Effects of Copper Compounds on Phenolic Composition of the Common and Tartary Buckwheat Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determination of Phenolic Metabolites in Seedlings
2.2. Statistical Analysis of Data
3. Results and Discussion
3.1. Seedlings Performance
3.2. Phenolic Metabolites in Treated Seedlings
3.3. The Pattern Recognition of Buckwheat Seeds and Seedlings Response to Different Cu Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonafaccia, G.; Gambelli, L.; Fabjan, N.; Kreft, I. Trace elements in flour and bran from common and tartary buckwheat. Food Chem. 2003, 83, 1–5. [Google Scholar] [CrossRef]
- Bonafaccia, G.; Fabjan, N. Nutritional comparison of tartary buckwheat with common buckwheat and minor cereals. Zb. Bioteh. Fak. Univerze Ljubljani. Kmet. 2003, 81, 349–355. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Jiao, R.; Ka, Y.M. Cholesterol-lowering nutraceuticals and functional foods. J. Agric. Food Chem. 2008, 56, 8761–8773. [Google Scholar] [CrossRef]
- Kim, S.J.; Zaidul, I.S.M.; Suzuki, T.; Mukasa, Y.; Hashimoto, N.; Takigawa, S.; Noda, T.; Matsuura-Endo, C.; Yamauchi, H. Comparison of phenolic compositions between common and tartary buckwheat (Fagopyrum) sprouts. Food Chem. 2008, 110, 814–820. [Google Scholar] [CrossRef]
- Kreft, I.; Fabjan, N.; Yasumoto, K. Rutin content in buckwheat (Fagopyrum esculentum Moench) food materials and products. Food Chem. 2006, 98, 508–512. [Google Scholar] [CrossRef]
- Li, S.Q.; Howard Zhang, Q. Advances in the development of functional foods from buckwheat. Crit. Rev. Food Sci. Nutr. 2001, 41, 451–464. [Google Scholar] [CrossRef] [PubMed]
- Luthar, Z. Polyphenol classification and tannin content of buckwheat seeds (Fagopyrum esculentum Moench). Fagopyrum 1992, 12, 36–42. [Google Scholar]
- Fabjan, N.; Rode, J.; Kosǐr, I.J.; Wang, Z.; Zhang, Z.; Kreft, I. Tartary buckwheat (Fagopyrum tataricum Gaertn.) as a source of dietary rutin and quercitrin. J. Agric. Food Chem. 2003, 51, 6452–6455. [Google Scholar] [CrossRef] [PubMed]
- Gogos, A.; Knauer, K.; Bucheli, T.D. Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities. J. Agric. Food Chem. 2012, 60, 9781–9792. [Google Scholar] [CrossRef] [PubMed]
- Lešnik, M.; Gaberšek, V.; Kurnik, V. Perspektive uporabe fungicidov na podlagi bakra. Zb. Pred. Ref. 9. Slov. Posvetovanja Varstvu Rastl. Mednar. Udeležbo 2009, 2009, 47–58. [Google Scholar]
- Rice, P.J.; Harman-Fetcho, J.A.; Heighten, L.P.; McConnell, L.L.; Sadeghi, A.M.; Hapeman, C.J. Environmental fate and ecological impact of copper hydroxide: Use of management practices to reduce the transport of copper hydroxide in runoff from vegetable production. ACS Symp. Ser. 2007, 947, 230–244. [Google Scholar]
- Adhikari, T.; Kundu, S.; Biswas, A.K.; Tarafdar, J.C.; Rao, A.S. Effect of copper oxide nano particle on seed germination of selected crops. J. Agric. Sci. Technol. 2012, 2, 815–823. [Google Scholar]
- Adhikari, T.; Kundu, S.; Rao, A.S. Zinc delivery to plants through seed coating with nano-zinc oxide particles. J. Plant Nutr. 2016, 39, 136–146. [Google Scholar] [CrossRef]
- Dias, M.A.N.; Cicero, S.M.; Novembre, A.D.L.C. Uptake of seed-applied copper by maize and the effects on seed vigor. Bragantia 2015, 74, 241–246. [Google Scholar] [CrossRef]
