Research on Machine Learning Models for Maize Hardness Prediction Based on Indentation Test
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Samples of Maize Grain
2.2. Design of Experiments and Methods
2.2.1. Experiment Methods
2.2.2. Design of Experiment
2.3. MLM Prediction Model
2.3.1. GA Prediction Model
2.3.2. SVM Prediction Model
2.3.3. LSTM Prediction Model
2.3.4. RF Prediction Model
2.4. Data Preprocessing
3. Results and Discussion
3.1. Model Hyper-Parameter Optimization
3.1.1. Optimizing GA Network Parameter
3.1.2. Optimizing SVM Network Parameters
3.1.3. Optimizing LSTM Network Parameters
3.1.4. Optimizing RF Network Parameters
3.2. Analysis of Training Set Prediction Effect
3.3. Analysis of Testing Set Prediction Effect
3.4. Microstructure Analysis of Maize Surface before and after Compression
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Number | LS (mm/s) | LD(%) | DI | Hardness (MPa) | GA | SVM | LSTM | RF |
---|---|---|---|---|---|---|---|---|
1 | 0.858 | 61.5 | 3 | 75.2 | 77.6793 | 77.1186 | 80.1878 | 74.7386 |
2 | 0.752 | 53.0 | 2 | 68.1 | 64.6445 | 65.0205 | 61.3048 | 65.0596 |
3 | 0.494 | 32.4 | 3 | 66.3 | 62.9560 | 64.1105 | 66.0335 | 62.7279 |
4 | 0.433 | 55.1 | 1 | 49.1 | 48.1072 | 48.6574 | 53.2738 | 53.9378 |
5 | 1.494 | 34.0 | 1 | 40.4 | 39.8996 | 40.3616 | 46.5257 | 47.8861 |
6 | 1.176 | 36.9 | 3 | 62.1 | 64.4225 | 62.5252 | 67.0208 | 62.0313 |
7 | 0.358 | 31.6 | 2 | 56.4 | 53.3637 | 55.9586 | 52.8238 | 56.4974 |
8 | 0.888 | 40.1 | 3 | 62.6 | 66.9152 | 64.5260 | 69.2150 | 63.5969 |
9 | 0.903 | 51.0 | 2 | 61.1 | 63.6378 | 64.1234 | 60.3918 | 63.6307 |
10 | 1.433 | 63.1 | 4 | 78.9 | 79.5367 | 79.3572 | 80.3839 | 74.8125 |
11 | 1.524 | 62.3 | 3 | 75.4 | 77.1389 | 75.8569 | 79.1988 | 74.2628 |
12 | 1.342 | 52.2 | 3 | 72.7 | 72.7195 | 74.1361 | 74.5175 | 70.7549 |
13 | 0.13 | 43.7 | 3 | 73.1 | 70.2840 | 69.8846 | 72.5521 | 69.7725 |
14 | 1.403 | 33.6 | 4 | 64.3 | 64.9010 | 64.7512 | 66.1458 | 62.8923 |
15 | 1.585 | 52.6 | 3 | 71.9 | 72.5455 | 71.9805 | 74.2258 | 71.4070 |
16 | 0.221 | 36.5 | 2 | 53.1 | 56.4130 | 56.3708 | 54.7594 | 54.8164 |
17 | 0.267 | 51.4 | 4 | 77.3 | 76.1667 | 76.8558 | 77.2953 | 72.6166 |
18 | 0.797 | 37.7 | 3 | 62.7 | 65.6436 | 63.1587 | 68.1496 | 63.6333 |
19 | 0.524 | 39.3 | 3 | 66.6 | 67.1053 | 66.5256 | 69.4927 | 64.0426 |
20 | 1.024 | 56.3 | 4 | 78.7 | 77.2508 | 79.1565 | 77.9446 | 75.9578 |
21 | 0.721 | 47.0 | 3 | 70.7 | 71.0211 | 70.3974 | 73.0788 | 70.4179 |
22 | 1.07 | 38.5 | 2 | 57.2 | 56.8418 | 56.7503 | 55.1722 | 58.0825 |
23 | 0.979 | 32.8 | 2 | 53.9 | 53.4626 | 53.4043 | 53.0031 | 55.8158 |
24 | 0.297 | 66.4 | 2 | 69.2 | 69.9637 | 68.7452 | 66.9145 | 66.6189 |
