The Role of Sodium Alginate Hydrogel in Maintaining Soil Homeostasis Exposed to Sulcotrione
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Procedure for Conducting the Experiment
- ▪
- First, a separate batch of beakers was prepared for each term.
- ▪
- An amount of 150 g of air-dried soil (soil sieved through a sieve with a mesh diameter of 2 mm) was weighed into glass beakers (250 cm3 capacity) for each term.
- ▪
- The herbicide Sulcogan 300 SC was applied once to the respective sites at doses of 0.000 (C), 0.200 (R), 0.999 (5R), and 9.999 (50R) mg kg−1 d. m. of soil, and sodium alginate (SA) at a dose of 10 g kg−1 d. m. of soil was applied to neutralize any negative effect of the herbicide on the microbiological and enzymatic properties of the soil.
- ▪
- The total volume was then homogenized and moistened to 60% capillary water capacity.
- ▪
- The beakers with soil were covered with perforated foil and incubated at 25 °C for 10, 40, and 80 days. Soil moisture was kept constant throughout the experiment by systematically adding water. For each combination, a bulk sample (total sample weight 900 g) was taken at the respective experimental time points (10, 40, and 80 days), and microbiological and enzymatic analyses were performed. The microbiological analyses were carried out in 4 replicates, while the enzymatic analyses were carried out in 3 replicates for each combination.
2.2. A Description of the Soil Properties
2.3. A Description of the Herbicide
2.4. Characteristics of the Sodium Alginate
2.5. Microbiological and Enzymatic Analyses of the Soil
- ▪
- Organotrophic bacteria (Org)—Bunt and Rovira medium, 10−5 and 10−6 dilutions;
- ▪
- Actinobacteria (Act)—Küster and Williams medium, 10−5 and 10−6 dilutions;
- ▪
- Fungi (Fun)—Martin’s medium, 10−3 and 10−4 dilutions.
- ▪
- Enzymes of the oxidoreductase class: dehydrogenase (Deh) and catalase (Cat). The activity of Deh is expressed in units of µmol TFF kg−1 d.m. (dry matter) of soil h−1, and the activity of Cat is expressed in mol O2 kg−1 d.m. (dry matter) of soil h−1;
- ▪
- Hydrolase class enzymes: alkaline phosphatase (Pal), acid phosphatase (Pac), arylsulfatase (Aryl), β-glucosidase (Glu), and urease (Ure). The activities of Pal, Pac, Aryl, and Glu are expressed in units of mmol PNP kg−1 d. m. soil h−1, and the activity of urease is expressed in mmol N-NH4 kg−1 d.m. (dry matter) of soil h−1.
2.6. Calculations of Microbiological and Biochemical Soil Indicators
- ▪
- Microbiological indicators are calculated based on the number of organotrophic bacteria, actinobacteria, and the fungi/colony development (CD) index [34];
- ▪
- Ecophysiological (EP) index [35];
- ▪
- Microorganisms’ colony growth (Ks) at specific time intervals (%) [36].
2.7. Statistical Analyses
- ▪
- For homogeneous groups, significant differences between means were calculated using Tukey’s test (HDS);
- ▪
- Pearson’s simple correlation coefficients were calculated for p ≤ 0.01 between the number of microorganisms and the enzymatic activity in the soil;
- ▪
- The number of microorganisms and the activity of soil enzymes were presented using a principal component analysis and classification (PCA).
