Enhancing Safety through Optimal Placement of Components in Hydrogen Tractor: Rollover Angle Analysis
Abstract
:1. Introduction
2. Material and Methods
2.1. 3D Model of a Tractor
2.2. Arrangement of the Main Components
2.3. Mathematical Model of the Tractor Rollover
2.4. Simulation Conditions and Method
- The tractor was placed on the ground plane,
- The ground plane started to rotate with a pivot point at the corner,
- Tilted the ground at 0.04 rad/s,
- The rollover angle was analyzed when the contact force between the left two wheels and the ground became 0 N,
- Then, it was repeated by turning the tractor 15° counterclockwise based on the midpoint (Figure 5b).
2.5. Load Transfer Ratio (LTR) Indicator for Tractor Rollover
3. Results
3.1. Comparison Rollover Angle of the Tractor after Simulation
3.2. Load Transfer Ratio (LTR) Analysis for Each Type of Tractor
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Faria, R.; Moura, P.; Delgado, J.; De Almeida, A.T. A sustainability assessment of electric vehicles as a personal mobility system. Energy Convers. Manag. 2012, 61, 19–30. [Google Scholar] [CrossRef]
- Owusu, P.A.; Asumadu, S.S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3, 1167990. [Google Scholar] [CrossRef]
- Gonzalez-de-Soto, M.; Emmi, L.; Benavides, C.; Garcia, I.; Gonzalez-de-Santos, P. Reducing air pollution with hybrid-powered robotic tractors for precision agriculture. Biosyst. Eng. 2016, 143, 79–94. [Google Scholar] [CrossRef]
- Moreda, G.P.; Muñoz-García, M.A.; Barreiro, P.J.E.C. High voltage electrification of tractor and agricultural machinery—A review. Energy Convers. Manag. 2016, 115, 117–131. [Google Scholar] [CrossRef]
- Mocera, F.; Somà, A. Analysis of a parallel hybrid electric tractor for agricultural applications. Energies 2020, 13, 3055. [Google Scholar] [CrossRef]
- Malik, A.; Kohli, S. Electric tractors: Survey of challenges and opportunities in India. Mater. Today Proc. 2020, 28, 2318–2324. [Google Scholar] [CrossRef]
- Van Leeuwen, L.B. Hydrogen or Battery Tractors: What Potential for Sustainable Grape Growing? IVES Technical Reviews; Vine and Wine: Villenave d’Ornon, France, 2020. [Google Scholar]
- Ghobadpour, A.; Monsalve, G.; Cardenas, A.; Mousazadeh, H. Off-road electric vehicles and autonomous robots in agricultural sector: Trends, challenges, and opportunities. Vehicles 2022, 4, 843–864. [Google Scholar] [CrossRef]
- Ettl, J.; Thuneke, K.; Remmele, E.; Emberger, P.; Widmann, B. Future biofuels and driving concepts for agricultural tractors. In Proceedings of the 2014 European Biomass Conference and Exhibition, Hamburg, Germany, 24–27 June 2014; pp. 23–25. [Google Scholar]
- Sassetti, R.; Ferrante, S.; Lenzini, N.; Nuzzo, S.; Fiorati, S.; Barater, D. Potential of Powertrain Electrification in a mid-size Tractor for a more sustainable agriculture. In Proceedings of the 2023 AEIT International Conference on Electrical and Electronic Technologies for Automotive, Modena, Italy, 17–19 July 2023; pp. 1–6. [Google Scholar]
