhizosphere by the dinitrogen-fixing cyanobacterium Nostoc sp. strain 2S9B. Biol. Fertil. Soils 2000, 32, 250–255. [Google Scholar] [CrossRef]
- Tchan, Y.; Kennedy, I. Possible N2-fixing root nodules induced in non-legumes. Agric. Sci. 1989, 2, 57–59. [Google Scholar]
- Mahapatra, D.M.; Chanakya, H.; Joshi, N.; Ramachandra, T.; Murthy, G. Algae-based biofertilizers: A biorefinery approach. In Microorganisms for Green Revolution: Volume 2: Microbes for Sustainable Agro-Ecosystem; Springer: Singapore, 2018; pp. 177–196. [Google Scholar]
- Swarnalakshmi, K.; Prasanna, R.; Kumar, A.; Pattnaik, S.; Chakravarty, K.; Shivay, Y.S.; Singh, R.; Saxena, A.K. Evaluating the influence of novel cyanobacterial biofilmed biofertilizers on soil fertility and plant nutrition in wheat. Eur. J. Soil Biol. 2013, 55, 107–116. [Google Scholar] [CrossRef]
- Prasanna, R.; Triveni, S.; Bidyarani, N.; Babu, S.; Yadav, K.; Adak, A.; Khetarpal, S.; Pal, M.; Shivay, Y.S.; Saxena, A.K. Evaluating the efficacy of cyanobacterial formulations and biofilmed inoculants for leguminous crops. Arch. Agron. Soil Sci. 2014, 60, 349–366. [Google Scholar] [CrossRef]
- Palacios, O.A.; López, B.R.; de-Bashan, L.E. Microalga Growth-Promoting Bacteria (MGPB): A formal term proposed for beneficial bacteria involved in microalgal–bacterial interactions. Algal Res. 2022, 61, 102585. [Google Scholar] [CrossRef]
- Palacios, O.A.; Lopez, B.R.; Bashan, Y.; de-Bashan, L.E. Early changes in nutritional conditions affect formation of synthetic mutualism between Chlorella sorokiniana and the bacterium Azospirillum brasilense. Microb. Ecol. 2019, 77, 980–992. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.; Kamel, M.; El-Sherbeny, M. Effect of inoculation with the alga Tolypothrix tenuis on the yield of rice and on soil nitrogen balance. Agrokem. Talajt. 1971, 20, 389–400. [Google Scholar]
- Ogle, S.M.; Alsaker, C.; Baldock, J.; Bernoux, M.; Breidt, F.J.; McConkey, B.; Regina, K.; Vazquez-Amabile, G.G. Climate and soil characteristics determine where no-till management can store carbon in soils and mitigate greenhouse gas emissions. Sci. Rep. 2019, 9, 11665. [Google Scholar] [CrossRef]
- Nichols, J. Relation of organic carbon to soil properties and climate in the southern Great Plains. Soil Sci. Soc. Am. J. 1984, 48, 1382–1384. [Google Scholar] [CrossRef]
- Maharjan, M.; Sanaullah, M.; Razavi, B.S.; Kuzyakov, Y. Effect of land use and management practices on microbial biomass and enzyme activities in subtropical top-and sub-soils. Appl. Soil Ecol. 2017, 113, 22–28. [Google Scholar] [CrossRef]
- Navarro-Noya, Y.E.; Gómez-Acata, S.; Montoya-Ciriaco, N.; Rojas-Valdez, A.; Suárez-Arriaga, M.C.; Valenzuela-Encinas, C.; Jiménez-Bueno, N.; Verhulst, N.; Govaerts, B.; Dendooven, L. Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem. Soil Biol. Biochem. 2013, 65, 86–95. [Google Scholar] [CrossRef]
- Haiming, T.; Chao, L.; Lihong, S.; Kaikai, C.; Li, W.; Weiyan, L.; Xiaoping, X. Effects of different short-term tillage managements on rhizosphere soil autotrophic CO2-fixing bacteria in a double-cropping rice paddy field. Environ. Microbiol. Rep. 2022, 14, 245–253. [Google Scholar] [CrossRef]
- Matovic, D. Biochar as a viable carbon sequestration option: Global and Canadian perspective. Energy 2011, 36, 2011–2016. [Google Scholar] [CrossRef]
- Lai, W.-Y.; Lai, C.-M.; Ke, G.-R.; Chung, R.-S.; Chen, C.-T.; Cheng, C.-H.; Pai, C.-W.; Chen, S.-Y.; Chen, C.-C. The effects of woodchip biochar application on crop yield, carbon sequestration and greenhouse gas emissions from soils planted with rice or leaf beet. J. Taiwan Inst. Chem. Eng. 2013, 44, 1039–1044. [Google Scholar] [CrossRef]
- Yang, W.; Feng, G.; Miles, D.; Gao, L.; Jia, Y.; Li, C.; Qu, Z. Impact of biochar on greenhouse gas emissions and soil carbon sequestration in corn grown under drip irrigation with mulching. Sci. Total Environ. 2020, 729, 138752. [Google Scholar] [CrossRef] [PubMed]
- Weng, Z.; Van Zwieten, L.; Tavakkoli, E.; Rose, M.T.; Singh, B.P.; Joseph, S.; Macdonald, L.M.; Kimber, S.; Morris, S.; Rose, T.J. Microspectroscopic visualization of how biochar lifts the soil organic carbon ceiling. Nat. Commun. 2022, 13, 5177. [Google Scholar] [CrossRef] [PubMed]
