Design and Parameter Optimization of a Rigid–Flexible Coupled Rod Tooth Threshing Device for Ratoon Rice Based on MBD-DEM
Abstract
:1. Introduction
2. Force Analysis of Threshing Process
2.1. Grain Stress Analysis
2.2. Collision Process Analysis
3. Structure Design and Working Principles
3.1. Overall Structure and Working Principle
3.2. Determination of the Threshing Device’s Main Parameters
3.2.1. Spiral Feeding Device
3.2.2. Design of Threshing Drum Rod Teeth
3.2.3. Design of Threshing Device Cover Plate
3.2.4. Design of Concave Plate Sieve
4. MBD-DEM Coupled Simulation
4.1. Establishment of Mathematical Models
4.2. Particle Model Establishment
4.3. Analysis of Simulation Results
4.3.1. The Impact Force on the Rod Teeth
4.3.2. Analysis of Ratoon Rice Grain Distribution
4.3.3. The Influence of Flexible Body Thickness on Threshing
5. Bench Test
5.1. Test Materials
5.2. Evaluation Indicators
5.3. Quadratic Regression Orthogonal Rotation Combination Experiment
5.4. Establishment and Significance Testing of Regression Mathematical Models
5.4.1. Crushing Rate Y1
5.4.2. Entrainment Loss Rate Y2
5.4.3. Uncleaned Rate
5.5. Factor Response Surface Analysis
5.6. Optimal Parameters
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, Z.; Huang, H.; Yin, J.; Yang, S. Dynamic analysis and reliability design of round baler feeding device for rice straw harvest. Biosyst. Eng. 2018, 174, 10–19. [Google Scholar] [CrossRef]
- Xing, S.; Yu, Y.; Cao, G.; Hu, J.; Zhu, L.; Liu, J.; Wu, Q.; Li, Q.; Xu, L. Design and Parametric Optimization Study of an Eccentric Parallelogram-Type Uprighting Device for Ratoon Rice Stubbles. Agriculture 2024, 14, 534. [Google Scholar] [CrossRef]
- Liu, W.; Zeng, S.; Chen, X. Design and experiment of spiral step cleaning device for ratooning rice based on CFD-DEM coupling. Comput. Electron. Agric. 2024, 224, 109207. [Google Scholar] [CrossRef]
- Liu, W.; Luo, X.; Zeng, S.; Wen, Z. Numerical simulation and experiment of grain motion in the conveying system of ratooning rice harvesting machine. Int. J. Agric. Biol. Eng. 2022, 15, 103–115. [Google Scholar] [CrossRef]
- Liu, W.; Luo, X.; Zeng, S. The Design and Test of the Chassis of a Triangular Crawler-Type Ratooning Rice Harvester. Agriculture 2022, 12, 890. [Google Scholar] [CrossRef]
- Liu, W.; Luo, X.; Zeng, S. Performance test and analysis of the self-adaptive profiling header for ratooning rice based on fuzzy PID control. Trans. Chin. Soc. Agric. Eng. 2022, 38, 1–9. [Google Scholar]
- Liu, W.; Zeng, S.; Chen, X. Design and Experiment of Adaptive Profiling Header Based on MultiBody Dynamics–Discrete Element Method Coupling. Agriculture 2024, 14, 105. [Google Scholar] [CrossRef]
- Wang, J.; Guo, F.; Xu, Y.; Zhu, J.; Li, R.; Tang, H.; Zhou, W.; Wang, Q.; Sun, X. Analysis of the Interaction Mechanism between Preharvest Threshing Device and Rice at Harvesting Period Based on DEM Simulations and Bench Tests. Agriculture 2024, 14, 183. [Google Scholar] [CrossRef]
- Ma, L.; Xie, F.; Liu, D.; Wang, X.; Zhang, Z. An Application of Artificial Neural Network for Predicting Threshing Performance in a Flexible Threshing Device. Agriculture 2023, 13, 788. [Google Scholar] [CrossRef]