3. Results
3.1. The Responses of Microorganisms to the Herbicide and Sodium Alginate
3.2. The Response of the Enzyme to the Herbicide and Sodium Alginate
3.3. The Relationship Between the Number of Microorganisms and the Activity of the Soil Enzymes
4. Discussion
4.1. The Responses of Microorganisms to the Herbicide and Sodium Alginate
4.2. The Responses of Enzymes to the Herbicide and Sodium Alginate
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Adegaye, A.C.; Fabunmi, B.T.; Ogunjo, S.T.; Tokimi, O.R.; Nwakaeme, J.O. Effects of two commonly used herbicides on soil microbial activity under conservation tillage. Environ. Adv. 2023, 13, 100424. [Google Scholar] [CrossRef]
- Jayaraj, J.; Shibila, S.; Ramaiah, M.; Alahmadi, T.A.; Alharbi, S.A.; Mideen, P.K.; Sakthiganesh, K.; Sivagnanam, A. Isolation and identification of bacteria from the agricultural soil samples to tolerate pesticides dimethoate, thiamethoxam and imidacloprid. Environ. Res. Commun. 2023, 5, 075011. [Google Scholar] [CrossRef]
- Boonupara, T.; Udomkun, P.; Khan, E.; Kajitvichyanukul, P. Airborne pesticides from agricultural practices: A critical review of pathways, infuencing factors, and human health implications. Toxics 2023, 11, 858. [Google Scholar] [CrossRef]
- Chia, X.K.; Hadibarata, T.; Kristanti, R.A.; Jusoh, M.N.H.; Tan, I.S.; Foo, H.C.Y. The function of microbial enzymes in breaking down soil contaminated with pesticides: A review. Bioprocess Biosyst. Eng. 2024, 47, 597–620. [Google Scholar] [CrossRef]
- Karpouzas, D.G.; Vryzas, Z.; Martin-Laurent, F. Pesticide soil microbial toxicity: Setting the scene for a new pesticide risk assessment for soil microorganisms (IUPAC Technical Report). Pure Appl. Chem. 2022, 94, 1161–1194. [Google Scholar] [CrossRef]
- Romdhane, S.; Devers, M.; Béguet, J.; Bertrand, C.; Calvayrac, C.; Salvia, M.V.; Ben Jrad, A.; Dayan, F.E.; Spor, A.; Barthelmebs, L.; et al. Assessment of the ecotoxicological impact of natural and synthetic β-triketone herbicides on the diversity and the activity of the soil bacterial community using omic approaches. Sci. Total Environ. 2019, 651, 241–249. [Google Scholar] [CrossRef]
- Calvayrac, C.; Romdhane, S.; Barthelmebs, L.; Rocaboy, E.; Cooper, J.F.; Bertrand, C. Growth abilities and phenotype stability of a sulcotrione-degrading Pseudomonas sp. isolated from soil. Int. Biodeter. Biodegrad. 2014, 91, 104–110. [Google Scholar] [CrossRef]
- Sunulahpašić, A.; Haseljić, S.; Mitrić, S.; Lalević, B. Assessment of microbial diversity of soil exposed to nicosulfuron. Zast. Mater. 2019, 60, 152–156. [Google Scholar] [CrossRef]
- Mokrani, S.; Houali, K.; Yadav, K.K.; Arabi, A.I.A.; Eltayeb, L.B.; AwjanAlreshidi, M.; Benguerba, Y.; Cabral-Pinto, M.M.S.; Nabti, E.H. Bioremediation techniques for soil organic pollution: Mechanisms, microorganisms, and technologies-A comprehensive review. Ecol. Eng. 2024, 207, 107338. [Google Scholar] [CrossRef]
- Verma, S.; Kuila, A. Bioremediation of heavy metals by microbial process. Environ. Technol. Innov. 2019, 14, 100369. [Google Scholar] [CrossRef]
- Shiny, N.; Prakash, T.R.; Sharma, S.H.K.; Kumar, B.A. Effect of different post-emergent herbicides on soil enzyme activity in cluster bean. J. Pharmacogn. Phytochem. 2020, 9, 2068–2072. [Google Scholar]