- Jia, C.; Qiao, W.; Qu, L. Modeling and control of hybrid electric vehicles: A case study for agricultural tractors. In Proceedings of the 2018 IEEE Vehicle Power and Propulsion Conference, Chicago, IL, USA, 27–30 August 2018; pp. 1–6. [Google Scholar]
- Felseghi, R.A.; Carcadea, E.; Raboaca, M.S.; Trufin, C.N.; Filote, C. Hydrogen fuel cell technology for the sustainable future of stationary applications. Energies 2019, 12, 4593. [Google Scholar] [CrossRef]
- Handwerker, M.; Wellnitz, J.; Marzbani, H. Comparison of hydrogen powertrains with the battery powered electric vehicle and investigation of small-scale local hydrogen production using renewable energy. Hydrogen 2021, 2, 76–100. [Google Scholar] [CrossRef]
- Xu, L.; Liu, M.; Zhou, Z. Design of drive system for series hybrid electric tractor. Trans. Chin. Soc. Agric. Eng. 2014, 30, 11–18. [Google Scholar]
- Baek, S.Y.; Kim, W.S.; Kim, Y.S.; Kim, Y.J.; Park, C.G.; An, S.C.; Kim, B.S. Development of a simulation model for an 80 kW-class electric all-wheel-drive (AWD) tractor using agricultural workload. J. Drive Control 2020, 17, 27–36. [Google Scholar]
- Ueka, Y.; Yamashita, J.; Sato, K.; Doi, Y. Study on the development of the electric tractor: Specifications and traveling and tilling performance of a prototype electric tractor. Eng. Agric. Environ. Food 2013, 6, 160–164. [Google Scholar] [CrossRef]
- Gao, H.; Xue, J. Modeling and economic assessment of electric transformation of agricultural tractors fueled with diesel. Sustain. Energy Technol. Assess. 2020, 39, 100697. [Google Scholar] [CrossRef]
- Mello, R.R.; Antunes, F.L.; Daher, S.; Vogt, H.H.; Albiero, D.; Tofoli, F.L. Conception of an electric propulsion system for a 9 kW electric tractor suitable for family farming. IET Electr. Power Appl. 2019, 13, 1993–2004. [Google Scholar] [CrossRef]
- Sanderson, W.T.; Madsen, M.D.; Rautiainen, R.; Kelly, K.M.; Zwerling, C.; Taylor, C.D.; Merchant, J.A. Tractor overturn concerns in Iowa: Perspectives from the Keokuk county rural health study. J. Agric. Saf. Health 2006, 12, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Myers, M.L.; Cole, H.P.; Westneat, S.C. Injury severity related to overturn characteristics of tractors. J. Saf. Res. 2009, 40, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Murphy, D.J.; Myers, J.; McKenzie, E.A., Jr.; Cavaletto, R.; May, J.; Sorensen, J. Tractors and Rollover Protection in the United States. J. Agromed. 2010, 15, 249–263. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Song, Z.; Wang, L.; Zhou, X.; Gao, J.; Wang, K.; Yang, M.; Li, Z. Fasting the stabilization response for prevention of tractor rollover using active steering: Controller parameter optimization and real-vehicle dynamic tests. Comput. Electron. Agric. 2023, 204, 107525. [Google Scholar] [CrossRef]
- Carabin, G.; Becce, L.; Mazzetto, F. Development and Experimental Evaluation of a Tractor Roll-Over Stability Model. In Proceedings of the 2022 Conference of the Italian Society of Agricultural Engineering, Palermo, Italy, 19–22 September 2022; Springer International Publishing: Cham, Switzerland, 2022; pp. 429–436. [Google Scholar]
