Assessing the Genotype-by-Environment G×E Interaction in Desi Chickpea via the Bayesian Additive Main Effects and Multiplicative Interaction Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Statistical Model
2.3. Bayesian Framework
2.4. Software
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hirst, K.K. The Domestication History of Chickpeas; ThoughtCo, Dotdesh Meredith. 2016. Available online: https://www.thoughtco.com/the-domestication-history-of-chickpeas-170654/ (accessed on 18 July 2022).
- Zohary, D.; Hopf, M. Domestication of Plants in the Old World: The Origin and Spread of Cultivated Plants in West Asia, Europe and the Nile Valley, 3rd ed.; Oxford University Press: Oxford, UK, 2000; ISBN 0198503563. [Google Scholar]
- FAO. Crops. Available online: http://www.fao.org/faostat/en/#data/QC/ (accessed on 22 August 2023).
- PBS. Pakistan Statistical Yearbook 2023. In Pakistan Bureau of Statistics (PBS), Ministry of Food Security & Research; Government of Pakistan: Islamabad, Pakistan, 2023; pp. 19–30. Available online: https://mnfsr.gov.pk/PublicationDetail/OTRjNDA0M2QtYjE4My00NzA1LThhNDMtMmNmZjg5YjBmZTAy (accessed on 29 September 2023).
- Raja, S.; Tauqir, A.; Qureshi, T.; Rana, A.W. Khyber Pakhtunkhwa Food Outlook Report Rabi Crops 2021–2022; International Food Policy Research Institute: Washington, DC, USA, 2022. [Google Scholar] [CrossRef]
- Velu, G.; Shunmugavalli, N. Genotype × environment interaction in sesame (Sesamum indicum L.). Sesame Safflower Newsl. 2005. Available online: https://www.cabdirect.org/cabdirect/abstract/20093312604 (accessed on 2 October 2023).
- Crossa, J. Statistical analyses of multilocation trials. Adv. Agron. 1990, 44, 55–85. [Google Scholar] [CrossRef]
- Purchase, J.L.; Hatting, H.; Van Deventer, C.S. Genotype × environment interaction of winter wheat (Triticum aestivum L.) in South Africa: II. Stability analysis of yield performance. S. Afr. J. Plant Soil 2000, 17, 101–107. [Google Scholar] [CrossRef]
- Hosseini, N.M.; Palta, J.A.; Berger, J.D.; Siddique, K.H.M. Sowing soil water content effects on chickpea (Cicer arietinum L.): Seedling emergence and early growth interaction with genotype and seed size. Agric. Water Manag. 2009, 96, 1732–1736. [Google Scholar] [CrossRef]
- Maiti, R.K.; Moreno-Limon, S. Seed and seedling traits in bean (Phaseolus vulgaris L.) and its relation to abiotic stress resistance. Legum. Res. Int. J. 2001, 24, 211–221. [Google Scholar]
- Falconer, D.S. Introduction to Quantitative Genetics, 2nd ed.; Longman Group Ltd.: London, UK, 1981; pp. 1–133. [Google Scholar] [CrossRef]
- Farshadfar, E.; Sadeghi, M. GGE biplot analysis of genotype × environment interaction in wheat-agropyron disomic addition lines. Agric. Commun. 2014, 2, 1–7. Available online: https://api.semanticscholar.org/CorpusID:43589803 (accessed on 11 October 2023).
