Diversity of Honeybee Behavior Is a Potential Inbuilt Trait for Varroa Tolerance: A Basic Tool for Breeding Varroa-Resistant Strains
Abstract
:1. Introduction
2. Evolutionary Biology of V. destructor and Their Host–Parasite Interaction
3. Survivability of Honeybee Colonies Under the Infestation of V. destructor
4. Natural Defense Mechanisms Against V. destructor and Integrated Pest Management (IPM) Strategies to Control the Parasite
4.1. Mechanical and Cultural Approach
4.2. Chemical Approach
5. Behavioral Traits of Honeybees Immune to V. destructor
5.1. Hygienic Behavior Against V. destructor
5.2. Grooming Behavior of Honeybees’ Resilience to V. destructor
5.3. Duration of Post-Capping Brood Stage on the Development of V. destructor
5.4. Suppressed Mite Reproduction as a Defense Mechanism Against V. destructor
6. Way Forward for Breeding Honeybee Stocks with Resistant Traits Against V. destructor
- Practicing good colony management: In all apiaries, colony management is a fundamental strategy for a successful beekeeping. Colony management tools and practices are complex because they depend on both individuals and ecology. However, some particular rules of thumb are implemented in most apiaries. Generally, practicing good colony management at different times of the year is critical in controlling some ectoparasites of honeybees. For instance, colony performance can be improved through good management practices that may delay the reproduction of V. destructor during spring and summer. It is important to understand the biology of V. destructor and evaluate the infestation level during each season of the year to mitigate treatment efficacy and prevent bees from possible chemical exposure. Hence, it is necessary to implement a strategic management plan for V. destructor and disseminate it to beekeepers and other scientists. This is because the range of V. destructor is not an individual issue; rather, it is a common fight to limit the spread of the parasite. Complementary to these key points, Giacobino et al. [118] highlighted key management practices to prevent high infestation levels of V. destructor in honeybee colonies at the beginning of the honey yield season. According to the varroa management plan of the National Bee Unit (NBU) of the United Kingdom [119] and the varroa mite transmission to management (T2M) plan of Australia [39], V. destructor cannot be completely eradicated. However, beekeepers must successfully keep productive bees despite the presence of V. destructor. The main strategy to accomplish this is for beekeepers to survey and report all possible infestations in a colony in a timely manner and to apply appropriate control measures to keep the population of V. destructor below the threshold.
- Selective breeding for V. destructor tolerance: Earlier, we highlighted the effects of chemical treatment on honeybee colonies. Due to the heritability of the immune-related traits of honeybees and their potential in overcoming the effects of V. destructor, it is necessary to evaluate the traits related to V. destructor. One possible way to preserve the immune-related traits of honeybees is through selective breeding. The complexity of the mating behavior of honeybees and the difficulties that arise in selecting breeding sites has made it hard for beekeepers to preserve breeding lines over many generations. To accomplish this task, suitable breeding sites for maintaining honeybee genetic resources are being proposed. Recently, Akongte et al. [120] explained the possibilities of breeding and maintaining honeybee colonies in isolated mating stations with diverse characteristics. Therefore, it is recommended for beekeepers to select honeybee colonies with a slow reproduction rate of V. destructor and breed through subsequent generations while evaluating their tolerance efficacy.
- Adoption of associated measures: To successfully fight a parasite, multiple approaches must be combined to increase the efficacy of each approach. For V. destructor, selective breeding of resistant lines is fast-developing, and chemical treatments should not be forgotten. An ideal situation is to associate resistant honeybee colonies with a recommended soft chemical treatment (thymol and oxalic acid); this may weaken V. destructor and improve the efficacy of the colony in slowing down mite reproduction. Also, we recommend that, after selecting resistant strains, soft chemical treatment should be applied at the early stage of the honey flow season before rapid mite reproduction. We expect that soft chemical treatment may hinder the fertility of V. destructor and create conditions in which the resistant honeybee strains can completely neutralize the rest of the population.
- Implementation of legislative measures: Another most important way to limit the spread of V. destructor is to practice common legislation. Many beekeeping associations should strengthen their capacity and build stronger legislations to fight against V. destructor. For instance, existing associations, including COLOSS, National Bee Units in many countries, European Community and UK Legislation, Bee Diseases Insurance, World Organization for Animal Health, International Bee Research Association, and many others, should build farmers’ knowledge of the dangers of V. destructor and disseminate information on the possible measures available. Also, common control measures should be adopted based on the ecology and season to limit further spread of the parasite. Available resources should be put in place to produce and disseminate soft chemicals and resistant strains to beekeepers under the same geographical region.