- Guerrero Ramírez, J.R.; Ibarra Muñoz, L.A.; Balagurusamy, N.; Frías Ramírez, J.E.; Alfaro Hernández, L.; Carrillo Campos, J. Microbiology and biochemistry of pesticides biodegradation. Int. J. Mol. Sci. 2023, 24, 15969. [Google Scholar] [CrossRef] [PubMed]
- Gouma, V.; Tziasiou, C.; Pournara, A.D.; Giokas, D.L. A novel approach to sorbent-based remediation of soil impacted by organic micropollutants and heavy metals using granular biochar amendment and magnetic separation. J. Environ. Chem. Eng. 2022, 10, 107316. [Google Scholar] [CrossRef]
- Kumar, A.; Sood, A.; Han, S.S. Poly (vinyl alcohol)-alginate as potential matrix for various applications: A focused review. Carbohydr. Polym. 2022, 277, 118881. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Q.; Yu, M.; Jiao, B.; Chen, F.; Yin, M. Sodium alginate-based composite microspheres for controlled release of pesticides and reduction of adverse effects of copper in agricultural soils. Chemosphere 2023, 313, 137539. [Google Scholar] [CrossRef]
- El Idrissi, A.; Dardari, O.; Metomo, F.N.N.N.; Essamlali, Y.; Akil, A.; Amadine, O.; Aboulhrouz, S.; Zahouily, M. Effect of sodium alginate-based superabsorbent hydrogel on tomato growth under different water deficit conditions. Int. J. Biol. Macromol. 2023, 253, 127229. [Google Scholar] [CrossRef]
- Gomaa, M.; Aldaby, E.S. Macroalgal-derived alginate/wastepaper hydrogel to alleviate sunflower drought stress. Planta 2023, 257, 112. [Google Scholar] [CrossRef]
- Thiour-Mauprivez, C.; Martin-Laurent, F.; Calvayrac, C.; Barthelmebs, L. Effects of herbicide on non-target microorganisms: Towards a new class of biomarkers? Sci. Total Environ. 2021, 684, 314–325. [Google Scholar] [CrossRef]
- Sobiech, Ł.; Grzanka, M.; Skrzypczak, G.; Idziak, R.; Ochowiak, M. Effect of adjuvants and pH adjuster on the efficacy of sulcotrione herbicide. Agronomy 2020, 10, 530. [Google Scholar] [CrossRef]
- Lewis, K.; Tzilivakis, J.G. Development of a data set of pesticide dissipation rates in/on various plant matrices for the Pesticide Properties Database (PPDB). Data 2017, 2, 28. [Google Scholar] [CrossRef]
- Li, D.; Chen, L.; Yi, X.; Zhang, X.; Ye, N. Pyrolytic characteristics and kinetics of two brown algae and sodium alginate. Bioresour. Technol. 2010, 101, 7131–7136. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Zheng, J.; Huang, S.; Li, S.; Li, D.; Cheng, M.; Liu, Y. Application of sodium alginate in induced biological soil crusts: Enhancing the sand stabilization in the early stage. J. Appl. Phycol. 2017, 29, 1421–1428. [Google Scholar] [CrossRef]
- Pawar, S.N.; Edgar, K.J. Alginate derivatization: A review of chemistry, properties and applications. Biomaterials 2012, 33, 3279–3305. [Google Scholar] [CrossRef] [PubMed]
- Vicini, S.; Castellano, M.; Mauri, M.; Marsano, E. Gelling process for sodium alginate: New technical approach by using calcium rich micro-spheres. Carbohyd. Polym. 2015, 134, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Zia, K.M.; Zia, F.; Zuber, M.; Rehman, S.; Ahmad, M.N. Alginate based polyurethanes: A review of recent advances and perspective. Int. J. Biol. Macromol. 2015, 79, 377–387. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, L.; Wang, W.; Xiang, Y.; Liu, J.; An, Y.; Shi, J.I.H.; Huang, Z. Sodium alginate/sodium lignosulfonate hydrogel based on inert Ca2+ activation for water conservation and growth promotion. Environ. Res. 2024, 246, 118144. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhuang, J.; Wang, Y.; Jia, Y.; Niu, P.; Jia, K. Improvement of loess characteristics using sodium alginate. Bull. Eng. Geol. Environ. 2020, 79, 1879–1891. [Google Scholar] [CrossRef]