- Gauch, H.G., Jr.; Zobel, R.W. Optimal Replication in Selection Experiments. Crop Sci. 1996, 36, 838–843. [Google Scholar] [CrossRef]
- Gauch, H.G., Jr. Statistical analysis of yield trials by AMMI and GGE. Crop Sci. 2006, 46, 1488–1500. [Google Scholar] [CrossRef]
- Luo, J.; Pan, Y.B.; Que, Y.; Zhang, H.; Grisham, M.P.; Xu, L. Biplot evaluation of test environments and identification of mega-environment for sugarcane cultivars in China. Sci. Rep. 2015, 5, 15505. [Google Scholar] [CrossRef] [PubMed]
- Crossa, J.; Perez-Elizalde, S.; Jarquin, D.; Cotes, J.M.; Viele, K.; Liu, G.; Cornelious, P.L. Bayesian estimation of the additive main effects and multiplicative interaction model. Crop Sci. 2011, 51, 1458–1469. [Google Scholar] [CrossRef]
- Bernardo, L.A.Y., Jr.; de Silva, C.P.; de Oliveira, L.A.; Nuvunga, J.J.; Pires, L.P.M.; Von Pinho, R.G.; Balestre, M. AMMI Bayesian models to study stability and adaptability in maize. Agron. J. 2018, 110, 1765–1776. [Google Scholar] [CrossRef]
- Antonio de Oliveira, L.; Pereira da Silva, C.; Nuvunga, J.J.; Da Silva, A.Q.; Balestre, M. Credible intervals for scores in the AMMI with random effects for genotype. Crop Sci. 2015, 55, 465–476. [Google Scholar] [CrossRef]
- Foyer, C.H.; Lam, H.M.; Nguyen, H.T.; Siddique, K.H.M.; Varshney, R.K.; Colmer, T.D.; Cowling, W.; Bramley, H.; Mori, T.A.; Hodgson, J.M.; et al. Neglecting legumes has compromised human health and sustainable food production. Nat. Plants 2016, 2, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sadras, V.O.; Lake, L.; Li, Y.; Farquharson, E.A.; Sutton, T. Phenotypic plasticity and its genetic regulation for yield, nitrogen fixation and δ13C in chickpea crops under varying water regimes. J. Exp. Bot. 2016, 67, 4339–4351. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Chauhan, Y.; Dalal, R.; Schmidt, S. Chapter 9—Chickpea. In The Beans and the Peas; Pratap, A., Gupta, S., Eds.; Woodhead Publishing: Cambridge, UK, 2021; pp. 173–215. ISBN 978-0-12-821450-3. [Google Scholar]
- Dia, M.; Wehner, T.; Hassell, R.; Price, D.S.; Boyhan, G.; Olson, S.; King, S.; Davis, A.; Tolla, G.; Bernier, J.; et al. Mega-environment identification for watermelon yield testing in the US. In Proceedings of the Cucurbitaceae 2012, Proceedings of the Xth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae, Antalya, Turkey, 15–18 October 2012; University of Cukurova: Adana, Turkey, 2012; pp. 385–390. [Google Scholar]
S. No. | Genotypes | Parentage | Source | S. No. | Genotypes | Parentage | Source |
---|---|---|---|---|---|---|---|
1 | UAP-11221 | ICC-19181 × NDC-4-20-4 | UAP | 19 | ICC-14831 | RSB200 | ICRISAT |
2 | UAP-12113 | ICC-19181 × NDC-4-20-4 | UAP | 20 | ICC-19181 | ICC 435 | ICRISAT |
3 | UAP-12122 | ICC-19181 × NDC-4-20-4 | UAP | 21 | NDC-122 | C-44 × ILC-195 | NIFA |
4 | UAP-12412 | ICC-19181 × NDC-4-20-4 | UAP | 22 | NDC-15-01 | PB-91/M | NIFA |