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cremer, S.; Armitage, S.A.; Schmid-Hempel, P. Social immunity. Curr. Biol. 2007, 17, R693–R702. [Google Scholar] [CrossRef] [PubMed]
- Mondet, F.; de Miranda, J.R.; Kretzschmar, A.; Le Conte, Y.; Mercer, A.R. On the front line: Quantitative virus dynamics in honeybee (Apis mellifera L.) colonies along a new expansion front of the parasite Varroa destructor. PLoS Pathog. 2014, 10, e1004323. [Google Scholar] [CrossRef] [PubMed]
- Traynor, K.S.; Mondet, F.; De Miranda, J.R.; Techer, M.; Kowallik, V.; Oddie, M.A.; Chantawannakul, P.; Mcafee, A. Varroa destructor: A complex parasite, crippling honey bees worldwide. Trends Parasitol. 2020, 36, 592–606. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.D.; Schwarz, R.S. Bees brought to their knees: Microbes affecting honey bee health. Trends Microbiol. 2011, 19, 614–620. [Google Scholar] [CrossRef]
- Kirrane, M.J.; de Guzman, L.I.; Holloway, B.; Frake, A.M.; Rinderer, T.E.; Whelan, P.M. Phenotypic and genetic analyses of the varroa sensitive hygienic trait in Russian honey bee (Hymenoptera: Apidae) colonies. PLoS ONE 2014, 10, e0116672. [Google Scholar] [CrossRef]
- Oddie, M.; Büchler, R.; Dahle, B.; Kovacic, M.; Le Conte, Y.; Locke, B.; de Miranda, J.R.; Mondet, F.; Neumann, P. Rapid parallel evolution overcomes global honey bee parasite. Sci. Rep. 2018, 8, 7704. [Google Scholar] [CrossRef]
- Büchler, R.; Kovačić, M.; Buchegger, M.; Puškadija, Z.; Hoppe, A.; Brascamp, E.W. Evaluation of traits for the selection of Apis mellifera for resistance against Varroa destructor. Insects 2020, 11, 618. [Google Scholar] [CrossRef]
- Dietemann, V.; Pflugfelder, J.; Anderson, D.; Charrière, J.-D.; Chejanovsky, N.; Dainat, B.; de Miranda, J.; Delaplane, K.; Dillier, F.-X.; Fuch, S.; et al. Varroa destructor: Research avenues towards sustainable control. J. Apic. Res. 2012, 51, 125–132. [Google Scholar] [CrossRef]
- Wagoner, K.M.; Millar, J.G.; Schal, C.; Rueppell, O. Cuticular pheromones stimulate hygienic behavior in the honey bee (Apis mellifera). Sci. Rep. 2020, 10, 7132. [Google Scholar] [CrossRef]
- Rosenkranz, P.; Aumeier, P.; Ziegelmann, B. Biology and control of Varroa destructor. J. Invertebr. Pathol. 2010, 103, S96–S119. [Google Scholar] [CrossRef]
- Warner, S.; Pokhrel, L.R.; Akula, S.M.; Ubah, C.S.; Richards, S.L.; Jensen, H.; Kearney, G.D. A scoping review on the effects of Varroa mite (Varroa destructor) on global honey bee decline. Sci. Total Environ. 2024, 906, 167492. [Google Scholar] [CrossRef] [PubMed]
- Aumeier, P.; Rosenkranz, P. Scent or movement of Varroa destructor mites does not elicit hygienic behavior by Africanized and Carniolan honey bees. Apidologie 2001, 32, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Schöning, C.; Gisder, S.; Geiselhardt, S.; Kretschmann, I.; Bienefeld, K.; Hilker, M.; Genersch, E. Evidence for damage-dependent hygienic behavior towards Varroa destructor-parasitised broods in the western honey bee, Apis mellifera. J. Exp. Biol. 2012, 215, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Seitz, N.; Traynor, K.S.; Steinhauer, N.; Rennich, K.; Wilson, M.E.; Ellis, J.D.; Rose, R.; Tarpy, D.R.; Sangili, R.R.; Caron, D.M.; et al. A national survey of managed honey bee 2014–2015 annual colony losses in the USA. J. Api. Res. 2015, 54, 292–302. [Google Scholar] [CrossRef]
- Lee, K.V.; Steinhauer, N.; Rennich, K.; Wilson, M.E.; Tarpy, D.R.; Caron, D.M.; Rose, R.; Delaplane, K.S.; Baylis, K.; Lengerich, E.J.; et al. A national survey of managed honey bee 2013–2014 annual colony losses in the USA. Apidologie 2015, 46, 292–305. [Google Scholar] [CrossRef]
- Annoscia, D.; Del Piccolo, F.; Nazzi, F. How does the mite Varroa destructor kill the honeybee Apis mellifera? Alteration of cuticular hydrcarbons and water loss in infested honeybees. J. Insect Physiol. 2012, 58, 1548–1555. [Google Scholar] [CrossRef]
- Nazzi, F.; Brown, S.P.; Annoscia, D.; Del Piccolo, F.; Di Prisco, G.; Varricchio, P.; Dela Vedova, G.; Cattonaro, F.; Caprio, F.; Pennacchio, F. Synergistic parasite-pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies. PLoS Pathog. 2012, 8, e1002735. [Google Scholar] [CrossRef]
- Boecking, O.; Spivak, M. Behavioral defenses of honey bees against Varroa jacobsoni Oud. Apidologie 1999, 30, 141–158. [Google Scholar] [CrossRef]