25 | 0.615 | 53.4 | 4 | 77.6 | 76.5786 | 78.0240 | 77.4980 | 74.0144 |
26 | 0.342 | 67.2 | 1 | 51.1 | 51.3815 | 51.5426 | 57.5752 | 56.6073 |
27 | 1.418 | 68.0 | 3 | 80.7 | 79.5844 | 79.5037 | 82.1673 | 76.9007 |
28 | 0.933 | 68.8 | 3 | 80.1 | 80.4667 | 79.6607 | 83.5416 | 77.4458 |
29 | 0.57 | 64.8 | 3 | 78.1 | 79.3534 | 78.3741 | 82.3058 | 74.6589 |
30 | 0.403 | 51.4 | 2 | 64.1 | 64.0369 | 65.0644 | 60.7573 | 63.6654 |
31 | 0.706 | 30.8 | 3 | 61.9 | 61.4761 | 61.4982 | 64.8418 | 60.8856 |
32 | 1.221 | 47.8 | 2 | 63.0 | 61.8522 | 63.4548 | 58.8934 | 64.6603 |
33 | 1.6 | 57.1 | 2 | 66.7 | 66.1024 | 66.2383 | 62.5600 | 66.9238 |
34 | 1.267 | 56.7 | 3 | 76.5 | 74.9749 | 76.0433 | 76.9230 | 74.5833 |
35 | 0.145 | 59.9 | 1 | 49.6 | 49.0214 | 50.0251 | 54.8966 | 54.8586 |
36 | 1.327 | 54.7 | 1 | 49.4 | 49.4890 | 49.3452 | 53.2754 | 55.3952 |
37 | 0.206 | 35.3 | 3 | 65.0 | 65.2875 | 65.4468 | 68.0024 | 60.6685 |
38 | 1.509 | 42.9 | 4 | 72.1 | 70.0776 | 71.6524 | 70.2352 | 71.1017 |
39 | 1.312 | 31.2 | 2 | 52.8 | 52.0068 | 53.2271 | 52.2897 | 56.1437 |
40 | 0.161 | 45.8 | 2 | 61.8 | 61.4489 | 61.3578 | 58.5165 | 62.7182 |
41 | 0.676 | 63.9 | 1 | 50.5 | 51.3200 | 50.0401 | 56.5092 | 54.9905 |
42 | 0.585 | 44.6 | 4 | 73.1 | 72.4358 | 73.4093 | 73.1101 | 72.8603 |
43 | 1.13 | 47.4 | 1 | 44.9 | 46.2653 | 45.3288 | 50.7008 | 52.8229 |
44 | 0.979 | 54.2 | 3 | 75.1 | 74.2551 | 74.5589 | 76.2859 | 73.8603 |
45 | 1.373 | 43.3 | 3 | 68.4 | 67.9096 | 68.8421 | 69.9208 | 68.9786 |
46 | 0.842 | 60.3 | 2 | 67.5 | 67.7208 | 67.3406 | 64.2838 | 65.4786 |
47 | 1.388 | 30.4 | 3 | 60.1 | 59.7684 | 59.6517 | 63.4095 | 60.8247 |
48 | 1.555 | 38.1 | 3 | 65.3 | 64.4396 | 65.5619 | 66.9068 | 64.5259 |
49 | 1.206 | 45.4 | 3 | 71.3 | 69.3358 | 69.6647 | 71.2842 | 71.3713 |
50 | 0.115 | 40.5 | 1 | 42.2 | 41.8396 | 41.7715 | 48.3311 | 48.9927 |
51 | 0.373 | 33.2 | 4 | 64.5 | 66.5993 | 64.9368 | 68.1035 | 62.9332 |
52 | 0.448 | 41.3 | 2 | 59.1 | 58.9656 | 59.1496 | 56.6068 | 59.2060 |
53 | 1.145 | 37.3 | 1 | 39.9 | 41.4313 | 40.1941 | 47.3411 | 47.2515 |
54 | 1.297 | 69.2 | 3 | 80.1 | 80.1920 | 80.5304 | 82.9970 | 76.9057 |
55 | 0.661 | 34.9 | 1 | 38.9 | 39.7142 | 39.3545 | 46.5766 | 45.6451 |
56 | 0.479 | 62.7 | 4 | 81.7 | 80.5237 | 81.2670 | 82.5232 | 75.8693 |
57 | 0.691 | 34.4 | 2 | 54.5 | 54.7792 | 54.9422 | 53.7506 | 56.1823 |
58 | 0.873 | 41.7 | 2 | 59.6 | 58.8711 | 58.4296 | 56.5770 | 60.0761 |
59 | 0.948 | 30.0 | 2 | 52.2 | 51.6550 | 52.6587 | 52.0128 | 55.8043 |
60 | 0.782 | 35.7 | 4 | 67.0 | 67.2742 | 66.5643 | 68.3812 | 64.9563 |
61 | 0.494 | 59.5 | 2 | 67.2 | 67.4514 | 67.6516 | 64.0505 | 66.9347 |
62 | 1.115 | 65.2 | 2 | 68.8 | 69.5508 | 69.2411 | 66.1807 | 69.0721 |