- van der Merwe, R.d.T.; Goosen, N.J.; Pott, R.W.M. Macroalgal-Derived Alginate Soil Amendments for Water Retention, Nutrient Release Rate Reduction, and Soil pH Control. Gels 2022, 8, 548. [Google Scholar] [CrossRef]
- Bakhshizadeh, A.; Khayat, N.; Horpibulsuk, S. Surface stabilization of clay using sodium alginate. Case Stud. Constr. Mater. 2022, 16, e01006. [Google Scholar] [CrossRef]
- IUSS Working Group World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Reference Base for Soil Resources, Update 2015; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2014. [Google Scholar]
- Wyszkowska, J.; Boros-Lajszner, E.; Kucharski, J. The impact of soil contamination with lead on the biomass of maize intended for energy purposes, and the biochemical and physicochemical properties of the soil. Energies 2024, 17, 1156. [Google Scholar] [CrossRef]
- Boros-Lajszner, E.; Wyszkowska, J.; Kucharski, J. The effect of Carpinus betulus Ash on the maize as an energy crop and the enzymatic soil properties. Energies 2024, 17, 3031. [Google Scholar] [CrossRef]
- Komorek, D.; Wyszkowska, J.; Borowik, A.; Zaborowska, M. Microbial activity and diversity in soil sown with Zea mays and Triticosecale. Agriculture 2024, 14, 1070. [Google Scholar] [CrossRef]
- Sarathchandra, S.U.; Burch, G.; Cox, N.R. Growth patterns of bacterial communites in the rhizoplane and rhizosphere of with clover (Trifolium repens L.) and perennial ryegrass (Lolium perenne L.) in long-term pasture. Appl. Soil Ecol. 1997, 6, 293–299. [Google Scholar] [CrossRef]
- De Leij, F.A.A.M.; Whipps, J.M.; Lynch, J.M. The use of colony development for the characterization of bacterial communities in soil and on roots. Microb. Ecol. 1993, 27, 81–97. [Google Scholar] [CrossRef]
- Wyszkowska, J.; Borowik, A.; Olszewski, J.; Kucharski, J. Soil bacterial community and soil enzyme activity depending on the cultivation of Triticum aestivum, Brassica napus, and Pisum sativum ssp. arvense. Diversity 2019, 11, 246. [Google Scholar] [CrossRef]
- Paz-Ferreiro, J.; Gasco, G.; Gutiérrez, B.; Mendez, A. Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil. Biol. Fertil. Soils 2012, 48, 511–517. [Google Scholar] [CrossRef]
- Baćmaga, M.; Wyszkowska, J.; Kucharski, J. Influence of forecrop on soil quality estimated on the basis of the growth and development of faba bean and biochemical properties of the soil. Sustainability 2024, 16, 7492. [Google Scholar] [CrossRef]
- Zaborowska, M.; Wyszkowska, J.; Borowik, A.; Kucharski, J. Evaluation of the effectiveness of innovative sorbents in restoring enzymatic activity of soil contaminated with bisphenol A (BPA). Molecules 2024, 29, 3113. [Google Scholar] [CrossRef]
- TIBCO Software Inc. Statistica. Data Analysis Software System, Version 13. 2017. Available online: https://www.statistica.com (accessed on 13 July 2024).
- ISIS-Draw, MDL, Version 2.3. 2004. Available online: https://mdl-isis-draw.software.informer.com/2.3/ (accessed on 20 July 2024).
- Chen, H.; Liu, J.; Li, D.; KongCao, X.; KeLin, W. Controls on soil arylsulfatase activity at a regional scale. Eur. J. Soil Biol. 2019, 90, 9–14. [Google Scholar] [CrossRef]