5 | UAP-12531 | ICC-19181 × NDC-4-20-4 | UAP | 23 | NDC-15-4-0 | PB-91/M | NIFA |
6 | UAP-13642 | ICC-19181 × NDC-4-20-4 | UAP | 24 | NDC-4-20-2 | C-44/M | NIFA |
7 | UAP-14253 | ICC-19181 × NDC-4-20-4 | UAP | 25 | NDC-4-20-3 | C-44/M | NIFA |
8 | UAP-14322 | ICC-19181 × NDC-4-20-4 | UAP | 26 | NDC-4-20-4 | C-44/M | NIFA |
9 | UAP-14462 | ICC-19181 × NDC-4-20-4 | UAP | 27 | NDC-4-20-5 | C-44/M | NIFA |
10 | UAP-14531 | ICC-19181 × NDC-4-20-4 | UAP | 28 | NDC-4-20-6 | C-44/M | NIFA |
11 | UAP-15332 | ICC-19181 × NDC-4-20-4 | UAP | 29 | NDC-4-20-40 | C-44/M | NIFA |
12 | UAP-15421 | ICC-19181 × NDC-4-20-4 | UAP | 30 | SL-08-14 | Local | ARSK |
13 | UAP-16242 | ICC-19181 × NDC-4-20-4 | UAP | 31 | SL-03-15 | Local | ARSK |
14 | UAP-16411 | ICC-19181 × NDC-4-20-4 | UAP | 32 | SL-05-42 | Local | ARSK |
15 | UAP-16534 | ICC-19181 × NDC-4-20-4 | UAP | 33 | SL-3-64 | Local | ARSK |
16 | UAP-21241 | ICC-19181 × NDC-4-20-4 | UAP | 34 | Karak-1 | Local | ARSK |
17 | UAP-22432 | ICC-19181 × NDC-4-20-4 | UAP | 35 | Karak-3 | Local | ARSK |
18 | ICC-13219 | P3046 | ICRISAT | 36 | NIFA-2005 | P91/M | NIFA |
Months | 2019–2020 | 2020–2021 | 2021–2022 | |||
---|---|---|---|---|---|---|
UAP | Karak | UAP | Karak | UAP | Karak | |
Rainfall (mm) | ||||||
October | 0.63 | 0.84 | 3.36 | 0.68 | 3.73 | 2.12 |
November | 1.79 | 0.99 | 2.81 | 1.79 | 0.14 | 0.02 |
December | 0.24 | 0.17 | 1.20 | 0.83 | 0.71 | 0.49 |
January | 2.00 | 1.70 | 0.45 | 0.45 | 3.83 | 3.27 |
February | 5.38 | 7.01 | 3.60 | 4.97 | 1.18 | 0.64 |
March | 9.22 | 9.21 | 3.61 | 1.95 | 1.71 | 1.38 |
April | 5.68 | 3.75 | 1.66 | 1.44 | 0.70 | 0.29 |
Total | 24.94 | 23.67 | 16.69 | 12.11 | 12.00 | 8.21 |
Temperature (Min–Max °C) | ||||||
October | 14.34–27.91 | 17.94–30.21 | 12.52–29.00 | 16.33–31.10 | 12.57–26.63 | 16.88–30.05 |
November | 8.04–19.85 | 11.77–23.39 | 6.17–19.61 | 10.4–22.65 | 7.31–21.87 | 11.01–24.63 |
December | 3.45–16.94 | 6.75–19.36 | 3.11–15.59 | 6.93–18.75 | 3.67–16.71 | 6.74–19.15 |
January | 0.44–11.03 | 3.93–14.78 | 2.3816.89 | 5.28–19.26 | 1.43–12.67 | 5.12–15.88 |
February | 4.29–17.96 | 7.53–21.48 | 6.67–20.65 | 9.84–23.59 | 2.82–15.91 | 6.05–19.97 |
March | 7.75–17.04 | 11.44–20.78 | 8.95–22.43 | 12.69–26.87 | 10.54–25.29 | 14.29–29.37 |
April | 12.11–23.60 | 15.95–27.13 | 11.46–26.25 | 15.73–30.90 | 15.51–32.29 | 19.60–36.86 |
Mean | 7.20–19.19 | 10.75–22.44 | 7.32–21.49 | 11.02–24.73 | 7.69–21.62 | 11.38–25.13 |
Parameter | Mean | SD | Lower HPD | Upper HPD | Parameter | Mean | SD | Lower HPD | Upper HPD |
---|---|---|---|---|---|---|---|---|---|
µ | 604.42 | 1.17 | 602.07 | 606.66 | 57.51 | 2.58 | 52.59 | 62.72 | |
σ2e | 1763.35 | 204.94 | 1365.77 | 2127.01 | −65.70 | 2.64 | −70.86 | −60.52 | |
−2.14 | 2.60 | −7.15 | 3.06 | 15.31 | 2.60 | 10.16 | 20.38 | ||
−18.24 | 2.61 | −23.30 | −13.05 | −14.89 | 2.59 | −19.99 | −9.80 | ||