63 | 1.085 | 65.6 | 4 | 83.0 | 80.8695 | 82.5530 | 82.4631 | 77.5252 |
64 | 0.1 | 53.4 | 3 | 73.9 | 75.1569 | 74.3463 | 77.5722 | 70.9103 |
65 | 0.464 | 42.1 | 3 | 69.3 | 68.8275 | 68.8354 | 71.0705 | 67.3143 |
66 | 1.191 | 61.9 | 3 | 78.2 | 77.4106 | 77.7561 | 79.6973 | 75.9553 |
67 | 0.191 | 50.6 | 2 | 64.1 | 63.7439 | 64.3127 | 60.4834 | 62.8886 |
68 | 0.327 | 36.1 | 1 | 40.6 | 39.9866 | 40.8748 | 46.9411 | 46.2117 |
69 | 0.964 | 57.9 | 1 | 49.1 | 50.0417 | 48.6529 | 54.4057 | 55.6349 |
70 | 0.539 | 50.2 | 2 | 63.7 | 63.4227 | 64.1386 | 60.2238 | 64.8700 |
71 | 1.539 | 38.9 | 2 | 58.2 | 56.6142 | 58.6589 | 55.0959 | 60.7751 |
72 | 1.055 | 32.0 | 4 | 63.9 | 64.5729 | 63.4505 | 66.1352 | 63.6514 |
73 | 0.903 | 48.6 | 4 | 75.5 | 73.9372 | 75.5386 | 74.3870 | 73.1514 |
74 | 0.312 | 58.3 | 3 | 77.5 | 77.0240 | 77.0397 | 79.6208 | 73.3080 |
75 | 1.358 | 64.3 | 1 | 53.1 | 52.8085 | 53.5515 | 56.8090 | 56.4638 |
76 | 0.767 | 44.1 | 2 | 60.9 | 60.2632 | 60.0277 | 57.6156 | 64.3905 |
77 | 1.236 | 39.7 | 2 | 58.6 | 57.4005 | 58.3864 | 55.5796 | 60.2598 |
78 | 1.009 | 66.8 | 1 | 53.7 | 52.7969 | 51.4872 | 57.6350 | 61.0312 |
79 | 0.827 | 60.7 | 3 | 76.8 | 77.3779 | 76.8648 | 79.8499 | 74.4751 |
80 | 0.63 | 68.4 | 2 | 69.6 | 70.6859 | 69.0368 | 67.6464 | 69.9052 |
81 | 1.252 | 58.7 | 2 | 67.2 | 66.9506 | 67.9803 | 63.4219 | 67.0204 |
82 | 0.736 | 49.0 | 1 | 46.0 | 46.3880 | 45.1469 | 51.2320 | 54.3548 |
83 | 0.252 | 63.5 | 3 | 78.8 | 79.2664 | 77.8685 | 82.3111 | 72.4188 |
84 | 0.418 | 45.0 | 1 | 46.6 | 44.2351 | 44.3052 | 49.8285 | 52.6769 |
85 | 0.388 | 48.2 | 3 | 71.1 | 72.1821 | 73.1042 | 74.3600 | 70.5142 |
86 | 1.1 | 55.5 | 2 | 65.8 | 65.5960 | 66.4977 | 62.1466 | 65.4816 |
87 | 1.039 | 46.6 | 3 | 76.6 | 70.2823 | 69.9029 | 72.2421 | 71.7513 |
88 | 0.282 | 67.6 | 3 | 79.4 | 80.7679 | 79.1365 | 84.1882 | 73.8329 |
89 | 0.645 | 69.6 | 4 | 79.9 | 82.7700 | 84.9483 | 85.5306 | 75.1910 |
90 | 0.176 | 57.5 | 2 | 68.7 | 66.6824 | 66.6787 | 63.3013 | 64.2805 |
91 | 0.555 | 61.1 | 2 | 66.7 | 68.0765 | 67.8645 | 64.6989 | 67.7930 |
92 | 0.6 | 55.9 | 3 | 72.5 | 75.5567 | 75.6966 | 77.8771 | 73.8728 |
93 | 1.57 | 49.4 | 2 | 65.4 | 62.4348 | 63.6315 | 59.3768 | 65.5359 |
94 | 1.464 | 66.0 | 2 | 67.2 | 69.8064 | 71.1005 | 66.3330 | 70.2209 |
95 | 1.448 | 59.1 | 2 | 62.2 | 67.0518 | 68.1354 | 63.4856 | 66.8242 |
96 | 0.812 | 70.0 | 2 | 76.7 | 71.2430 | 69.3581 | 68.2486 | 69.7254 |
97 | 1.282 | 49.8 | 4 | 72.9 | 73.9487 | 76.5850 | 74.1011 | 72.3672 |
98 | 1.479 | 46.2 | 1 | 53.3 | 46.1391 | 46.2393 | 50.3027 | 55.2773 |
99 | 0.236 | 42.5 | 4 | 70.1 | 71.9640 | 70.7809 | 72.8929 | 69.1834 |
100 | 1.161 | 40.5 | 4 | 68.5 | 69.3507 | 70.1782 | 69.8549 | 63.9372 |