- de Mesquita, C.P.B.; Solon, A.J.; Barfield, A.; Mastrangelo, C.F.; Tubman, A.J.; Vincent, K.; Porazinska, D.L.; Mastrangelo, C.F.; Hufft, R.A.; Shackelford, N.; et al. Adverse impacts of Roundup on soil bacteria, soil chemistry and mycorrhizal fungi during restoration of a Colorado grassland. Appl. Soil Ecol. 2023, 185, 104778. [Google Scholar] [CrossRef]
- Araujo, J.L.; de Mesquita Alves, J.; Rocha, R.H.C.; Santos, J.Z.L.; dos Santos Barbosa, R.; da Costa, F.M.N.; de Lima, G.S.; de Freitas, L.N.; Lima, A.S.; Nogueira, A.E.P.; et al. Beneficial microorganisms affect soil microbiological activity and corn yield under deficit irrigation. Agriculture 2023, 13, 1169. [Google Scholar] [CrossRef]
- Bezuglova, O.S.; Gorovtsov, A.V.; Polienko, E.A.; Zinchenko, V.E.; Grinko, A.V.; Lykhman, V.A.; Dubinina, M.N.; Demidov, A. Effect of humic preparation on winter wheat productivity and rhizosphere microbial community under herbicide-induced stress. J. Soils Sediments 2019, 19, 2665–2675. [Google Scholar] [CrossRef]
- Kepler, R.M.; Epp Schmidt, D.J.; Yarwood, S.A.; Cavigelli, M.A.; Reddy, K.N.; Duke, S.O.; Bradley, C.A.; Williams, M.M., Jr.; Buyer, J.S.; Maul, J.E. Soil microbial communities in diverse agroecosystems exposed to the herbicide glyphosate. Appl. Environ. Microbiol. 2020, 86, e01744. [Google Scholar] [CrossRef]
- Adhikary, P.; Shil, S.; Patra, P.S. Effect of herbicides on soil microorganisms in transplanted chilli. Glob. J. Biol. Agric. Health Sci. 2014, 3, 236–238. [Google Scholar]
- Du, P.; Wu, X.; Xu, J.; Dong, F.; Liu, X.; Zheng, Y. Effects of trifluralin on the soil microbial community and functional groups involved in nitrogen cycling. J. Hazard. Mater. 2018, 353, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Vijayarajan, V.B.A.; Fealy, R.M.; Cook, S.K.; Onkokesung, N.; Barth, S.; Hennessy, M.; Forristal, P.D. Grass-weed challenges, herbicide resistance status and weed control practices across crop establishment systems in Ireland’s mild Atlantic climate. Front. Agron. 2022, 4, 1063773. [Google Scholar] [CrossRef]
- Lokose, R.Y.P.; Jena, S.N.; Satpathy, M.R.; Behera, J. Impact of herbicides and nutrient management on soil biological properties in maize (Zea mays L.)+ cowpea (Vigna unguiculata L.) intercropping system. J. Crop Weed 2019, 15, 100–103. [Google Scholar]
- Baćmaga, M.; Wyszkowska, J.; Borowik, A.; Kucharski, J. Bacteria, fungi, and enzymes in soil treated with sulcotrione and terbuthylazine. Int. J. Mol. Sci. 2023, 24, 14469. [Google Scholar] [CrossRef]
- He, X.; Wu, C.; Tan, H.; Deng, X.; Li, Y. Impact of combined exposure to glyphosate and diquat on microbial community structure and diversity in lateritic paddy soil. Sustainability 2023, 15, 8497. [Google Scholar] [CrossRef]
- Lupwayi, N.Z.; Fernandez, M.R.; Kanashiro, D.A.; Petri, R.M. Profiles of wheat rhizobacterial communities in response to repeated glyphosate applications, crop rotation, and tillage. Can. J. Soil Sci. 2021, 101, 157–167. [Google Scholar] [CrossRef]
- Omidvar, N.; Ogbourne, S.M.; Xu, Z.; Burton, J.; Ford, R.; Salehin, B.; Iman, T.; Ruby, M.; Rachele, W.; Bai, S.H. Effects of herbicides and mulch on the soil carbon, nitrogen, and microbial composition of two revegetated riparian zones over 3 years. J. Soils Sediments 2023, 23, 2766–2782. [Google Scholar] [CrossRef]