- Faraz, A.; Faizan, M.; Rajput, V.D.; Minkina, T.; Hayat, S.; Faisal, M.; Alatar, A.A.; Abdel-Salam, E.M. CuO-mediated seed priming improves physio-biochemical and enzymatic activities of Brassica juncea. Plants 2023, 12, 803. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Jain, D.; Rajpurohit, D.; Jat, G.; Kushwaha, H.S.; Singh, A.; Mohanty, S.R.; Al-Sadoon, M.K.; Zaman, W.; Upadhyay, S.K. Bacteria assisted green synthesis of copper oxide nanoparticles and their potential applications as antimicrobial agents and plant growth stimulants. Front. Chem. 2023, 11, 1154128. [Google Scholar] [CrossRef]
- Bhavyasree, P.G.; Xavier, T.S. Green synthesised copper and copper oxide based nanomaterials using plant extracts and their application in antimicrobial activity: Review. Curr. Res. Green Sustain. Chem. 2022, 5, 1154128. [Google Scholar] [CrossRef]
- Bondarenko, O.; Juganson, K.; Ivask, A.; Kasemets, K.; Mortimer, M.; Kahru, A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: A critical review. Arch. Toxicol. 2013, 87, 1181–1200. [Google Scholar] [CrossRef] [PubMed]
- Adriano, D.C. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals; Springer: New York, NY, USA, 2001. [Google Scholar]
- Usman, M.; Farooq, M.; Wakeel, A.; Nawaz, A.; Cheema, S.A.; Rehman, H.U.; Ashraf, I.; Sanaullah, M. Nanotechnology in agriculture: Current status, challenges and future opportunities. Sci. Total Environ. 2020, 721, 137778. [Google Scholar] [CrossRef]
- Wang, W.; Ren, Y.; He, J.; Zhang, L.; Wang, X.; Cui, Z. Impact of copper oxide nanoparticles on the germination, seedling growth, and physiological responses in Brassica pekinensis L. Environ. Sci. Pollut. Res. 2020, 27, 31505–31515. [Google Scholar] [CrossRef]
- Wu, S.G.; Huang, L.; Head, J.; Chen, D.; Kong, I.; Tang, Y.J. Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. J. Pet. Environ. Biotechnol. 2012, 3, 126–130. [Google Scholar]
- Zafar, H.; Ali, A.; Zia, M. CuO nanoparticles inhibited root growth from Brassica nigra seedlings but induced root from stem and leaf explants. Appl. Biochem. Biotechnol. 2017, 181, 365–378. [Google Scholar] [CrossRef] [PubMed]
- Atha, D.H.; Wang, H.; Petersen, E.J.; Cleveland, D.; Holbrook, R.D.; Jaruga, P.; Dizdaroglu, M.; Xing, B.; Nelson, B. Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ. Sci. Technol. 2012, 46, 1819–1827. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Chung, H.; Kim, S.; Lee, I. The genotoxic effect of ZnO and CuO nanoparticles on early growth of buckwheat, Fagopyrum esculentum. Water. Air. Soil Pollut. 2013, 224, 1668. [Google Scholar] [CrossRef]
- Rico, C.M.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Chemistry, biochemistry of nanoparticles, and their role in antioxidant defense system in plants. In Nanotechnology and Plant Sciences: Nanoparticles and Their Impact on Plants; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 1–17. [Google Scholar]
- Sharma, S.; Singh, V.K.; Kumar, A.; Mallubhotla, S. Effect of nanoparticles on oxidative damage and antioxidant defense system in plants. In Molecular Plant Abiotic Stress; Wiley: Hoboken, NJ, USA, 2019; pp. 315–333. [Google Scholar]