- Rath, W. Co-adaptation of Apis cerana Fabr. and Varroa jacobsoni Oud. Apidologie 1999, 30, 97–110. [Google Scholar]
- Büchler, R. Rate of damaged mites in natural mite fall with regard to seasonal effects and infestation development. Apidologie 1993, 24, 492–493. [Google Scholar]
- Büchler, R. Design and success of a German breeding program for Varroa tolerance. Am. Bee J. 2000, 140, 662–665. [Google Scholar]
- Rosenkranz, P.; Fries, I.; Boecking, O.; Stürmer, M. Damaged Varroa mites in the debris of honey bee (Apis mellifera L.) colonies with and without hatching brood. Apidologie 1997, 28, 427–437. [Google Scholar] [CrossRef]
- Bienefeld, K.; Zautke, F.; Pronin, D.; Mazeed, A. Recording the proportion of damaged Varroa jacobsoni Oud. in the debris of honey bee colonies (Apis mellifera). Apidologie 1999, 30, 249–256. [Google Scholar] [CrossRef]
- Rinderer, T.E.; Harris, J.W.; Hunt, G.J.; de Guzman, L.I. Breeding for resistance to Varroa destructor in North America. Apidologie 2010, 41, 409–424. [Google Scholar] [CrossRef]
- Genersch, E.; von der Ohe, W.; Kaatz, H.; Schroeder, A.; Otten, C.; Büchler, R.; Berg, S.; Ritter, W.; Mühlen, W.; Gisder, S.; et al. The German Bee Monitoring: A long term study to understand periodically high winter losses of honey bee colonies. Apidologie 2010, 41, 332–352. [Google Scholar] [CrossRef]
- Büchler, R.; Berg, S.; Le Conte, Y. Breeding for resistance to Varroa destructor in Europe. Apidologie 2010, 41, 393–408. [Google Scholar] [CrossRef]
- Bubnič, J.; Prešern, J.; Pietropaoli, M.; Cersini, A.; Moškrič, A.; Formato, G.; Manara, V.; Škerl, M.I.S. Integrated pest management strategies to control Varroa mites and their effects on viral loads in honey bee colonies. Insects 2024, 15, 115. [Google Scholar] [CrossRef]
- Le Conte, Y.; De Vaublanc, G.; Crauser, D.; Jeanne, F.; Rousselle, J.C.; Becard, J.M. Honey bee colonies that have survived Varroa destructor. Apidologie 2007, 38, 566–572. [Google Scholar] [CrossRef]
- Mondet, F.; Beaurepaire, A.; McAfee, A.; Locke, B.; Alaux, C.; Blanchard, S.; Danka, B.; Le Conte, Y. Honey bee survival mechanisms against the parasite Varroa destructor. A systematic review of phenotypic and genomic research efforts. Int. J. Parasitol. 2020, 50, 433–447. [Google Scholar] [CrossRef]
- Roth, M.A.; Wilson, J.M.; Tignor, K.R.; Gross, A.D. Biology and management of Varroa destructor (Mesostigmata: Varroidae) in Apis mellifera (Hymenoptera: Apidae) colonies. J. Integr. Pest Manag. 2020, 11, 1. [Google Scholar] [CrossRef]
- Deguine, J.P.; Aubertot, J.N.; Flor, R.J.; Lescourret, F.; Wyckhuys, K.A.; Ratnadass, A. Integrated pest management: Good intentions, hard realities. A review. Agron. Sustain. Dev. 2021, 41, 38. [Google Scholar] [CrossRef]
- Ramsey, S.D.; Ochoa, R.; Bauchan, G.; Gulbronson, C.; Mowery, J.D.; Cohen, A.; Lim, D.; Joklik, J.; Cicero, J.M.; Ellis, J.D. Varroa destructor feeds primarily on the fat body tissue and not hemolymph. Proc. Natl. Acad. Sci. USA 2019, 116, 1796–1801. [Google Scholar] [CrossRef] [PubMed]
- Techer, M.A.; Rane, R.V.; Grau, M.L.; Roberts, J.M.K.; Sullivan, S.T.; Liachko, I.; Childers, A.K.; Evans, J.D.; Mikheyev, A.S. Divergent selection following speciation in two ectoparasitic 2 honey bee mites. Commun. Biol. 2019, 2, 357. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.L.; Trueman, J.W.H. Varroa jacobsoni (Acari: Varroidae) is more than one species. Exp. Appl. Acarol. 2000, 24, 165–189. [Google Scholar] [CrossRef] [PubMed]
- Meisch, C. Die Varroa milbe. Geschichte der Ausbreitung, Portrait und Biologie. In Livre d’or du Centenaire 1886–1986; Fédération des unions d’apiculteurs du grand-duché de Luxembourg: Luxembourg, 1986; pp. 174–177. [Google Scholar]
- Han, B.; Wu, J.; Wei, Q.; Liu, F.; Cui, L.; Rueppell, O.; Xu, S. Life history stage determines the diet of ecto-parasitic mites on their honey bee hosts. Nat. Commun. 2024, 15, 725. [Google Scholar] [CrossRef]
- Webster, T.C.; Delaplane, K.S. Mites of the Honey Bee; Dadant and Sons, Inc.: Hamilton, IL, USA, 2001; p. 280. [Google Scholar]
- Sanford, M.T.; Demark, H.A.; Cromroy, H.L.; Cutts, L. Featured Creatures: Varroa Mite; University of Florida Institute of Food and Agricultural Science: Gainesville, FL, USA, 2007; Available online: https://ufdcimages.uflib.ufl.edu/IR/00/00/28/15/00001/IN16400.pdf (accessed on 19 July 2024).