- Mathur, S.; Singh, D.; Ranjan, R. Remediation of heavy metal(loid) contaminated soil through green nanotechnology. Front. Sustain. Food Syst. 2022, 6, 932424. [Google Scholar] [CrossRef]
- Wang, B.; Wan, Y.; Zheng, Y.; Lee, X.; Liu, T.; Yu, Z.; Huang, J.; Ok, Y.S.; Chen, J.; Gao, B. Alginate-based composites for environmental applications: A critical review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 318–356. [Google Scholar] [CrossRef]
- Abka-Khajouei, R.; Tounsi, L.; Shahabi, N.; Patel, A.K.; Abdelkafi, S.; Michaud, P. Structures, properties and applications of alginates. Mar. Drugs 2022, 20, 364. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Q.; Yu, M.; Yin, M.; Chen, F. Effect of sodium alginate–gelatin–polyvinyl pyrrolidone microspheres on cucumber plants, soil, and microbial communities under lead stress. Int. J. Biol. Macromol. 2023, 247, 125688. [Google Scholar] [CrossRef]
- Ahn, S.; Ryou, J.-E.; Ahn, K.; Lee, C.; Lee, J.-D.; Jung, J. Evaluation of dynamic properties of sodium-alginate-reinforced soil using a resonant-column Test. Materials 2021, 14, 2743. [Google Scholar] [CrossRef]
- Borozan, A.B.; Lalescu, D.V.; Mişcă, C.D.; Trofim, A.; Horablaga, N.M.; Bordean, D.M.; Popescu, S.; Manea, D.N. Assesment of the soil urease response to sulfonylurea herbicides based on statistical models. Appl. Ecol. Environ. Res. 2020, 18, 7573–7585. [Google Scholar] [CrossRef]
- Filimon, M.N.; Roman, D.L.; Bordean, D.M.; Isvoran, A. Impact of the herbicide oxyfluorfen on the activities of some enzymes found in soil and on the populations of soil microorganisms. Agronomy 2021, 11, 1702. [Google Scholar] [CrossRef]
- Siddagangamma, K.R.; Channabasavanna, A.S.; Mahadevaswamy, K.; Ajayakumar, M.Y.; Yadahalli, G.S. Effect of herbicides on soil microflora and dehydrogenase activity in transplanted Bt cotton based intercropping system. Int. J. Curr. Microbiol. App. Sci. 2021, 10, 902–909. [Google Scholar] [CrossRef]
- Pertile, M.; Antunes, J.E.L.; Araujo, F.F.; Mendes, L.W.; Van den Brink, P.J.; Araujo, A.S.F. Responses of soil microbial biomass and enzyme activity to herbicides imazethapyr and flumioxazin. Sci. Rep. 2020, 10, 7694. [Google Scholar] [CrossRef]
- Gu, C.; Zhang, S.; Han, P.; Hu, X.; Xie, L.; Li, Y.; Brooks, M.; Liao, X.; Qin, L. Soil enzyme activity in soils subjected to flooding and the effect on nitrogen and phosphorus uptake by oilseed rape. Front. Plant Sci. 2019, 10, 368. [Google Scholar] [CrossRef] [PubMed]
- Attia, A.; Abdel-Nasser, G.; Massoud, M.; Barakat, A.S. Impact of selected pesticides on some soil enzymes activity in soil cultivated with wheat wrop. Alex. J. Soil Water Sci. 2018, 2, 66–83. [Google Scholar]
- Medo, J.; Hricáková, N.; Maková, J.; Medová, J.; Omelka, R.; Javoreková, S. Effects of sulfonylurea herbicides chlorsulfuron and sulfosulfuron on enzymatic activities and microbial communities in two agricultural soils. Environ. Sci. Pollut. Res. 2020, 27, 41265–41278. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Sun, S.; Zhou, T.; Du, Z.; Wang, J.; Li, B.; Wang, J.; Zhu, L. Effects of pyroxsulam on soil enzyme activity, nitrogen and carbon cycle-related gene expression, and bacterial community structure. J. Clean. Prod. 2022, 355, 131821. [Google Scholar] [CrossRef]