- Kang, S.H.; Kim, Y.S.; Park, H.G.; Kim, Y.G.; Woo, S.M.; Daniel, D.Y.; Ha, Y.S. Rollover safetyand workable boundary suggestion of an agricultural platform with different attachments. Agriculture 2022, 12, 1148. [Google Scholar] [CrossRef]
- Rondelli, V.; Capacci, E.; Franceschetti, B. Evaluation of the Stability Behavior of an Agricultural Unmanned Ground Vehicle. Sustainability 2022, 14, 15561. [Google Scholar] [CrossRef]
- Majdan, R.; Abrahám, R.; Kollárová, K.; Tkáč, Z.; Matejková, E.; Kubík, Ľ. Alternative Models for Calculation of Static Overturning Angle and Lateral Stability Analysis of Subcompact and Universal Tractors. Agriculture 2021, 11, 861. [Google Scholar] [CrossRef]
- Bietresato, M.; Mazzetto, F. Definition of the Layout for a New Facility to Test the Static and Dynamic Stability of Agricultural Vehicles Operating on Sloping Grounds. Appl. Sci. 2019, 9, 4135. [Google Scholar] [CrossRef]
- Reynolds, S.J.; Groves, W. Effectiveness of roll-over protective structures in reducing farm tractor fatalities. Am. J. Prev. Med. 2000, 18, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Day, L.; Rechnitzer, G.; Lough, J. An Australian experience with tractor rollover protective structure rebate programs: Process, impact and outcome evaluation. Accid. Anal. Prev. 2004, 36, 861–867. [Google Scholar] [CrossRef] [PubMed]
- U.S. Bureau of Labor Statistics. Fatal occupational injuries by industry and event or exposure. In Injuries, Illnesses, and Fatalities; U.S. Bureau of Labor Statistics: Washington, DC, USA, 2021. [Google Scholar]
- Antunes, S.M.; Cordeiro, C.; Teixeira, H.M. Analysis of fatal accidents with tractors in the Centre of Portugal: Ten years analysis. Forensic Sci. Int. 2018, 287, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Rondelli, V.; Casazza, C.; Martelli, R. Tractor rollover fatalities, analyzing accident scenario. J. Saf. Res. 2018, 67, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ayers, P.D. Off-road vehicle rollover and field testing of stability index. J. Agric. Saf. Health 1999, 5, 59. [Google Scholar] [CrossRef]
- Lleras, N.O.; Brennan, S.; Murphy, D.; Klena, M.J.; Garvey, P.M.; Sommer Iii, H.J. Development of an open-source tractor driving simulator for tractor stability tests. J. Agric. Saf. Health 2016, 22, 227–246. [Google Scholar]
- Khoury Junior, J.K.; Souza, C.M.A.D.; Rafull, L.Z.L.; Varella, C.A.A. Simulation of the stability of 2wd agricultural tractors. Bragantia 2009, 68, 257–267. [Google Scholar] [CrossRef]
- Franceschetti, B.; Lenain, R.; Rondelli, V. Comparison between a rollover tractor dynamic model and actual lateral tests. Biosyst. Eng. 2014, 127, 79–91. [Google Scholar] [CrossRef]
- Baek, S.M.; Kim, W.S.; Kim, Y.S.; Baek, S.Y.; Kim, Y.J. Development of a simulation model for HMT of a 50 kW class agricultural tractor. Appl. Sci. 2020, 10, 4064. [Google Scholar] [CrossRef]
- Pawar, N.M.; Velaga, N.R. Modelling the influence of time pressure on reaction time of drivers. Transp. Res. Part F Traffic Psychol. Behav. 2020, 72, 1–22. [Google Scholar] [CrossRef]