- T2M. Australia National Varroa Mite Management Program. 2024. Available online: https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0003/1546905/One-page-summary-of-the-National-Varroa-Mite-Resposne-Plan-V4.0.pdf (accessed on 20 July 2024).
- CABI. Center for Agriculture and Bioscience International. 2024. Available online: https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.107784 (accessed on 9 June 2024).
- Peck, D.T.; Seeley, T.D. Mite bombs or robber lures? The roles of drifting and robbing in Varroa destructor transmission from collapsing honey bee colonies to their neighbors. PLoS ONE 2019, 14, e0218392. [Google Scholar] [CrossRef]
- Nalen, C.M.Z.; Ellis, J.D. Varroa destructor Anderson and Trueman (Arachnida: Acari: Varroidae). IFAS Extension, University of Florida. EENY-473. 2022. Available online: https://agrilife.org/masterbeekeeper/files/2017/04/Varroa-mite (accessed on 1 July 2024).
- Nazzi, F.; Le Contr, Y. Ecology of Varroa destructor. The major ectoparasite of the western honey bee, Apis mellifera. Ann. Rev. Entomol. 2016, 61, 417–432. [Google Scholar] [CrossRef]
- Li, A.Y.; Cook, S.C.; Sonenshine, D.E.; Posada-Florez, F.; Noble, N.I.I.; Mowery, J.; Gulbronson, C.J.; Bauchan, G.R. Insights into the feeding behaviors and biomechanics of Varroa destructor mites on honey bee pupae using electropenetrography and histology. J. Insect Physiol. 2019, 119, 103950. [Google Scholar] [CrossRef]
- Fera. Managing Varroa; Food and Environment Research Agency, Defra: Sand Hutton, UK, 2010; p. 38. [Google Scholar]
- Rosenkranz, P. Honey bee (Apis mellifera L.) tolerance to Varroa jacobsoni Oud. in South America. Apidologie 1999, 30, 159–172. [Google Scholar] [CrossRef]
- Allsopp, M. Analysis of Varroa destructor Infestation of Southern African Honeybee Populations. Ph.D. Dissertation, University of Pretoria, Pretoria, South Africa, 2006. [Google Scholar]
- Medina-Flores, C.A.; Guzmán-Novoa, E.; Hamiduzzaman, M.M.; Aréchiga-Flores, C.F.; López-Carlos, M.A. Africanized honey bees (Apis mellifera) havelow infestation levels of the mite Varroa destructorin different ecological regions in Mexico. Genet. Mol. Res. 2014, 13, 7282–7293. [Google Scholar] [CrossRef]
- Rinderer, T.E.; de Guzman, L.I.; Delatte, G.T.; Stelzer, J.A.; Lancaster, V.A.; Kuznetsov, V.; Beaman, L.; Watts, R.; Harris, J.W. Resistance to the parasitic mite Varroa destructor in honey bees from far-eastern Russia. Apidologie 2001, 32, 381–394. [Google Scholar] [CrossRef]
- Seeley, T.D. Honey bees of the Arnot Forest: A population of feral colonies persisting with Varroa destructor in the northeastern United States. Apidologie 2007, 38, 19–29. [Google Scholar] [CrossRef]
- Gebremedhn, H.; Amssalu, B.; Smet, L.D.; De Graaf, D.C. Factors restraining the population growth of Varroa destructor in Ethiopian honey bees (Apis mellifera simensis). PLoS ONE 2019, 14, e0223236. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, G.P.; Martin, S.J. Elevated recapping behavior and reduced Varroa destructor reproductive in natural Varroa resistant Apis mellifera honey bees from the UK. Apidologie 2021, 52, 647–657. [Google Scholar] [CrossRef]
- Ratnieks, F.L.; Carreck, N.L. Carreck, Clarity on honey bee collapse? Science 2010, 327, 152–153. [Google Scholar] [CrossRef]
- Morse, R.A.; Miksa, D.; Masenheimer, J.A. Varroa resistance in US honeybees. Am. Bee J. 1991, 131, 433–434. [Google Scholar]
- Råberg, L.; Graham, A.L.; Read, A.F. Decomposing health: Tolerance and resistance to parasites in animals. Philos. Trans. R. Soc. B. 2009, 364, 37–49. [Google Scholar] [CrossRef]
- Locke, B.; Forsgren, E.; de Miranda, J.R. Increase tolerance and resistance to virus infections: A possible factor to the survival of Varroa destructor-resistant honey bees (Apis millfera). PLoS ONE 2014, 9, e99998. [Google Scholar] [CrossRef]
- Yang, X.; Cox-Foster, D.L. Impact of an ectoparasite on the immunity and pathology of an invertebrate: Evidence for host immunosuppression and viral amplification. Proc. Natl. Acad. Sci. USA 2005, 102, 7470–7475. [Google Scholar] [CrossRef]