References
- Khan, S.N.; Li, D.P.; Maimaitijiang, M. A Geographically Weighted Random Forest Approach to Predict Corn Yield in the US Corn Belt. Remote Sens. 2022, 14, 2843. [Google Scholar] [CrossRef]
- Hernandez, G.L.; Aguilar, C.H.; Pacheco, A.D.; Sibaja, A.M.; Orea, A.A.C.; de Jesus Agustin Flores Cuautle, J. Thermal properties of maize seed components. Cogent Food Agric. 2023, 9, 2231681. [Google Scholar] [CrossRef]
- Singh, S.; Bekal, S.; Duan, J.; Singh, V. Characterization and Comparison of Wet Milling Fractions of Export Commodity Corn Originating from Different International Geographical Locations. Starch-Starke 2023, 75, 2200280. [Google Scholar] [CrossRef]
- Borrás, L.; Caballero-Rothar, N.N.; Saenz, E.; Segui, M.; Gerde, J.A. Challenges and opportunities of hard endosperm food grade maize sourced from South America to Europe. Eur. J. Agron. 2022, 140, 126596. [Google Scholar] [CrossRef]
- Tamagno, S.; Greco, I.A.; Almeida, H.; Di Paola, J.C.; Martí Ribes, F.; Borrás, L. Crop Management Options for Maximizing Maize Kernel Hardness. Agron. J. 2016, 108, 1561–1570. [Google Scholar] [CrossRef]
- Bhatia, G.; Juneja, A.; Bekal, S.; Singh, V. Wet milling characteristics of export commodity corn originating from different international geographical locations. Cereal Chem. 2021, 98, 794–801. [Google Scholar] [CrossRef]
- HernanA, C.-N.; EdgarO, O.-R.; Ortiz, A.; Matta, Y.; Hoyos, J.S.; Buitrago, G.D.; Martinez, J.D.; Yanquen, J.J.; Chico, M.; Martin, V.E.S.; et al. Effects of corn kernel hardness and grain drying temperature on particle size and pellet durability when grinding using a roller mill or hammermill. Anim. Feed. Sci. Technol. 2021, 271, 114715. [Google Scholar] [CrossRef]
- Wang, J.; Yang, C.; Zhao, W.; Wang, Y.; Qiao, L.; Wu, B.; Zhao, J.; Zheng, X.; Wang, J.; Zheng, J. Genome-wide association study of grain hardness and novel Puroindoline alleles in common wheat. Mol. Breeding 2022, 42, 40. [Google Scholar] [CrossRef]
- Gustin, J.L.; Jackson, S.; Williams, C.; Patel, A.; Armstrong, P.; Peter, G.F.; Settles, A.M. Analysis of Maize (Zea mays) Kernel Density and Volume Using Microcomputed Tomography and Single-Kernel Near-Infrared Spectroscopy. J. Agric. Food Chem. 2013, 61, 10872–10880. [Google Scholar] [CrossRef]
- Martínez, R.D.; Cirilo, A.G.; Cerrudo, A.; Andrade, F.H.; Izquierdo, N.G. Environment affects starch composition and kernel hardness in temperate maize. J. Sci. Food Agric. 2022, 102, 5488–5494. [Google Scholar] [CrossRef]
- Fox, G.P.; Osborne, B.; Bowman, J.; Kelly, A.; Cakir, M.; Poulsen, D.; Inkerman, A.; Henry, R. Measurement of genetic and environmental variation in barley (Hordeum vulgare) grain hardness. J. Cereal Sci. 2007, 46, 82–92. [Google Scholar] [CrossRef]
