Toxicity of Ethyl Formate to Tribolium castaneum (Herbst) Exhibiting Different Levels of Phosphine Resistance and Its Influence on Metabolite Profiles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect Culture
2.2. Fumigation System
2.3. Gas Measurement
2.4. Solid-Phase Microextraction (SPME) Procedure and Sampling Setup
2.5. Gas Chromatography–Mass Spectrometry (GC-MS) Conditions
2.6. Statistical Analysis
3. Results
3.1. Phosphine Susceptibility Tests
3.2. Susceptibility and Test for Cross-Resistance to EF
3.3. Metabolite Expression in Response to EF in Different Levels of PH3 Resistance
3.4. Hierarchical Cluster Analysis (HCA)
3.5. Artificial Neural Network (ANN)
3.6. Multivariate Statistical Analysis of Metabolites in T. castaneum after EF Fumigation
3.7. Screening and Analysis of Differentially Regulated Metabolites in T. castaneum after Treatment with EF
3.8. Key Metabolic Pathway Preliminary Analysis
3.9. Comparison of the Key Differential Metabolic Responses
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hasan, M.; Aikins, M.; Schilling, M.; Phillips, T. Comparison of methyl bromide and phosphine for fumigation of Necrobia rufipes (Coleoptera: Cleridae) and Tyrophagus putrescentiae (Sarcoptiformes: Acaridae), pests of high-value stored products. J. Econ. Entomol. 2020, 113, 1008–1014. [Google Scholar] [CrossRef]
- Konemann, C.; Hubhachen, Z.; Opit, G.; Gautam, S.; Bajracharya, N. Phosphine resistance in Cryptolestes ferrugineus (Coleoptera: Laemophloeidae) collected from grain storage facilities in Oklahoma, USA. J. Econ. Entomol. 2017, 110, 1377–1383. [Google Scholar] [CrossRef]
- Porter, I.; Banks, J.; Mattner, S.; Fraser, P. Global phaseout of methyl bromide under the Montreal protocol: Implications for bioprotection, biosecurity and the ozone layer. In Recent Developments in Management of Plant Diseases; Spring: Berlin/Heidelberg, Germany, 2009; pp. 293–309. [Google Scholar]
- Cao, Y.; Wang, D. Relationship between phosphine resistance and narcotic knockdown in Tribolium castaneum (Herbst), Sitophilus oryzae (L.), and S. zeamais (Motsch). In Proceedings of the Conference Controlled Atmosphere and Fumigation in Stored-Products 2020, Adelaide, Australia, 1–4 August 2020; pp. 1–4. [Google Scholar]
- Walter, G.H.; Chandrasekaran, S.; Collins, P.J.; Jagadeesan, R.; Mohankumar, S.; Alagusundaram, K.; Subramanian, S. The grand challenge of food security-general lessons from a comprehensive approach to protecting stored grain from insect pests in Australia and India. Indian J. Entomol. 2016, 78, 7–16. [Google Scholar] [CrossRef]
- Jagadeesan, R.; Nayak, M.K. Phosphine resistance does not confer cross-resistance to sulfuryl fluoride in four major stored grain insect pests. Pest Manag. Sci. 2017, 73, 1391–1401. [Google Scholar] [CrossRef]
- Chiluwal, K.; Lee, B.H.; Kwon, T.H.; Kim, J.; Park, C.G. Post-fumigation sub-lethal activities of phosphine and ethyl formate on survivorship, fertility and female sex pheromone production of Callosobruchus chinensis (L.). Sci. Rep. 2023, 13, 4333. [Google Scholar] [CrossRef]
- Xin, N.; Ren, Y.L.; Forrester, R.I.; Ming, X.; Mahon, D. Toxicity of ethyl formate to adult Sitophilus oryzae (L.), Tribolium castaneum (herbst) and Rhyzopertha dominica (F.). J. Stored Prod. Res. 2008, 44, 241–246. [Google Scholar] [CrossRef]
- Ren, Y.; Lee, B.; Padovan, B.; Cai, L. Ethyl formate plus methyl isothiocyanate—A potential liquid fumigant for stored grains. Pest Manag. Sci. 2012, 68, 194–201. [Google Scholar] [CrossRef]