- Wilson-Rich, N.; Dres, S.T.; Starks, P.T. The ontogeny of immunity: Development of inate immune strength in the honey bee (Apis mellifera). J. Insect Physiol. 2008, 54, 1392–1395. [Google Scholar] [CrossRef]
- Tarpy, D.R.; Summers, J.; and Keller, J.J. Comparison of parasitic mites in Russian-Hybrid and Italian honey bee (Hymenoptera: Apidae) colonies across three different locations in north Carolina. J. Econ. Entomol. 2007, 100, 258–266. [Google Scholar] [CrossRef] [PubMed]
- de Guzman, L.I.; Rinderer, T.E.; Frake, A.M. Comparative reproduction of Varroa destructor in different types of Russian and Italian honey bee combs. Exp. Appl. Acarol. 2008, 44, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Kirrane, M.J.; de Guzman, L.I.; Whelan, P.M.; Frake, A.M.; Rinderer, T.E. Evaluations of the Removal of Varroa destructor in Russian Honey Bee Colonies that Display Different Levels of Varroa Sensitive Hygienic Activities. J. Insect Behav. 2018, 31, 283–297. [Google Scholar] [CrossRef]
- Guzman-Novoa, E.; Morfin, N. Disease resistance in honey bees (Apis mellifera L.) at the colony and individual levels. In Comprehensive Biotechnology, 3rd ed.; Moo-Young, M., Ed.; Elsevier Pergamon: Oxford, UK, 2019; pp. 811–817. [Google Scholar]
- Harbor, J.R.; Harris, J.W. Response to Varroa by honey bees with different levels of Varroa Sensitive Hygiene. J. Apic. Res. 2009, 48, 156–161. [Google Scholar] [CrossRef]
- Jack, C.J.; Ellis, J.D. Integrated pest management control of Varroa destructor (Acari: Varroidae), the most damaging pest of (Apis mellifera L. (Hymenoptera: Apidae)) colonies. J. Insect Sci. 2021, 21, 6. [Google Scholar] [CrossRef]
- Ellis, J.D.; Zettel-Nalen, C.M. Varroa, Varroa destructor Anderson and Truemen (Arachnida: Acari: Varroidae). 2022. Available online: http://edis.ifas.ufl.edu/publication/IN855 (accessed on 20 July 2024).
- Villa, J.D.; Danka, R.G.; Harris, J.W. Simplified methods of evaluating colonies for levels of Varroa Sensitive Hygiene (VSH). J. Apic. Res. 2009, 48, 162–167. [Google Scholar] [CrossRef]
- Panziera, D.; van Langevelde, F.; Blacquiere, T. Varroa sensitive hygiene contributes to naturally selected varroa resistance in honey bees. J. Apic. Res. 2017, 56, 635–642. [Google Scholar] [CrossRef]
- Oddie, M.A.Y.; Dahle, B.; Neumann, P. Reduced postcapping period in honey bees surviving Varroa destructor by means of natural selection. Insects 2018, 9, 149. [Google Scholar] [CrossRef]
- Harbo, J.R.; Harris, J.W. Suppressed mite reproduction explained by the behaviour of adult bees. J. Apic. Res. 2005, 44, 21–23. [Google Scholar] [CrossRef]
- Winston, M.L. The Biology of the Honey Bee; Havard University Press: Cambridge, UK, 1987. [Google Scholar]
- Erickson, E.H.; Lusby, D.A.; Hoffman, C.D.; Lusby, E.W. On the size of the cell: Speculations on foundation as a management colony tool. Bee Cult. 1990, 118, 98–101+173–174. [Google Scholar]
- Heaf, D. Do small cells help bees cope with Varroa? A review. Beekeep. Q. 2011, 104, 39–45. [Google Scholar]
- Olszewski, K.; Borsuk, G.; Paleolog, J.; Strachecka, A.; Bajda, M. Hygienic behaviour of colonies kept on small-cell combs. Med. Weter 2014, 70, 774–776. [Google Scholar]
- Oddie, M.A.Y.; Neumann, P.; Dahle, B. Cell size and Varroa destructor mite infestations in susceptible and naturallysurviving honeybee (Apis mellifera) colonies. Apidologie 2019, 50, 1–10. [Google Scholar] [CrossRef]
- Locke, B. Natural Varroa mite-surviving Apis mellifera honeybee populations. Apidologie 2016, 47, 467–482. [Google Scholar] [CrossRef]
- Noël, A.; Le Conte, Y.; Mondet, F. Varroa destructor. How does it harm Apis mellifera honey bees and what can be done about it? Emerg. Top. Life Sci. 2020, 4, 45–57. [Google Scholar] [CrossRef]
- Huang, Z. Varroa Mite Reproductive Biology. Bee Health. Michigan State University, Department of Entomology. 2019. Available online: https://bee-health.extension.org/varroa-mite-reproductive-biology/ (accessed on 15 June 2024).
- EPA. Integrated Pest Management (IPM) Principles. United States Environmental Protection Agency. 2023. Available online: https://www.epa.gov/safepestcontrol/integrated-pest-management-ipm-principles (accessed on 15 July 2024).