- Aubert, L.; Decamps, C.; Jacquemin, G.; Quinet, M. Comparison of plant morphology, yield and nutritional quality of Fagopyrum esculentum and Fagopyrum tataricum grown under field conditions in Belgium. Plants 2021, 10, 961. [Google Scholar] [CrossRef] [PubMed]
- Aubert, L.; Konrádová, D.; Barris, S.; Quinet, M. Different drought resistance mechanisms between two buckwheat species Fagopyrum esculentum and Fagopyrum tataricum. Physiol. Plant. 2021, 172, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Golob, A.; Luzar, N.; Kreft, I.; Germ, M. Adaptative responses of common and tartary buckwheat to different altitudes. Plants 2022, 11, 1439. [Google Scholar] [CrossRef]
- Kumar, G.; Srivastava, A.; Singh, R. Impact of nanoparticles on genetic integrity of buckwheat (Fagopyrum esculentum Moench). Jordan J. Biol. Sci. 2020, 13, 13–17. [Google Scholar]
- Lee, S.; Kim, S.; Kim, S.; Lee, I. Assessment of phytotoxicity of ZnO NPs on a medicinal plant, Fagopyrum esculentum. Environ. Sci. Pollut. Res. 2013, 20, 848–854. [Google Scholar] [CrossRef]
- Karamać, M. Fe(ii), Cu(ii) and Zn(ii) chelating activity of buckwheat and buckwheat groats tannin fractions. Polish J. Food Nutr. Sci. 2007, 57, 357–362. [Google Scholar]
- Ma, J.F.; Hiradate, S. Form of aluminium for uptake and translocation in buckwheat (Fagopyrum esculentum Moench). Planta 2000, 211, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Nikolić, D.B.; Samardžić, J.T.; Bratić, A.M.; Radin, I.P.; Gavrilović, S.P.; Rausch, T.; Maksimović, V.R. Buckwheat (Fagopyrum esculentum Moench) FeMT3 gene in heavy metal stress: Protective role of the protein and inducibility of the promoter region under Cu2+ and Cd2+ treatments. J. Agric. Food Chem. 2010, 58, 3488–3494. [Google Scholar] [CrossRef] [PubMed]
- Tani, F.H.; Barrington, S. Zinc and copper uptake by plants under two transpiration rates. Part II. Buckwheat (Fagopyrum esculentum L.). Environ. Pollut. 2005, 138, 548–558. [Google Scholar] [CrossRef]
- Kovačec, E.; Regvar, M.; van Elteren, J.T.; Arčon, I.; Papp, T.; Makovec, D.; Vogel-Mikuš, K. Biotransformation of copper oxide nanoparticles by the pathogenic fungus Botrytis cinerea. Chemosphere 2017, 180, 178–185. [Google Scholar] [CrossRef]
- Kreft, S.; Janeš, D.; Kreft, I. The content of fagopyrin and polyphenols in common and tartary buckwheat sprouts. Acta Pharm. 2013, 63, 553–560. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Lee, W.M.; An, Y.Y.; Yoon, H.; Kweon, H.S. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): Plant agar test for water-insoluble nanoparticles. Environ. Toxicol. Chem. 2008, 27, 1915–1921. [Google Scholar] [CrossRef]
- Nair, P.M.G.; Chung, I.M. A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean (Glycine max L.) root development and lignification of root cells. Biol. Trace Elem. Res. 2014, 162, 342–352. [Google Scholar] [CrossRef]
- Gopalakrishnan Nair, P.M.; Chung, I.M. Biochemical, anatomical and molecular level changes in cucumber (Cucumis sativus) seedlings exposed to copper oxide nanoparticles. Biology 2015, 70, 1575–1585. [Google Scholar] [CrossRef]
- Da Costa, M.V.J.; Sharma, P.K. Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 2016, 54, 110–119. [Google Scholar] [CrossRef]