- Du, Z.; Zhu, Y.; Zhu, L.; Zhang, J.; Li, B.; Wang, J.; Wang, J.; Cheng, C.; Cheng, C. Effects of the herbicide mesotrione on soil enzyme activity and microbial communities. Ecotoxicol. Environ. Saf. 2018, 164, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Kumari, J.A.; Rao, P.C.; Madhavi, M.; Padmaja, G. Effect of herbicides on the activity of soil enzymes urease in maize crop. Indian J. Agric. Res. 2018, 52, 300–304. [Google Scholar] [CrossRef]
- Zhou, S.X.; Wei, Z.J.; Hu, H.Y.; Gao, B.J.; Li, Z.J. Effects of fomesafen on soil microorganisms, soil enzyme activities and its degradation in soybean rhizosphere. J. Plant Nutrit. Fertil. 2018, 24, 203–211. [Google Scholar] [CrossRef]
- Janes-Bassett, V.; Blackwell, M.S.; Blair, G.; Davies, J.; Haygarth, P.M.; Mezeli, M.M.; Stewart, G. A meta-analysis of phosphatase activity in agricultural settings in response to phosphorus deficiency. Soil Biol. Biochem. 2022, 165, 108537. [Google Scholar] [CrossRef]
- Margalef, O.; Sardans, J.; Maspons, J.; Molowny-Horas, R.; Fernández-Martínez, M.; Janssens, I.A.; Ritcher, A.; Ciais, P.; Obersteiner, M.; Peñuelas, J. The effect of global change on soil phosphatase activity. Glob. Chang. Biol. 2021, 27, 5989–6003. [Google Scholar] [CrossRef]
- Roman, D.L.; Voiculescu, D.I.; Filip, M.; Ostafe, V.; Isvoran, A. Effects of triazole fungicides on soil microbiota and on the activities of enzymes found in soil: A review. Agriculture 2021, 11, 893. [Google Scholar] [CrossRef]
- Fila, D.; Hubicki, Z.; Kołodyńska, D. Applicability of new sustainable and efficient alginate-based composites for critical raw materials recovery: General composites fabrication optimization and adsorption performance evaluation. Chem. Eng. J. 2022, 446, 137245. [Google Scholar] [CrossRef]
- Gao, X.; Guo, C.; Hao, J.; Zhao, Z.; Long, H.; Li, M. Adsorption of heavy metal ions by sodium alginate based adsorbent-a review and new perspectives. Int. J. Biol. Macromol. 2020, 164, 4423–4434. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; He, F.; Fang, X.; Zhao, X.; Liu, Y.; Yu, G.; Zhou, Y.; Feng, Y.; Li, J. Enhancing soil aggregation and acetamiprid adsorption by ecofriendly polysaccharides hydrogel based on Ca2+–amphiphilic sodium alginate. J. Environ. Sci. 2022, 113, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.-J.; Zhang, G.-N.; Wang, Z.; Han, Q.-D.; Leng, P. Phosphatase activities and available nutrients in soil aggregates affected by straw returning to a calcareous soil under the maize–wheat cropping system. Front. Environ. Sci. 2023, 11, 1208323. [Google Scholar] [CrossRef]
- Baćmaga, M.; Wyszkowska, J.; Kucharski, J. Response of soil microbiota, enzymes, and plants to the fungicide azoxystrobin. Int. J. Mol. Sci. 2024, 25, 8104. [Google Scholar] [CrossRef]
Soil Type | Granulometric Fraction (%) | pH | HAC | EBC | CEC | BS (%) | Corg | Ntot | C/N | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Sand | Silt | Clay | mmol+ kg−1 d.m. Soil | g kg−1 d.m. Soil | |||||||
sl | 66.39 | 33.58 | 0.03 | 5.84 | 23.62 | 27.00 | 50.62 | 53.32 | 7.08 | 1.16 | 6.10 |
Object | Org × 107 | Act × 107 | Fun × 105 | ||||||
---|---|---|---|---|---|---|---|---|---|
Soil Incubation Time (Days) | |||||||||
10 | 40 | 80 | 10 | 40 | 80 | 10 | 40 | 80 | |
Soil without the addition of sodium alginate (S) | |||||||||
C | 0.936 k | 0.898 l | 0.726 m | 0.450 l | 0.941 h | 0.612 j | 0.271 j | 0.327 h | 0.133 o |
R | 0.595 o | 0.728 m | 0.674 n | 0.760 i | 0.534 k | 0.413 m | 0.300 hi | 0.418 g | 0.226 k |