- Tihelka, E. Effects of synthetic and organic acaricides on honey bee health: A review. Slov. Vet. Res. 2018, 55, 119–140. [Google Scholar] [CrossRef]
- Ellis, J.D.; Zettel-Nalen, C.M. Varroa, Varroa Destructor. University of Florida. 2019. Available online: https://entnemdept.ufl.edu/creatures/misc/bees/varroa_mite.htm (accessed on 20 July 2024).
- Messan, K.; Messan, M.R.; Chan, J.; DeGrandi-Hoffman, G.; Kang, Y. Population dynamics of Varroa mite and honey bee: Effects of parasitism with age and seasonality. Ecol. Model. 2020, 440, 109359. [Google Scholar] [CrossRef]
- Medina-Flores, C.A.; Rojas, A.S.; Guzman-Novoa, E.; Gutiérrez, L.A. Population dynamics of the mite Varroa destructor in honey bee (Apis mellifera) colonies in a temperate semi-arid climate. Insects 2020, 15, 696. [Google Scholar] [CrossRef]
- van Buren, N.W.; Mariën, A.G.; Oudejans, R.C.; Velthuis, H.H. Perizin, an acaricide to combat the mite Varroa jacobsoni: Its distribution in and influence on the honey bee Apis mellifera. Physiol. Entomol. 1992, 17, 288–296. [Google Scholar] [CrossRef]
- Natti, A.; Büchler, R.; Charriere, J.D.; Friesd, I.; Helland, S.; Imdorf, A.; Korpela, S.; Kristiansen, P. Oxalic acid treatments for varroa control (review). Apiacta. 2003, 38, 81–87. [Google Scholar]
- Kayode, L.; Lizette, D.; Johnson, R.M.; Siegfried, B.D.; Ellis, M.D. Effect of amitraz on queen honey bee egg and brood development. Mellifera 2014, 14, 33–40. [Google Scholar]
- Coffey, M.F.; Breen, J. The efficacy and tolerability of Api-Bioal as a winter varroacide in a cool temperate climate. J. Apic. Res. 2016, 55, 65–73. [Google Scholar] [CrossRef]
- Truong, A.T.; Yoo, M.S.; Yun, B.R.; Kang, J.E.; Noh, J.; Hwang, T.J.; Seo, S.K.; Yoon, S.S.; Cho, Y.S. Prevalence and pathogen detection of Varroa and Tropilaelaps mites in Apis mellifera (Hymenoptera, Apidae) apiaries in South Korea. J. Apic. Res. 2022, 62, 804–812. [Google Scholar] [CrossRef]
- Mullin, C.A.; Frazier, M.; Frazier, J.L.; Ashcraft, S.; Simonds, R.; Van Engelsdorp, D.; Pettis, J.S. High levels of miticides and agrochemicals in North American apiaries: Implication for honey bee health. PLoS ONE 2010, 5, e9754. [Google Scholar] [CrossRef] [PubMed]
- Payne, A.N.; Walsh, E.M.; Rangel, J. Initial exposure of wax foundation to agrochemicals causes negligible effects on the growth and winter survival of incipient honey bee (Apis mellifera) colonies. Insects 2019, 10, 19. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Liu, F.; Sun, J.; Wei, Q.; Kang, W.; Wang, F.; Zhang, C.; Zhao, M.; Xu, S.; Han, B. Toxic effects of acaricide fenazaquin on development, hemolymph metabolome, and gut microbiome of honeybee (Apis mellifera) larvae. Chemosphere 2024, 358, 142207. [Google Scholar] [CrossRef]
- Underwood, R.; Lépez-Uribe, M. Methods to Control Varroa Mites: An Integrated Pest Management Approach. 2019. Available online: https://extension.psu.edu/methods-to-control-varroa-mites-an-integrated-pest-management-approach (accessed on 3 April 2024).