- Qiao, M.; Xu, Y.; Xia, G.; Su, Y.; Lu, B.; Gao, X.; Fan, H. Determination of hardness for maize kernels based on hyperspectral imaging. Food Chem. 2022, 366, 130559. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Hu, Y.; Ali Buttar, N.; Mahmood, A. X-ray computed tomography for quality inspection of agricultural products: A review. Food Sci. Nutr. 2019, 7, 3146–3160. [Google Scholar] [CrossRef] [PubMed]
- Pierna, J.A.F.; Baeten, V.; Williams, P.J.; Sendin, K.; Manley, M. Near Infrared Hyperspectral Imaging for White Maize Classification According to Grading Regulations. Food Anal. Methods 2019, 12, 1612–1624. [Google Scholar] [CrossRef]
- Caporaso, N.; Whitworth, M.B.; Fisk, I.D. Near-Infrared spectroscopy and hyperspectral imaging for non-destructive quality assessment of cereal grains. Appl. Spectrosc. Rev. 2018, 53, 667–687. [Google Scholar] [CrossRef]
- Jose I Varela, N.D.M.; Infante, V.; Kaeppler, S.M.; de Leon, N.; Spalding, E.P. A novel high-throughput hyperspectral scanner and analytical methods for predicting maize kernel composition and physical traits. Food Chem. 2022, 391, 133264. [Google Scholar] [CrossRef]
- Song, X.; Dai, F.; Zhang, X.; Sun, Y.; Zhang, F.; Zhang, F. Experimental analysis of the hardness measurement method of pea indentation loading curve based on response surface. J. China Agric. Univ. 2020, 25, 158–165. [Google Scholar] [CrossRef]
- Maryami, Z.; Azimi, M.R.; Guzman, C.; Dreisigacker, S.; Najafian, G. Puroindoline (Pina-D1 and Pinb-D1) and waxy (Wx-1) genes in Iranian bread wheat (Triticum aestivum L.) landraces. Biotechnol. Biotechnol. Equip. 2020, 34, 1019–1027. [Google Scholar] [CrossRef]
- Priya, T.S.R.; Manickavasagan, A. Characterising corn grain using infrared imaging and spectroscopic techniques: A review. J. Food Meas. Charact. 2021, 15, 3234–3249. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, C.; Guo, W.; Zhao, W.; Feng, Y.; Han, Z. Nongye Jixie Xuebao. Trans. Chin. Soc. Agric. Mach. 2010, 41, 128–133. [Google Scholar] [CrossRef]
- Menčík, J. Determination of mechanical properties by instrumented indentation. Meccanica 2007, 42, 19–29. [Google Scholar] [CrossRef]
- Wang, T.H.; Fang, T.; Lin, Y. A numerical study of factors affecting the characterization of nanoindentation on silicon. Mat. Sci. Eng. A-Struct. 2007, 447, 244–253. [Google Scholar] [CrossRef]
- Jiang, J.; Peng, C.; Liu, W.; Liu, S.; Luo, Z.; Chen, N. Environmental Prediction in Cold Chain Transportation of Agricultural Products Based on K-Means++ and LSTM Neural Network. Processes 2023, 11, 776. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Y.; Zhang, S.; Li, W. Prediction of Grain Yield in Henan Province Based on Grey BP Neural Network Model. Discrete Dyn. Nat. Soc. 2021, 2021, 9919332. [Google Scholar] [CrossRef]