- Moise, J.A.; Han, S.; Gudynaite-Savitch, L.; Johnson, D.A.; Miki, B.L.A. Seed coats: Structure, development, composition, and biotechnology. Vitr. Cell. Dev. Biol. 2005, 41, 620–644. [Google Scholar] [CrossRef]
- Adrees, M.; Ali, S.; Rizwan, M.; Ibrahim, M.; Abbas, F.; Farid, M.; Zia-ur-Rehman, M.; Irshad, M.K.; Bharwana, S.A. The effect of excess copper on growth and physiology of important food crops: A review. Environ. Sci. Pollut. Res. 2015, 22, 8148–8162. [Google Scholar] [CrossRef]
- Kim, S.; Lee, S.; Lee, I. Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water Air Soil Pollut. 2012, 223, 2799–2806. [Google Scholar] [CrossRef]
- Stampoulis, D.; Sinha, S.K.; White, J.C. Assay-dependent phytotoxicity of nanoparticles to plants. Environ. Sci. Technol. 2009, 43, 9473–9479. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Chen, J.; Dou, R.; Gao, X.; Mao, C.; Wang, L. Assessment of the phytotoxicity of metal oxide nanoparticles on two crop plants, maize (Zea mays L.) and rice (Oryza sativa L.). Int. J. Environ. Res. Public Health 2015, 12, 15100–15109. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Liu, D.; Liu, X. Effects of copper on root growth, cell division, and nucleolus of Zea mays. Biol. Plantarium 2001, 44, 105–109. [Google Scholar] [CrossRef]
- Ortega-Ortiz, H.; Gaucin-Delgado, J.; Preciado-Rangel, P.; Fortis-Hernandez, M.; Hernandez-Montiel, L.G.; De La Cruz-Lazaro, E.; Lara-Capistran, L. Copper oxide nanoparticles biosynthetized improve germination and bioactive compounds in wheat sprouts. Not. Bot. Horti Agrobot. Cluj-Napoca 2022, 50, 12657. [Google Scholar] [CrossRef]
- Hong, J.; Wang, L.; Sun, Y.; Zhao, L.; Niu, G.; Tan, W.; Rico, C.M.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Foliar applied nanoscale and microscale CeO2 and CuO alter cucumber (Cucumis sativus) fruit quality. Sci. Total Environ. 2016, 563–564, 904–911. [Google Scholar] [CrossRef]
- Lin, C.Y.; Trinh, N.N.; Fu, S.F.; Hsiung, Y.C.; Chia, L.C.; Lin, C.W.; Huang, H.J. Comparison of early transcriptome responses to copper and cadmium in rice roots. Plant Mol. Biol. 2013, 81, 507–522. [Google Scholar] [CrossRef]
- Kranner, I.; Colville, L. Metals and seeds: Biochemical and molecular implications and their significance for seed germination. Environ. Exp. Bot. 2011, 72, 93–105. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.; Niu, M.; Wang, R.; Chen, Z. Effect of additives on flavonoids, D-chiro-inositol and trypsin inhibitor during the germination of tartary buckwheat seeds. J. Cereal Sci. 2013, 58, 348–354. [Google Scholar] [CrossRef]
- Ke, M.; Zhu, Y.; Zhang, M.; Gumai, H.; Zhang, Z.; Xu, J.; Qian, H. Physiological and molecular response of Arabidopsis thaliana to CuO nanoparticle (nCuO) exposure. Bull. Environ. Contam. Toxicol. 2017, 99, 713–718. [Google Scholar] [CrossRef]
- Smirnov, O.E.; Kosyan, A.M.; Kosyk, O.I.; Taran, N.Y. Response of phenolic metabolism induced by aluminium toxicity in Fagopyrum esculentum Moench. plants. Ukr. Biochem. J. 2015, 87, 129–135. [Google Scholar] [CrossRef]
- Sytar, O.; Borankulova, A.; Hemmerich, I.; Rauh, C.; Smetanska, I. Effect of chlorocholine chlorid on phenolic acids accumulation and polyphenols formation of buckwheat plants. Biol. Res. 2014, 47, 19–25. [Google Scholar] [CrossRef]