−5.59 | 2.61 | −10.58 | −0.37 | −0.22 | 2.61 | −5.17 | 5.14 | ||
45.14 | 2.57 | 40.25 | 50.39 | 41.25 | 2.60 | 36.03 | 46.25 | ||
−9.63 | 2.61 | −14.81 | −4.58 | −47.18 | 2.61 | −52.26 | −42.10 | ||
11.49 | 2.60 | 6.50 | 16.73 | −5.55 | 2.59 | −10.38 | −0.25 | ||
31.15 | 2.60 | 26.10 | 36.22 | −5.30 | 2.59 | −10.40 | −0.23 | ||
−36.74 | 2.58 | −41.70 | −31.64 | −34.95 | 2.60 | −39.98 | −29.80 | ||
40.57 | 2.59 | 35.59 | 45.72 | 9.94 | 2.61 | 4.89 | 15.01 | ||
−83.44 | 2.59 | −88.52 | −78.40 | −13.30 | 2.65 | −18.42 | −7.97 | ||
23.10 | 2.59 | 18.03 | 28.08 | 36.80 | 2.62 | 31.90 | 42.07 | ||
−13.28 | 2.58 | −18.40 | −8.28 | −286.91 | 2.53 | −291.88 | −281.89 | ||
−14.57 | 2.63 | −19.81 | −9.42 | −386.32 | 2.50 | −391.12 | −381.44 | ||
55.49 | 2.60 | 50.32 | 60.56 | 95.27 | 2.54 | 90.31 | 100.23 | ||
27.40 | 2.59 | 22.17 | 32.20 | −97.22 | 2.54 | −102.09 | −92.17 | ||
−26.80 | 2.62 | −31.90 | −21.63 | −175.21 | 2.54 | −180.25 | −170.28 | ||
−60.39 | 2.61 | −65.42 | −55.21 | −191.61 | 2.54 | −196.84 | −186.87 | ||
89.09 | 2.60 | 83.86 | 94.02 | 373.02 | 2.53 | 368.21 | 378.09 | ||
−42.03 | 2.62 | −47.25 | −36.98 | 120.67 | 2.54 | 115.70 | 125.62 | ||
−9.45 | 2.61 | −14.66 | −4.47 | 145.90 | 2.54 | 141.10 | 151.03 | ||
28.44 | 2.58 | 23.26 | 33.44 | −13.73 | 2.52 | −18.66 | −8.84 | ||
−28.23 | 2.60 | −33.16 | −22.98 | 222.41 | 2.51 | 217.51 | 227.41 | ||
24.93 | 2.59 | 19.95 | 30.12 | 193.73 | 2.51 | 188.82 | 198.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Din, A.; Gul, R.; Khan, H.; Garcia-Abadillo Velasco, J.; Persa, R.; Isidro y Sánchez, J.; Jarquin, D. Assessing the Genotype-by-Environment G×E Interaction in Desi Chickpea via the Bayesian Additive Main Effects and Multiplicative Interaction Model. Agriculture 2024, 14, 215. https://doi.org/10.3390/agriculture14020215
Din A, Gul R, Khan H, Garcia-Abadillo Velasco J, Persa R, Isidro y Sánchez J, Jarquin D. Assessing the Genotype-by-Environment G×E Interaction in Desi Chickpea via the Bayesian Additive Main Effects and Multiplicative Interaction Model. Agriculture. 2024; 14(2):215. https://doi.org/10.3390/agriculture14020215
Chicago/Turabian StyleDin, Ajmalud, Rozina Gul, Hamayoon Khan, Julian Garcia-Abadillo Velasco, Reyna Persa, Julio Isidro y Sánchez, and Diego Jarquin. 2024. "Assessing the Genotype-by-Environment G×E Interaction in Desi Chickpea via the Bayesian Additive Main Effects and Multiplicative Interaction Model" Agriculture 14, no. 2: 215. https://doi.org/10.3390/agriculture14020215
APA StyleDin, A., Gul, R., Khan, H., Garcia-Abadillo Velasco, J., Persa, R., Isidro y Sánchez, J., & Jarquin, D. (2024). Assessing the Genotype-by-Environment G×E Interaction in Desi Chickpea via the Bayesian Additive Main Effects and Multiplicative Interaction Model. Agriculture, 14(2), 215. https://doi.org/10.3390/agriculture14020215