- Gong, L.; Miao, Y.; Cutsuridis, V.; Kollias, S.; Pearson, S. A Novel Model Fusion Approach for Greenhouse Crop Yield Prediction. Horticulturae 2023, 9, 5. [Google Scholar] [CrossRef]
- Qiao, M.; Xia, G.; Cui, T.; Xu, Y.; Fan, C.; Su, Y.; Li, Y.; Han, S. Machine learning and experimental testing for prediction of breakage rate of maize kernels based on components contents. J. Cereal Sci. 2022, 108, 103582. [Google Scholar] [CrossRef]
- Wang, G.; Wang, J.; Wang, J.; Yu, H.; Sui, Y. Study on Prediction Model of Soil Nutrient Content Based on Optimized BP Neural Network Model. Commun. Soil. Sci. Plan. 2023, 54, 463–471. [Google Scholar] [CrossRef]
- Chen, Z.X.; Wang, D. A Prediction Model of Forest Preliminary Precision Fertilization Based on Improved GRA-PSO-BP Neural Network. Math. Probl. Eng. 2020, 2020, 1356096. [Google Scholar] [CrossRef]
- Zhang, H.; Gu, B.; Mu, J.; Ruan, P.; Li, D. Wheat Hardness Prediction Research Based on NIR Hyperspectral Analysis Combined with Ant Colony Optimization Algorithm. Procedia Eng. 2017, 174, 648–656. [Google Scholar] [CrossRef]
- Hui, G.; Sun, L.; Wang, J.; Wang, L.; Dai, C. Research on the Pre-Processing Methods of Wheat Hardness Prediction Model Based on Visible-Near Infrared Spectroscopy. Spectrosc. Spect. Anal. 2016, 36, 2111–2116. [Google Scholar]
- Dai, F.; Li, X.; Han, Z.; Zhang, F.; Zhang, X.; Zhang, T. Hardness Measurement and Simulation Verification of Wheat Components Based on Improving Indentation Loading Curve Method. J. Triticeae Crops 2016, 36, 347–354. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, F.; Dai, F.; Zhang, X.; Zhang, K.; Zhao, W. Physical Characteristics Experiment Analysis and Simulation of Cereal Grains Based on Indentation Loading Curve. J. Triticeae Crops 2015, 35, 563–568. [Google Scholar] [CrossRef]
- Ma, Y.; Xiao, Y.; Wang, J.; Zhou, L. Multicriteria Optimal Latin Hypercube Design-Based Surrogate-Assisted Design Optimization for a Permanent-Magnet Vernier Machine. IEEE Trans. Magn. 2022, 58, 1–5. [Google Scholar] [CrossRef]
- Pan, G.; Ye, P.C.; Wang, P. A Novel Latin Hypercube Algorithm via Translational Propagation. Sci. World J. 2014, 2014, 163949. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Feng, J. Development and Application of Artificial Neural Network. Wireless Pers. Commun. 2018, 102, 1645–1656. [Google Scholar] [CrossRef]
- Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66. [Google Scholar] [CrossRef]