- Horbowicz, M.; Debski, H.; Wiczkowski, W.; Szawara-Nowak, D.; Koczkodaj, D.; Mitrus, J.; Sytykiewicz, H. The impact of short-term exposure to Pb and Cd on flavonoid composition and seedling growth of common buckwheat cultivars. Pol. J. Environ. Stud. 2013, 22, 1723–1730. [Google Scholar]
- Kováčik, J.; Klejdus, B.; Hedbavny, J.; Štork, F.; Bačkor, M. Comparison of cadmium and copper effect on phenolic metabolism, mineral nutrients and stress-related parameters in Matricaria chamomilla plants. Plant Soil 2009, 320, 231–242. [Google Scholar] [CrossRef]
- Ferreyra, M.L.F.; Serra, P.; Casati, P. Recent advances on the roles of flavonoids as plant protective molecules after UV and high light exposure. Physiol. Plant 2021, 173, 736–749. [Google Scholar] [CrossRef]
- Karami Mehrian, S.; Heidari, R.; Rahmani, F.; Najafi, S. Effect of chemical synthesis silver nanoparticles on germination indices and seedlings growth in seven varieties of Lycopersicon esculentum Mill (tomato) plants. J. Clust. Sci. 2016, 27, 327–340. [Google Scholar] [CrossRef]
- Foti, R.; Abureni, K.; Tigere, A.; Gotosa, J.; Gere, J. The efficacy of different seed priming osmotica on the establishment of maize (Zea mays L.) caryopses. J. Arid Environ. 2008, 72, 1127–1130. [Google Scholar] [CrossRef]
- Srinivasan, C.; Saraswathi, R. Nano-agriculture—Carbon nanotubes enhance tomato seed germination and plant growth. Curr. Sci. 2010, 99, 274–275. [Google Scholar]
- Savithramma, N.; Ankanna, S.; Bhumi, G. Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata—An endemic and endangered medicinal tree taxon. Nano Vis. 2012, 2, 61–68. [Google Scholar]
- Gang, A.; Vyas, A.; Vyas, H. Toxic effects of heavy metals on germination and seedling growth of wheat. J. Environ. Res. Dev. 2013, 8, 206–213. [Google Scholar]
- Singh, D.; Nath, K.; Kumar Sharma, Y. Response of wheat seed germination and seedling growth under copper stress. J. Environ. Biol. 2007, 28, 409–414. [Google Scholar]
- Muccifora, S.; Bellani, L.M. Effects of copper on germination and reserve mobilization in Vicia sativa L. seeds. Environ. Pollut. 2013, 179, 68–74. [Google Scholar] [CrossRef]
- Krug, H.F.; Wick, P. Nanotoxicology: An interdisciplinary challenge. Angew. Chemie Int. Ed. 2011, 50, 1260–1278. [Google Scholar] [CrossRef]
- Yasur, J.; Rani, P.U. Environmental effects of nanosilver: Impact on castor seed germination, seedling growth, and plant physiology. Environ. Sci. Pollut. Res. 2013, 20, 8636–8648. [Google Scholar] [CrossRef]
- Yin, L.; Colman, B.P.; McGill, B.M.; Wright, J.P.; Bernhardt, E.S. Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS ONE 2012, 7, e47674. [Google Scholar] [CrossRef]
- Regvar, M.; Bukovnik, U.; Likar, M.; Kreft, I. UV-B radiation affects flavonoids and fungal colonisation in Fagopyrum esculentum and F. tataricum. Cent. Eur. J. Biol. 2012, 7, 275–283. [Google Scholar] [CrossRef]
Treatment (mg L−1) | Phenols (% Difference from Control) | Flavonoids (% Difference from Control) | Tannins (% Difference from Control) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Common | Tartary | Common | Tartary | Common | Tartary | |||||||||||||