- Zheng, E.; Cui, S.; Yang, Y.; Xue, J.; Zhu, Y.; Lin, X. Simulation of the Vibration Characteristics for Agricultural Wheeled Tractor with Implement and Front Axle Hydropneumatic Suspension. Shock Vib. 2019, 2019, 91345312. [Google Scholar] [CrossRef]
- Watanabe, M.; Sakai, K. Identifying tractor overturning scenarios using a driving simulator with a motion system. Biosyst. Eng. 2021, 210, 261–270. [Google Scholar] [CrossRef]
- Gao, J.; Yin, C.; Yuan, G. Warning and active steering rollover prevention control for agricultural wheeled tractor. PLoS ONE 2022, 17, e028021. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.; Ali, M.; Habineza, E.; Reza, M.N.; Kabir, M.S.N.; Lim, S.J.; Choi, I.S.; Chung, S.O. Analysis of Rollover Characteristics of a 12 kW Automatic Onion Transplanter to Reduce Stability Hazards. Agriculture 2023, 13, 652–669. [Google Scholar] [CrossRef]
- Kim, W.S.; Siddique, M.A.A.; Kim, Y.J.; Jung, Y.J.; Baek, S.M.; Baek, S.Y.; Kim, Y.S.; Lim, R.G. Simulation of the Rollover Angle of a Self-Propelled Radish Harvester for Different Load Conditions. Appl. Sci. 2022, 12, 10733. [Google Scholar] [CrossRef]
- Jang, M.K.; Hwang, S.J.; Kim, J.H.; Nam, J.S. Overturning and rollover characteristics of a tractor through dynamic simulations: Effect of slope angle and obstacles on a hard surface. Biosyst. Eng. 2022, 219, 11–24. [Google Scholar] [CrossRef]
- Chowdhury, M.; Islam, M.N.; Iqbal, M.Z.; Islam, S.; Lee, D.H.; Kim, D.G.; Jun, H.J.; Chung, S.O. Analysis of Overturning and Vibration during Field Operation of a Tractor-Mounted 4-Row Radish Collector toward Ensuring User Safety. Machines 2020, 8, 77. [Google Scholar] [CrossRef]
- Kim, Y.; Noh, J.; Shin, S.; Kim, B.; Hong, S. Improved Method for Determining the Height of Center of Gravity of Agricultural Tractors. J. Biosyst. Eng. 2016, 41, 170–176. [Google Scholar] [CrossRef]
- Jung, Y.J.; Lim, R.G.; Choi, C.H.; Kim, Y.J. Analysis of Overturning Angle for Radish Harvester. Korean Soc. Agric. Mach. 2019, 1, 458–459. [Google Scholar]
- Agricultural Machinery Inspection Standards. Available online: https://www.mafra.go.kr/home/5108/subview.do?enc=Zm5jdDF8QEB8JTJGYmJzJTJGaG9tZSUyRjc5MSUyRjU2NTAyNiUyRmFydGNsVmlldy5kbyUzRg%3D%3D (accessed on 5 January 2023).
- Song, Y.; Zhang, X.; Wang, W. Rollover dynamics modelling and analysis of self-propelled combine harvester. Biosyst. Eng. 2021, 209, 271–281. [Google Scholar] [CrossRef]
- Larish, C.; Piyabongkarn, D.; Tsourapas, V.; Rajamani, R. A New Predictive Lateral Load Transfer Ratio for Rollover Prevention Systems. IEEE Trans. Veh. Technol. 2013, 62, 2928–2936. [Google Scholar] [CrossRef]
- Fargnoli, M.; Lombardi, M. Safety vision of agricultural tractors: An engineering perspective based on recent studies. Safety 2019, 6, 1. [Google Scholar] [CrossRef]
- Lee, D.G.; Yoo, H.J.; Shin, M.; Oh, J.; Shim, S.B. Analysis of overturning stability of small off-road vehicle. J. Biosyst. Eng. 2023, 48, 309–318. [Google Scholar] [CrossRef]
- ISO 16231-2:2015; Self-Propelled Agricultural Machinery—Assessment of Stability—Part 2: Determination of Static Stability and Test Procedures. ISO: Geneva, Switzerland, 2015. Available online: https://www.iso.org/standard/61583.html (accessed on 4 July 2021).