- Sayre, R. Microalgae: The potential for carbon capture. Bioscience 2010, 60, 722–727. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, L.; Wei, W.; Hu, J.; Mei, S.; Zhao, Q.; Tsang, Y.F. Enhanced roles of biochar and organic fertilizer in microalgae for soil carbon sink. Biodegradation 2018, 29, 313–321. [Google Scholar] [CrossRef]
- Hu, J.; Xue, Y.; Li, J.; Wang, L.; Zhang, S.; Wang, Y.-N.; Gao, M.-T. Characterization of a designed synthetic autotrophic–heterotrophic consortia for fixing CO2 without light. RSC Adv. 2016, 6, 78161–78169. [Google Scholar] [CrossRef]
- Gasco, G.; Paz-Ferreiro, J.; Cely, P.; Plaza, C.; Mendez, A. Influence of pig manure and its biochar on soil CO2 emissions and soil enzymes. Ecol. Eng. 2016, 95, 19–24. [Google Scholar] [CrossRef]
- Xu, X.; Kan, Y.; Zhao, L.; Cao, X. Chemical transformation of CO2 during its capture by waste biomass derived biochars. Environ. Pollut. 2016, 213, 533–540. [Google Scholar] [CrossRef]
- Kesavan, A.; Venkatraman, G. Nanotechnology and its applications. Scitech J. 2014, 1, 1e2. [Google Scholar]
- Sulaiman, G.M.; Mohammed, W.H.; Marzoog, T.R.; Al-Amiery, A.A.A.; Kadhum, A.A.H.; Mohamad, A.B. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract. Asian Pac. J. Trop. Biomed. 2013, 3, 58–63. [Google Scholar] [CrossRef]
- Gryta, A.; Skic, K.; Adamczuk, A.; Skic, A.; Marciniak, M.; Józefaciuk, G.; Boguta, P. The Importance of the Targeted Design of Biochar Physicochemical Properties in Microbial Inoculation for Improved Agricultural Productivity—A Review. Agriculture 2023, 14, 37. [Google Scholar] [CrossRef]
- Barati, B.; Zeng, K.; Baeyens, J.; Wang, S.; Addy, M.; Gan, S.-Y.; Abomohra, A.E.-F. Recent progress in genetically modified microalgae for enhanced carbon dioxide sequestration. Biomass Bioenergy 2021, 145, 105927. [Google Scholar] [CrossRef]
- Zhou, W.; Li, Y.; Min, M.; Hu, B.; Chen, P.; Ruan, R. Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production. Bioresour. Technol. 2011, 102, 6909–6919. [Google Scholar] [CrossRef] [PubMed]
- Ratha, S.; Prasanna, R. Bioprospecting microalgae as potential sources of “Green Energy”—Challenges and perspectives. Appl. Biochem. Microbiol. 2012, 48, 109–125. [Google Scholar] [CrossRef]
- Han, W.; Li, C.; Miao, X.; Yu, G. A novel miniature culture system to screen CO2-sequestering microalgae. Energies 2012, 5, 4372–4389. [Google Scholar] [CrossRef]
- Kang, R.-J.; Shi, D.-J.; Cong, W.; Ma, W.-M.; Cai, Z.-L.; Ouyang, F. Effects of co-expression of two higher plants genes ALD and TPI in Anabaena sp. PCC7120 on photosynthetic CO2 fixation. Enzym. Microb. Technol. 2005, 36, 600–604. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Silva, A.G.S.D.; Hashim, Z.K.; Solomon, W.; Zhao, J.-B.; Kovács, G.; Kulmány, I.M.; Molnár, Z. Unveiling the Role of Edaphic Microalgae in Soil Carbon Sequestration: Potential for Agricultural Inoculants in Climate Change Mitigation. Agriculture 2024, 14, 2065. https://doi.org/10.3390/agriculture14112065
De Silva AGSD, Hashim ZK, Solomon W, Zhao J-B, Kovács G, Kulmány IM, Molnár Z. Unveiling the Role of Edaphic Microalgae in Soil Carbon Sequestration: Potential for Agricultural Inoculants in Climate Change Mitigation. Agriculture. 2024; 14(11):2065. https://doi.org/10.3390/agriculture14112065
Chicago/Turabian StyleDe Silva, Agampodi Gihan S. D., Z K. Hashim, Wogene Solomon, Jun-Bin Zhao, Györgyi Kovács, István M. Kulmány, and Zoltán Molnár. 2024. "Unveiling the Role of Edaphic Microalgae in Soil Carbon Sequestration: Potential for Agricultural Inoculants in Climate Change Mitigation" Agriculture 14, no. 11: 2065. https://doi.org/10.3390/agriculture14112065
APA StyleDe Silva, A. G. S. D., Hashim, Z. K., Solomon, W., Zhao, J. -B., Kovács, G., Kulmány, I. M., & Molnár, Z. (2024). Unveiling the Role of Edaphic Microalgae in Soil Carbon Sequestration: Potential for Agricultural Inoculants in Climate Change Mitigation. Agriculture, 14(11), 2065. https://doi.org/10.3390/agriculture14112065