Cu salt 0.01 | 19.9 | * | 1.3 | 24.5 | * | 2.3 | 0.1 | −8 | ||||||||||
Cu salt 0.05 | 27.9 | * | −1.3 | 24.2 | * | −3.1 | 19.8 | −5 | ||||||||||
Cu salt 0.1 | 31 | * | 10.1 | * | 33 | * | −2.1 | 24.6 | * | 3.7 | ||||||||
Cu salt 0.5 | 35.3 | * | 10.4 | * | 30.3 | * | 2.4 | 31.4 | * | −10.8 | ||||||||
Cu salt 1 | 26.1 | * | −1.1 | 33.5 | * | 0.1 | 19.5 | * | −11.2 | * | ||||||||
Cu salt 10 | 34.5 | * | −0.7 | 21.4 | * | −2.1 | 7.8 | −14.7 | * | |||||||||
Cu salt 100 | 3.1 | −3.5 | 20.2 | * | −3.6 | 2.4 | −19.4 | * | ||||||||||
MPs 0.1 | 30.7 | * | −3.6 | 28.6 | * | −7 | * | 16.6 | −11.7 | * | ||||||||
MPs 1 | 27 | * | 0.7 | 38 | * | −3.9 | 16.2 | −6.7 | ||||||||||
MPs 5 | 48.3 | * | 3.3 | 38.1 | * | −0.4 | 30.3 | 2.9 | ||||||||||
MPs 10 | 54.6 | * | 6.1 | * | 42.3 | * | 2.7 | 29.8 | * | −2.7 | ||||||||
MPs 50 | 50.9 | * | 2.9 | 37.3 | * | −1.6 | 29.5 | * | −0.1 | |||||||||
MPs 100 | 28.3 | * | 6 | * | 37.7 | * | −5.1 | 32.2 | * | −9.2 | ||||||||
MPs 150 | 46.3 | * | 1.4 | 33.6 | * | −7.1 | * | 28.6 | * | −4.6 | ||||||||
MPs 1000 | 22.4 | * | −0.7 | 27.6 | * | −4.3 | 18.9 | * | −12 | |||||||||
NPs 0.1 | 13.8 | 3.9 | 42.7 | * | −7.4 | * | 32.5 | −6.2 | ||||||||||
NPs 1 | 32 | * | 1.5 | 44.5 | * | −6 | * | 19.3 | −21.1 | * | ||||||||
NPs 5 | 45.7 | * | 8.2 | 49.5 | * | −3.7 | 32.3 | * | −12.3 | |||||||||
NPs 10 | 48.1 | * | 0.9 | 47.1 | * | −6.5 | * | 45.9 | * | −14.1 | * | |||||||
NPs 50 | 36.4 | * | 2.2 | 60.5 | * | −6.2 | * | 58.9 | * | −9 | ||||||||
NPs 100 | 14.3 | * | −1.5 | * | 53.2 | * | −5.9 | * | 43.2 | * | −24 | * | ||||||
NPs 150 | 15 | * | −6.1 | * | 43.4 | * | −7 | * | 33 | * | −17.8 | * | ||||||
NPs 1000 | 22.2 | * | −18 | * | 48.3 | * | −4.1 | 50.9 | * | −6.3 |
Common Buckwheat | F | p | Tartary Buckwheat | F | p |
---|---|---|---|---|---|
Fresh weight | 4.209329 | 0.000000 | Root length | 8.138269 | 0.000000 |
Phenols | 4.145876 | 0.000001 | Germination first day | 4.816375 | 0.000000 |
Root length | 3.773790 | 0.000003 | Phenols | 3.353833 | 0.000021 |
Flavonoids | 2.689075 | 0.000457 | Fresh weight | 3.730093 | 0.000004 |
Tannins | 1.851816 | 0.021093 | Flavonoids | 1.939112 | 0.014514 |
Germination first day | 1.823449 | 0.023856 | Tannins | 1.775372 | 0.029548 |
Germination eighth day | 0.944755 | 0.541639 | Germination eighth day | 1.186192 | 0.278248 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovačec, E.; Regvar, M. Effects of Copper Compounds on Phenolic Composition of the Common and Tartary Buckwheat Seedlings. Agriculture 2024, 14, 269. https://doi.org/10.3390/agriculture14020269
Kovačec E, Regvar M. Effects of Copper Compounds on Phenolic Composition of the Common and Tartary Buckwheat Seedlings. Agriculture. 2024; 14(2):269. https://doi.org/10.3390/agriculture14020269
Chicago/Turabian StyleKovačec, Eva, and Marjana Regvar. 2024. "Effects of Copper Compounds on Phenolic Composition of the Common and Tartary Buckwheat Seedlings" Agriculture 14, no. 2: 269. https://doi.org/10.3390/agriculture14020269
APA StyleKovačec, E., & Regvar, M. (2024). Effects of Copper Compounds on Phenolic Composition of the Common and Tartary Buckwheat Seedlings. Agriculture, 14(2), 269. https://doi.org/10.3390/agriculture14020269