Parameters | Values |
---|---|
Overall width (W) | 2700 mm |
Overall length (L) | 4000 mm |
Overall height (H) | 2800 mm |
Wheelbase | 2400 mm |
Mass of the front wheel | 80 kg |
Mass of the rear wheel | 150 kg |
Total mass of the tractor | 5100 kg |
E | P | M | T | CM | |
---|---|---|---|---|---|
Width (mm) | 870 | 1045 | 450 | - | 330 |
Height (mm) | 1050 | 855 | 450 | - | 1430 |
Length (mm) | 650 | 850 | 450 | 900 | 860 |
Diameter (mm) | - | - | - | 350 | - |
Weight (kg) | 550 | 250 | 80 | 36 | 250 |
Power (kW) | 110 | 70 | 95 | - | 70 |
Combustion Tractor | Type 1 | Type 2 | Type 3 | |
---|---|---|---|---|
X coordinate | 1355.72 | 1245.66 | 1373.53 | 1381.42 |
Z coordinate | 1356.59 | 1345.39 | 1348.7 | 1388.64 |
Center of gravity ratio | 0.56:0.44 | 0.52:0.48 | 0.57:0.43 | 0.58:0.42 |
Parameters | Values |
---|---|
Dynamic friction coefficient | 1.2 |
Stiffness coefficient | 105 |
Damping coefficient | 10 |
Simulation time | 25 s |
Simulation steps | 1000 |
Rotate Angle (°) | Combustion Engine Tractor (°) | Type 1 (°) | Type 2 (°) | Type 3 (°) | Relative Change |
---|---|---|---|---|---|
0 | 35.89 | 36.00 | 36.14 | 35.33 | 2% |
15 | 36.34 | 36.45 | 36.56 | 35.83 | 2% |
30 | 38.87 | 38.93 | 39.15 | 38.25 | 2% |
45 | 44.27 | 44.55 | 44.33 | 43.43 | 3% |
60 | 49.50 | 46.18 | 49.28 | 48.09 | 7% |
75 | 46.46 | 44.27 | 46.97 | 46.24 | 6% |
90 | 45.51 | 43.31 | 46.01 | 45.34 | 6% |
105 | 46.52 | 44.16 | 46.91 | 46.24 | 6% |
120 | 49.9 | 46.41 | 49.50 | 48.26 | 7% |
135 | 44.21 | 43.15 | 44.78 | 44.72 | 4% |
150 | 39.49 | 39.43 | 39.60 | 38.81 | 2% |
165 | 36.96 | 37.01 | 37.13 | 36.34 | 2% |
180 | 36.51 | 36.51 | 36.62 | 35.83 | 2% |
195 | 37.74 | 37.80 | 37.91 | 37.13 | 2% |
210 | 41.35 | 40.67 | 41.68 | 40.33 | 3% |
225 | 46.07 | 45.90 | 45.96 | 45.23 | 2% |
240 | 41.68 | 45.17 | 41.40 | 41.35 | 9% |
255 | 39.15 | 42.19 | 38.87 | 37.97 | 11% |
270 | 38.25 | 41.23 | 37.97 | 36.96 | 12% |
285 | 39.15 | 42.19 | 38.81 | 37.80 | 12% |
300 | 41.35 | 45.51 | 41.80 | 40.67 | 12% |
315 | 44.94 | 46.24 | 46.86 | 46.07 | 2% |
330 | 40.78 | 40.73 | 41.06 | 40.22 | 2% |
345 | 37.18 | 37.29 | 37.46 | 36.62 | 2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, J.; Kim, Y.; Kang, S.; Ha, Y. Enhancing Safety through Optimal Placement of Components in Hydrogen Tractor: Rollover Angle Analysis. Agriculture 2024, 14, 315. https://doi.org/10.3390/agriculture14020315
Son J, Kim Y, Kang S, Ha Y. Enhancing Safety through Optimal Placement of Components in Hydrogen Tractor: Rollover Angle Analysis. Agriculture. 2024; 14(2):315. https://doi.org/10.3390/agriculture14020315
Chicago/Turabian StyleSon, Jinho, Yeongsu Kim, Seokho Kang, and Yushin Ha. 2024. "Enhancing Safety through Optimal Placement of Components in Hydrogen Tractor: Rollover Angle Analysis" Agriculture 14, no. 2: 315. https://doi.org/10.3390/agriculture14020315
APA StyleSon, J., Kim, Y., Kang, S., & Ha, Y. (2024). Enhancing Safety through Optimal Placement of Components in Hydrogen Tractor: Rollover Angle Analysis. Agriculture, 14(2), 315. https://doi.org/10.3390/agriculture14020315