- Ding, C.; Chen, L.; Zhong, B. Exploration of intelligent computing based on improved hybrid genetic algorithm. Cluster Comput. 2019, 22, S9037–S9045. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Breiman, L. Randomizing Outputs to Increase Prediction Accuracy. Mach. Learn. 2000, 40, 229–242. [Google Scholar] [CrossRef]
- Asteris, P.G.; Roussis, P.C.; Douvika, M.G. Feed-Forward Neural Network Prediction of the Mechanical Properties of Sandcrete Materials. Sensors 2017, 17, 1344. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Wang, J.; Navlakha, S. A Correspondence between Normalization Strategies in Artificial and Biological Neural Networks. Neural Comput. 2021, 33, 3179–3203. [Google Scholar] [CrossRef] [PubMed]
- Reif, M.; Shafait, F.; Dengel, A. Meta-learning for evolutionary parameter optimization of classifiers. Mach. Learn. 2012, 87, 357–380. [Google Scholar] [CrossRef]
- Dai, W.; Wang, L.; Wang, B.; Cui, X.; Li, X. Research on WNN Greenhouse Temperature Prediction Method Based on GA. Phyton-Int. J. Exp. Bot. 2022, 91, 2283–2296. [Google Scholar] [CrossRef]
- Roman, L.; Gomez, M.; Li, C.; Hamaker, B.R.; Martinez, M.M. Biophysical features of cereal endosperm that decrease starch digestibility. Carbohyd Polym. 2017, 165, 180–188. [Google Scholar] [CrossRef]
Symbol | Value/Interval |
---|---|
loading speeds (mm/s) | 0.1~1.6 |
loading depths (mm) | 30%~70% of the sample height |
different types of indenters | triangular |
quadrangular | |
conical | |
spherical steel needle |
Prediction Models | Training Set | Testing Set | ||
---|---|---|---|---|
RMSE | R2 | RMSE | R2 | |
GA | 1.4308 | 0.98402 | 2.8441 | 0.92761 |
SVM | 0.9712 | 0.99262 | 3.3362 | 0.90211 |
LSTM | 3.5413 | 0.91435 | 4.0137 | 0.84443 |
RF | 3.3537 | 0.97320 | 4.1300 | 0.88714 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.; Song, X.; Dai, F.; Zhang, F.; Xie, Q.; Chen, H. Research on Machine Learning Models for Maize Hardness Prediction Based on Indentation Test. Agriculture 2024, 14, 224. https://doi.org/10.3390/agriculture14020224
Lin H, Song X, Dai F, Zhang F, Xie Q, Chen H. Research on Machine Learning Models for Maize Hardness Prediction Based on Indentation Test. Agriculture. 2024; 14(2):224. https://doi.org/10.3390/agriculture14020224
Chicago/Turabian StyleLin, Haipeng, Xuefeng Song, Fei Dai, Fengwei Zhang, Qiang Xie, and Huhu Chen. 2024. "Research on Machine Learning Models for Maize Hardness Prediction Based on Indentation Test" Agriculture 14, no. 2: 224. https://doi.org/10.3390/agriculture14020224
APA StyleLin, H., Song, X., Dai, F., Zhang, F., Xie, Q., & Chen, H. (2024). Research on Machine Learning Models for Maize Hardness Prediction Based on Indentation Test. Agriculture, 14(2), 224. https://doi.org/10.3390/agriculture14020224