- Hao, S.; Tang, Z.; Guo, S.; Ding, Z.; Su, Z. Model and Method of Fault Signal Diagnosis for Blockage and Slippage of Rice Threshing Drum. Agriculture 2022, 12, 1968. [Google Scholar] [CrossRef]
- Xu, L.; Li, Y.; Ding, L. Contacting mechanics analysis during impact process between rice and threshing component. Trans. Chin. Soc. Agric. Eng. 2008, 24, 146–149. [Google Scholar]
- Xu, L.; Li, Y. Critical Speed of Impact Damage on a Rice Kernel. Trans. Chin. Soc. Agric. Mach. 2009, 40, 54–57. [Google Scholar]
- Liu, Y.; Li, Y.; Dong, Y.; Huang, M.; Zhang, T.; Cheng, J. Development of a variable-diameter threshing drum for rice combine harvester using MBD—DEM coupling simulation. Comput. Electron. Agric. 2022, 196, 106859. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Xu, L. Relationship between thresher velocities and rice grain broken rate. Trans. Chin. Soc. Agric. Eng. 2007, 23, 16–19. [Google Scholar] [CrossRef]
- Xie, F.; Luo, X.; Lu, X. Threshing principle of flexible pole-teeth roller for paddy rice. Trans. Chin. Soc. Agric. Eng. 2009, 25, 110–114. [Google Scholar]
- Fu, Q.; Fu, J.; Wang, F.; Chen, Z.; Ren, L. Design and parameter optimization of corn head with wheel type rigid-flexible coupling snapping device to reduce loss. Trans. Chin. Soc. Agric. Eng. 2019, 35, 21–30. [Google Scholar]
- Miu, P.; Kutzbach, H. Modeling and simulation of grain threshing and separation in threshing units-Part I. Comput. Electron. Agric. 2008, 60, 96–104. [Google Scholar] [CrossRef]
- Trollope, J. A mathematical model of the threshing process in a conventional combine-thresher. J. Agr. Eng. Res. 1982, 27, 119–130. [Google Scholar] [CrossRef]
- Wang, Q.; Mao, H.; Li, Q. Modelling and simulation of the grain threshing process based on the discrete element method. Comput. Electron. Agric. 2020, 178, 105790. [Google Scholar] [CrossRef]
- China Academy of Agricultural Mechanization Sciences. Agricultural Machinery Design Manual; China Agricultural Science Technology Press: Beijing, China, 2007; pp. 928–933. [Google Scholar]
- Wang, L.; Peng, B.; Song, H. Cleaning of Maize Mixture Based on Polyurethane Rubber Sieve. Trans. Chin. Soc. Agric. Mach. 2018, 49, 90–96. [Google Scholar]
- Gao, X.; Xie, G.; Xu, Y. Application of a staggered symmetrical spiral groove wheel on a quantitative feeding device and investigation of particle motion characteristics based on DEM. Powder Technol. 2022, 407, 117650. [Google Scholar] [CrossRef]
- Gao, X.; Zhou, Z.; Xu, Y. Numerical simulation of particle motion characteristics in a quantitative seed feeding system. Powder Technol. 2020, 367, 643–658. [Google Scholar] [CrossRef]
- Gao, X.; Cui, T.; Zhou, Z. DEM study of particle motion in a novel high-speed seed metering device. Adv. Powder Technol. 2021, 32, 1438–1449. [Google Scholar] [CrossRef]
- Zhan, S.; Li, Y.; Dong, Y. Simulation of rice threshing performance with concentric and non-concent-ric threshing gaps. Biosyst. Eng. 2020, 197, 270–284. [Google Scholar]