- Park, O.W. Disease resistance and American foulbrood. Am. Bee J. 1936, 74, 12–14. [Google Scholar]
- Woodrow, A.W.; Holst, E.C. The mechanism of colony resistance to American foulbrood. J. Ecn. Entomol. 1942, 35, 327–330. [Google Scholar] [CrossRef]
- Gilliam, M.; Taber, S.; Richardson, G.V. Hygienic behavior of honey bees in relation to chalk brood disease. Apidologie 1983, 14, 29–39. [Google Scholar] [CrossRef]
- Spivak, M.; Gilliam, M. Facultative expression of hygienic behaviour of honey bees in relation to disease resistance. J. Apic. Res. 1993, 32, 147–157. [Google Scholar] [CrossRef]
- Spivak, M.; Gilliam, M. Hygienic behaviour of honey bees and its application for control of brood diseases and varroa: Part II. Studies on hygienic behaviour since the Rothenbuhler era. Bee World 1998, 79, 169–186. [Google Scholar] [CrossRef]
- Boecking, O.; Dreschner, W. Response of Apis mellifera L colonies infested with Varroa jacobsoni Oud. Apidologie 1991, 22, 237–241. [Google Scholar] [CrossRef]
- Danka, R.G.; Harris, J.W.; Villa, J.D.; Dodds, G.E. Varying congruence of hygienic responses to Varroa destructor and freeze-killed brood among different types of honeybees. Apidologie 2013, 44, 447–457. [Google Scholar] [CrossRef]
- Moritz, R. A reevaluation of the two-locus model hygienic behavior in honey bees, Apis mellifera L. J. Hered. 1988, 79, 257–262. [Google Scholar] [CrossRef]
- Kefuss, J.; Taber, S.; Vanpoucke, J.; Rey, F. A practical method to test for disease resistance in honey bees. Am. Bee J. 1996, 136, 31–32. [Google Scholar]
- Harbo, J.R.; Harris, J.W. Heritability in honey bees (Hymenoptera: Apidae) of characteristics associated with resistance to Varroa jacobsoni (Mesostigmata: Varroidae). J. Econ. Entomol. 1999, 92, 5. [Google Scholar] [CrossRef]
- Spivak, M.; Reuter, G.S.; Lee, K.; Ranum, B. The future of the MN hygienic stock of bees is in good hands! Am. Bee J. 2009, 149, 965–967. [Google Scholar]
- Büchler, R.; Andonov, S.; Bienefeld, K.; Costa, C.; Hatjina, F.; Kezic, N.; Kryger, P.; Spivak, M.; Uzunov, A.; Wilde, J. Standard methods for rearing and selection of Apis mellifera queens. J. Apic. Res. 2013, 52, 1–30. [Google Scholar] [CrossRef]
- Wagoner, K.M.; Spivak, M.; Rueppell, O. Brood Affects Hygienic Behavior in the Honey Bee (Hymenoptera: Apidae). J. Econ. Entomol. 2018, 111, 2520–2530. [Google Scholar] [CrossRef]
- Aumeier, P. Bioassay for grooming effectiveness towards Varroa destructor mites in Africanized and Carniolan honey bees. Apidologie 2001, 32, 81–90. [Google Scholar] [CrossRef]
- Thakur, R.K.; Bienefeld, K.; Keller, R. Varroa defense behavior in A. mellifera carnica. Am. Bee J. 1997, 2, 143–148. [Google Scholar]
- Kruitwagen, A.; Langevelde, F.V.; Dooremalen, C.V.; Blacquière, T. Natural selected honey bee (Apis mellifera) colonies resistant to Varroa destructor do not groom more intensively. J. Apic. Res. 2017, 56, 354–365. [Google Scholar] [CrossRef]
- Kirrane, M.J.; de Guzman, L.I.; Rinderer, T.E.; Frake, A.M.; Wagnitz, J.; Whelan, P.M. Age and reproductive status of adult varroa mites affect grooming success of honey bees. Exp. Appl. Acarol. 2012, 58, 423–430. [Google Scholar] [CrossRef]
- Carreck, N.L. Breeding honey bees for varroa tolerance. In Varroa Still a Prolem in the 21st Century? Carreck, N.L., Ed.; International Bee Research Association: Cardiff, UK, 2011; Volume 63–69, pp. 43–52. ISBN 978-0-86098-268-5. [Google Scholar]
- Invernizzi, C.; Zefferino, I.; Santos, E.; Sa’nchez, L.; Mendoza, Y. Multilevel assessment of grooming behavior against Varroa destructor in Italian and Africanized honey bees. J. Apic. Res. 2016, 54, 321–327. [Google Scholar] [CrossRef]
- Dadoun, N.; Nait-Mouloud, M.; Mohammei, A.; Zennouche, O.S. Differences in grooming behavior between susceptible and resistant honey bee colonies after 13 years of natural selection. Apidologie 2020, 51, 793–801. [Google Scholar] [CrossRef]
- Stanimirovič, Z.; Stevanović, J.; Aleksić, N.; Stojíc, V. Heritability of grooming behaviour in grey honey bees (Apis mellifera carnica). Acta. Vet. Brno 2010, 60, 313–323. [Google Scholar] [CrossRef]
- Moretto, G.; Gonçalves, L.S.; De Jong, D. Heritability of Africanized and European honey bee defensive behavior against the mite Varroa jacobsoni. Rev. Bras. Genet. 1993, 16, 71–77. [Google Scholar]
- Alphen, J.J.M.V.; Fernhout, B.J. Natural selection, selective breeding, and the evolution of resistance of honeybees (Apis mellifera) against varroa. Zool. Lett. 2020, 6, 6. [Google Scholar] [CrossRef]
- Büchler, R.; Drescher, W. Variance and heritability of the capped developmental stage in European Apis mellifera L. colonies and its correlation with increased Varroa jacobsoni Oud. infestation. J. Apic. Res. 1990, 29, 172–176. [Google Scholar] [CrossRef]
- Rosenkranz, P.; Frey, E.; Odemer, R.; Mougel, F.; Solignac, M.; Locke, B. Variance of the reproduction of the parasitic mite Varroa destructor and its significance for host resistance at the individual level. In Proceedings of the Abstracts 41, Apimondia Congress, Montpellier, France, 15–20 September 2009; p. 96. [Google Scholar]
- Oddie, M.A.Y.; Dahle, B.; Neumann, P. Norwegian honey bees surviving Varroa destructor mite infestations by means of natural selection. PeerJ 2017, 5, e3956. [Google Scholar] [CrossRef]
- Giacobino, A.; Molineri, A.; Cognolo, N.B.; Merke, J.; Orellano, E.; Bertozi, E.; Masciangelo, G.; Pietronave, H.; Pacini, A.; Salto, C.; et al. Key management practices to prevent high infestation levels of V. destructor in honey bee colonies at the beginning of the honey yield season. Prev. Vet. Med. 2016, 131, 95–102. [Google Scholar] [CrossRef] [PubMed]
- National Bee Unit of the United Kingdom (NBU). The National Bee Unit, Managing Varroa. Animal and Plant Health Agency. 2024. Available online: www.gov.uk/apha (accessed on 28 July 2024).