5R | 0.579 q | 0.506 r | 0.581 p | 0.372 n | 0.454 l | 0.301 op | 0.141 n | 0.334 h | 0.228 k |
50R | 0.489 r | 0.492 s | 0.572 q | 0.324 o | 0.321 o | 0.272 p | 0.128 p | 0.206 l | 0.156 m |
Average | 0.650 D | 0.656 D | 0.638 D | 0.477 E | 0.563 D | 0.400 F | 0.210 E | 0.321 D | 0.186 F |
Soil with the addition of sodium alginate (SSA) | |||||||||
C | 3.679 b | 3.429 d | 4.267 a | 3.601 b | 2.829 d | 3.782 a | 2.020 b | 1.775 c | 1.706 c |
R | 3.432 d | 3.031 f | 3.578 c | 3.582 c | 3.111 d | 2.558 f | 2.328 a | 2.007 b | 1.237 e |
5R | 3.392 e | 3.022 f | 2.715 h | 3.564 c | 2.868 d | 2.536 f | 1.748 c | 2.015 b | 1.123 e |
50R | 2.949 g | 2.438 j | 2.631 i | 3.163 d | 2.783 e | 2.192 g | 1.629 d | 1.685 d | 1.015 f |
Average | 3.363 A | 2.980 C | 3.298 B | 3.478 A | 2.898 B | 2.767 C | 1.931 A | 1.871 B | 1.270 C |
p-value | |||||||||
DSul SA DSul × SA DSul × SIT SA × SIT DSul × SA × SIT | <0.001 | <0.001 | <0.001 | ||||||
<0.001 | <0.001 | <0.001 | |||||||
0.025 | <0.001 | <0.001 | |||||||
<0.001 | <0.001 | <0.001 | |||||||
0.159 | <0.001 | <0.001 | |||||||
0.016 | <0.001 | <0.001 | |||||||
0.006 | <0.001 | <0.001 |
Variable | DSul | SA | SIT | Org | Act | Fun | Deh | Cat | Pal | Pac | Aryl | Glu | Ure | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DSul | 1.000 | ||||||||||||||
SA | −0.000 | 1.000 | Legend: | ||||||||||||
SIT | −0.000 | 0.000 | 1.000 | 0.80 ÷ 1.00 | |||||||||||
Org | −0.125 | 0.977 * | −0.004 | 1.000 | 0.60 ÷ 0.79 | ||||||||||
Act | −0.078 | 0.976 * | −0.090 | 0.986 * | 1.000 | 0.40 ÷ 0.59 | |||||||||
Fun | −0.088 | 0.953 * | −0.158 | 0.953 * | 0.978 * | 1.000 | 0.20 ÷ 0.39 | ||||||||
Deh | −0.150 | 0.698 * | −0.382 | 0.745 * | 0.791 * | 0.779 * | 1.000 | 0.00 ÷ 0.19 | |||||||
Cat | −0.106 | 0.919 * | −0.303 | 0.925 * | 0.945 * | 0.941 * | 0.876 * | 1.000 | −0.19 ÷ −0.01 | ||||||
Pal | −0.280 | 0.210 | −0.024 | 0.232 | 0.176 | 0.220 | 0.018 | 0.171 | 1.000 | −0.39 ÷ −0.20 | |||||
Pac | −0.154 | −0.897 * | 0.037 | −0.865 * | −0.888 * | −0.847 * | −0.682 * | −0.848 * | 0.226 | 1.000 | −0.59 ÷ −0.40 | ||||
Aryl | −0.036 | 0.914 * | 0.050 | 0.949 * | 0.933 * | 0.879 * | 0.699 * | 0.872 * | 0.067 | −0.886 * | 1.000 | −0.79 ÷ −0.60 | |||
Glu | 0.114 | 0.150 | −0.628 * | 0.193 | 0.263 | 0.280 | 0.581 * | 0.413 * | −0.169 | −0.256 | 0.262 | 1.000 | −1.00 ÷ −0.80 | ||
Ure | 0.078 | 0.439 * | −0.510 * | 0.457 * | 0.542 * | 0.520 * | 0.834 * | 0.603 * | −0.091 | −0.473 * | 0.387 | 0.650 * | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baćmaga, M.; Wyszkowska, J.; Kucharski, J. The Role of Sodium Alginate Hydrogel in Maintaining Soil Homeostasis Exposed to Sulcotrione. Agriculture 2024, 14, 2081. https://doi.org/10.3390/agriculture14112081
Baćmaga M, Wyszkowska J, Kucharski J. The Role of Sodium Alginate Hydrogel in Maintaining Soil Homeostasis Exposed to Sulcotrione. Agriculture. 2024; 14(11):2081. https://doi.org/10.3390/agriculture14112081
Chicago/Turabian StyleBaćmaga, Małgorzata, Jadwiga Wyszkowska, and Jan Kucharski. 2024. "The Role of Sodium Alginate Hydrogel in Maintaining Soil Homeostasis Exposed to Sulcotrione" Agriculture 14, no. 11: 2081. https://doi.org/10.3390/agriculture14112081
APA StyleBaćmaga, M., Wyszkowska, J., & Kucharski, J. (2024). The Role of Sodium Alginate Hydrogel in Maintaining Soil Homeostasis Exposed to Sulcotrione. Agriculture, 14(11), 2081. https://doi.org/10.3390/agriculture14112081