- Li, X.; Du, Y.; Liu, L. Research on the constitutive model of low-damage corn threshing based on DEM. Comput. Electron. Agric. 2022, 194, 106722. [Google Scholar] [CrossRef]
Item | Poisson’s Ratio | Shear Modulus/(Mpa) | Density/(kg·m−3) |
---|---|---|---|
Ratoon rice | 0.30 | 26 | 1300 |
Short straw | 0.40 | 10 | 100 |
Polyurethane | 0.28 | 0.027 | 1072 |
Threshing device | 0.30 | 70,000 | 7800 |
Item | Restitution Coefficient | Static Friction Coefficient | Rolling Friction Coefficient |
---|---|---|---|
Grain-grain | 0.2 | 1.0 | 0.03 |
Grain-short straw | 0.2 | 0.8 | 0.02 |
Grain-threshing device | 0.5 | 0.58 | 0.04 |
Short straw-short straw | 0.2 | 0.90 | 0.01 |
Short straw-threshing device | 0.2 | 0.8 | 0.02 |
Grain-polyurethane | 0.4 | 0.5 | 0.01 |
Short straw-polyurethane | 0.35 | 0.4 | 0.05 |
Item | Group | Rigid Rod Teeth | Flexible Rod Teeth | Rigid–Flexible Coupling Rod Teeth | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Threshing drum speed/(r/min) | / | 650 | 750 | 850 | 650 | 750 | 850 | 650 | 750 | 850 |
Average normal impact force/N | 1 | 313.57 | 338.45 | 342.78 | 208.74 | 211.37 | 209.57 | 258.53 | 285.12 | 298.64 |
2 | 345.48 | 361.12 | 357.54 | 227.36 | 230.21 | 235.63 | 267.73 | 293.34 | 321.51 | |
3 | 376.83 | 387.64 | 402.06 | 256.80 | 253.07 | 272.62 | 289.04 | 312.84 | 356.32 | |
4 | 389.38 | 414.77 | 417.12 | 273.46 | 278.53 | 276.23 | 319.30 | 333.83 | 368.77 | |
5 | 372.82 | 383.42 | 415.43 | 270.33 | 268.63 | 275.84 | 292.64 | 308.22 | 345.15 | |
6 | 325.51 | 358.33 | 386.12 | 264.31 | 253.27 | 268.34 | 275.23 | 286.75 | 337.66 | |
Average tangential impact force/N | 1 | 103.87 | 110.62 | 121.35 | 83.66 | 82.14 | 85.73 | 89.72 | 93.68 | 99.52 |
2 | 117.16 | 128.72 | 126.56 | 96.32 | 100.18 | 115.52 | 104.73 | 107.56 | 117.68 | |
3 | 124.81 | 131.27 | 139.50 | 105.30 | 110.64 | 117.31 | 118.28 | 117.38 | 121.64 | |
4 | 132.68 | 138.83 | 145.83 | 113.77 | 121.36 | 126.84 | 122.92 | 125.37 | 135.56 | |
5 | 123.57 | 130.73 | 133.63 | 107.32 | 116.64 | 121.38 | 118.80 | 121.83 | 128.52 | |
6 | 106.33 | 126.03 | 130.88 | 76.85 | 86.68 | 83.54 | 86.75 | 98.42 | 111.16 |
Code | Drum Speed X1/(r·min−1) | Flexible Body Thickness X2/(mm) | Rod Tooth Length X3/(mm) |
---|---|---|---|
−1.682 | 650 | 2 | 50 |
−1 | 690 | 2.8 | 58.1 |
0 | 750 | 4 | 70 |
1 | 809 | 5.2 | 81.9 |
1.682 | 850 | 6 | 90 |
No. | Factor | Result | ||||
---|---|---|---|---|---|---|
Drum Speed X1/(r·min−1) | Flexible Body Thickness X2/(mm) | Rod Tooth Length X3/(mm) | Y1/% | Y2/% | Y3/% | |
1 | −1 | −1 | −1 | 1.92 | 1.90 | 3.21 |
2 | 1 | −1 | −1 | 2.14 | 3.40 | 0.92 |
3 | −1 | 1 | −1 | 1.45 | 1.40 | 1.95 |
4 | 1 | 1 | −1 | 1.67 | 1.60 | 2.81 |
5 | −1 | −1 | 1 | 3.32 | 3.25 | 2.27 |
6 | 1 | −1 | 1 | 1.54 | 3.60 | 0.61 |
7 | −1 | 1 | 1 | 2.35 | 2.35 | 4.15 |
8 | 1 | 1 | 1 | 1.71 | 2.45 | 2.73 |
9 | −1.682 | 0 | 0 | 0.97 | 1.25 | 4.71 |
10 | 1.682 | 0 | 0 | 1.35 | 4.15 | 0.74 |
11 | 0 | −1.682 | 0 | 2.31 | 1.90 | 0.95 |
12 | 0 | 1.682 | 0 | 2.17 | 1.05 | 3.82 |
13 | 0 | 0 | −1.682 | 2.22 | 1.10 | 2.84 |
14 | 0 | 0 | 1.682 | 1.24 | 4.35 | 0.92 |
15 | 0 | 0 | 0 | 0.77 | 1.35 | 1.97 |
16 | 0 | 0 | 0 | 1.19 | 1.45 | 2.22 |