- Akongte, P.N.; Park, B.S.; Son, M.; Lee, C.H.; Oh, D.; Choi, Y.S.; Kim, D. The influence of environmental factors on site selection augment breeding success in honey bees: An insight of honey bee genetic resource conservation. Biology 2024, 13, 444. [Google Scholar] [CrossRef] [PubMed]
- Bienefeld, K.; Pirchner, F. Heritabilities for several colony traits in the honeybee Apis mellifera carnica. Apidologie 1990, 21, 175–184. [Google Scholar] [CrossRef]
- Oxley, P.R.; Hinhumpatch, P.; Gloag, R.; Oldroyd, B.P. Genetic evaluation of a novel system for controlled mating of the honey bee, Apis mellifera. J. Hered. 2010, 101, 334–338. [Google Scholar] [CrossRef] [PubMed]
Honeybee Immune-Related Traits to V. destructor | Evaluation of V. destructor Immune-Related Traits of Honeybees | Effects of Immune-Related Traits on the Development of V. destructor | References |
---|---|---|---|
Hygienic behavior (HB) | Pin-killed brood assay. | Have the potentials of removing diseased brood or V. destructor-infested pupae from cells. | Boecking and Spivak [18]; Guzman-Novoa and Morfin [62]; Harbo and Harris [63]; Jack and Ellis [64]; Ellis and Zettel-Nalen [65]. |
Freeze-killed brood assay. | |||
Varroa sensitive hygiene (VSH) | Percentage of uncapping and removal of V. destructor-infested broods; can also be tested by pin-killed and freeze-killed brood assays. | Identification and removal of V. destructor-infested pupae from cells. | Harbo and Harris [63]; Villa et al. [66]; Panziera et al. [67]; Jack and Ellis [64]; Ellis and Zettel-Nalen [65]. |
Grooming behavior | Ability of worker bees to remove mites from their bodies; ability of worker bees to bite and injure mites on their bodies; degree of beating wings and legs when mites are placed on their bodies. | Increases the proportion of damaged mites and reduces the tendency of rapid mite reproduction. | Jack and Ellis [64]; Mondet et al. [29]; Ellis and Zettel-Nalen [65]. |
Post-capping brood period/post-capping brood duration | The period taken for brood to cap and the duration from capping to emergence. | A shorter post-capping period is capable of preventing the mites from penetrating into the brood’s cells as well as shortening their development due to early emergence. | Rosenkranz et al. [10]; Oddie et al. [68]. |
Suppressed mite reproduction | Incidence of non-reproduction of mites in capped cells; population development of the mite per colony, which can be evaluated by using powdered sugar, opening broods, and counting the number of mites. | High incidence of non-reproduction of V. destructor; capable of interrupting and possibly stopping mite reproduction. | Mondet et al. [29]; Harbo and Harris [69]. |
Small cell size | Natural cell size with non-foundation-based frame. | Shorter development periods of the bees may lower the reproductive success of V. destructor and male absence in susceptible colonies. | Winston [70]; Erickson et al. [71]; Heaf [72]; Olszewski et al. [73]; Oddie et al. [74]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akongte, P.N.; Oh, D.; Lee, C.; Choi, Y.; Kim, D. Diversity of Honeybee Behavior Is a Potential Inbuilt Trait for Varroa Tolerance: A Basic Tool for Breeding Varroa-Resistant Strains. Agriculture 2024, 14, 2094. https://doi.org/10.3390/agriculture14112094
Akongte PN, Oh D, Lee C, Choi Y, Kim D. Diversity of Honeybee Behavior Is a Potential Inbuilt Trait for Varroa Tolerance: A Basic Tool for Breeding Varroa-Resistant Strains. Agriculture. 2024; 14(11):2094. https://doi.org/10.3390/agriculture14112094
Chicago/Turabian StyleAkongte, Peter Njukang, Daegeun Oh, Changhoon Lee, Yongsoo Choi, and Dongwon Kim. 2024. "Diversity of Honeybee Behavior Is a Potential Inbuilt Trait for Varroa Tolerance: A Basic Tool for Breeding Varroa-Resistant Strains" Agriculture 14, no. 11: 2094. https://doi.org/10.3390/agriculture14112094
APA StyleAkongte, P. N., Oh, D., Lee, C., Choi, Y., & Kim, D. (2024). Diversity of Honeybee Behavior Is a Potential Inbuilt Trait for Varroa Tolerance: A Basic Tool for Breeding Varroa-Resistant Strains. Agriculture, 14(11), 2094. https://doi.org/10.3390/agriculture14112094