17 | 0 | 0 | 0 | 1.55 | 0.75 | 2.17 |
18 | 0 | 0 | 0 | 2.53 | 1.25 | 1.95 |
19 | 0 | 0 | 0 | 0.81 | 0.80 | 1.86 |
20 | 0 | 0 | 0 | 3.40 | 1.70 | 1.63 |
21 | 0 | 0 | 0 | 1.54 | 1.95 | 1.45 |
22 | 0 | 0 | 0 | 2.38 | 1.30 | 1.85 |
23 | 0 | 0 | 0 | 3.11 | 1.40 | 1.61 |
Variance Source | Crushing Rate | Entrainment Loss Rate | Uncleaned Rate | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Square Sum | Freedom Degree | F | p | Square Sum | Freedom Degree | F | p | Square Sum | Freedom Degree | F | p | |
Model | 1906.13 | 9 | 27.06 | <0.0001 ** | 449.14 | 9 | 10.85 | 0.0001 ** | 562.27 | 9 | 10.67 | <0.0001 ** |
X1 | 151.19 | 1 | 19.32 | 0.0005 ** | 17.54 | 1 | 3.81 | 0.0424 * | 65.74 | 1 | 11.21 | <0.0001 ** |
X2 | 193.49 | 1 | 24.72 | 0.0011 ** | 32.92 | 1 | 7.16 | 0.0166 * | 66.78 | 1 | 11.39 | <0.0001 ** |
X3 | 106.34 | 1 | 13.59 | 0.0028 ** | 15.64 | 1 | 19.46 | 0.0007 ** | 40.42 | 1 | 6.89 | 0.021 * |
X1×2 | 12.01 | 1 | 1.53 | 0.2327 | 1.53 | 1 | 1.03 | 0.5738 | 4.96 | 1 | 0.85 | 0.3744 |
X1×3 | 47.04 | 1 | 6.01 | 0.0291 * | 43.71 | 1 | 0.67 | 0.0087 ** | 0.061 | 1 | 0.01 | 0.9202 |
X2×3 | 11.05 | 1 | 1.41 | 0.234 | 3.78 | 1 | 0.027 | 0.3811 | 27.75 | 1 | 4.73 | 0.0486 * |
X12 | 360.07 | 1 | 46.01 | <0.0001 ** | 70.64 | 1 | 14.3 | 0.0023 ** | 108.26 | 1 | 18.24 | 0.0017 ** |
X22 | 468.86 | 1 | 59.91 | <0.0001 ** | 93.58 | 1 | 0.35 | 0.0006 ** | 139.92 | 1 | 23.86 | 0.0097 ** |
X32 | 574.97 | 1 | 73.47 | <0.0001 ** | 174.15 | 1 | 14.80 | 0.0020 ** | 113.02 | 1 | 19.35 | 0.0007 ** |
Residual | 13.90 | 5 | 0.25 | 15.51 | 5 | 14.67 | 5 | |||||
Lack of fit | 87.84 | 8 | 2.03 | 0.1788 | 44.28 | 8 | 3.62 | 0.0534 | 61.42 | 8 | 3.39 | 0.0632 |
Error | 2007.88 | 22 | 508.93 | 22 | 638.36 | 22 | ||||||
Sum | 1906.13 | 9 | 27.06 | 449.14 | 9 | 562.27 | 9 |
Item | Simulation Result | Bench Test (Ratoon Rice) | ||
---|---|---|---|---|
Rigid–Flexible Coupling Threshing Device (After Parameter Optimization) | Traditional Threshing Device | Change Rate/% | ||
Crushing rate/% | 1.132 | 1.260 | 2.842 | 55.7 |
Entrainment loss rate/% | 1.963 | 2.132 | 2.943 | 27.5 |
Uncleaning rate/% | 1.114 | 1.237 | 2.482 | 50.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Chen, X.; Zeng, S. Design and Parameter Optimization of a Rigid–Flexible Coupled Rod Tooth Threshing Device for Ratoon Rice Based on MBD-DEM. Agriculture 2024, 14, 2083. https://doi.org/10.3390/agriculture14112083
Liu W, Chen X, Zeng S. Design and Parameter Optimization of a Rigid–Flexible Coupled Rod Tooth Threshing Device for Ratoon Rice Based on MBD-DEM. Agriculture. 2024; 14(11):2083. https://doi.org/10.3390/agriculture14112083
Chicago/Turabian StyleLiu, Weijian, Xuegeng Chen, and Shan Zeng. 2024. "Design and Parameter Optimization of a Rigid–Flexible Coupled Rod Tooth Threshing Device for Ratoon Rice Based on MBD-DEM" Agriculture 14, no. 11: 2083. https://doi.org/10.3390/agriculture14112083
APA StyleLiu, W., Chen, X., & Zeng, S. (2024). Design and Parameter Optimization of a Rigid–Flexible Coupled Rod Tooth Threshing Device for Ratoon Rice Based on MBD-DEM. Agriculture, 14(11), 2083. https://doi.org/10.3390/agriculture14112083