- Kim, B.; Song, J.E.; Park, J.S.; Park, Y.; Shin, E.M.; Yang, J. Insecticidal effects of fumigants (EF, MB, and PH3) towards phosphine-susceptible and-resistant Sitophilus oryzae (Coleoptera: Curculionidae). Insects 2019, 10, 327. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.X.; Wang, J.J.; Dou, W.; Yang, Z.L.; Jiang, T.K. Fumigation activities of ethyl formate on different strains of Liposcelis bostrychophila. Jul.-Kühn-Arch. 2010, 425, 459–463. [Google Scholar]
- Haritos, V.S.; Dojchinov, G. Cytochrome c oxidase inhibition in the rice weevil Sitophilus oryzae (L.) by formate, the toxic metabolite of volatile alkyl formates. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2003, 136, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Yang, J.O.; Sung, J.Y.; Lee, J.Y.; Park, J.S.; Lee, H.S.; Lee, S.E. Minimization of energy transduction confers resistance to phosphine in the rice weevil, Sitophilus oryzae. Sci. Rep. 2019, 9, 14605. [Google Scholar]
- Kim, K.; Lee, Y.H.; Kim, G.; Lee, B.H.; Yang, J.O.; Lee, S.E. Ethyl formate and phosphine fumigations on the two-spotted spider mite, Tetranychus urticae and their biochemical responses. Appl. Biol. Chem. 2019, 62, 50. [Google Scholar] [CrossRef]
- Alnajim, I.; Du, X.; Lee, B.; Agarwal, M.; Liu, T.; Ren, Y. New method of analysis of lipids in Tribolium castaneum (Herbst) and Rhyzopertha dominica (Fabricius) insects by direct immersion solid-phase microextraction (DI-SPME) coupled with GC–MS. Insects 2019, 10, 363. [Google Scholar] [CrossRef]
- Li, L.; Shan, C.; Liu, Q.; Li, B.; Liu, T. Comparative Analysis of the Metabolic Profiles of Strains of Tribolium castaneum (Herbst) Adults with Different Levels of Phosphine Resistance Based on Direct Immersion Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry. Molecules 2023, 28, 7721. [Google Scholar] [CrossRef]
- GB/T16037; Determination of Phosphine-Ammonium Molybdate Spectrophotometric Method. Chinese National Standard. National Health and Family Planning Commission of PRC: Beijing, China, 1996.
- Shan, C.; Li, B.; Li, L.; Du, X.; Ren, Y.; McKirdy, S.J.; Liu, T. Comparison of fumigation efficacy of methyl bromide alone and phosphine applied either alone or simultaneously or sequentially against Bactrocera correcta in Selenicereus undatus (red pitaya) fruit. Pest Manag. Sci. 2023, 79, 4942–4951. [Google Scholar] [CrossRef]
- Kim, K.; Park, M.G.; Lee, Y.H.; Jeon, H.J.; Kwon, T.H.; Kim, C.; Lee, S.E. Synergistic effects and toxic mechanism of phosphine with ethyl formate against citrus mealybug (Planococcus citri). Appl. Sci. 2021, 11, 9877. [Google Scholar] [CrossRef]
- Lee, B.H.; Kim, H.M.; Kim, B.S.; Yang, J.O.; Moon, Y.M.; Ren, Y. Evaluation of the synergistic effect between ethyl formate and phospine for control of Aphis gossypii (Homoptera: Aphididae). J. Econ. Entomol. 2016, 109, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Alnajim, I.; Agarwal, M.; Liu, T.; Li, B.; Du, X.; Ren, Y. Preliminary Study on the Differences in Hydrocarbons Between Phosphine-Susceptible and-Resistant Strains of Rhyzopertha dominica (Fabricius) and Tribolium castaneum (Herbst) Using Direct Immersion Solid-Phase Microextraction Coupled with GC-MS. Molecules 2020, 25, 1565. [Google Scholar] [CrossRef] [PubMed]
- Sun, L. Exploration of Factors to Enhance Aromatic Quality in Green Tea. Ph.D. Thesis, Murdoch University, Murdoch, Australia, 2022. [Google Scholar]
- Daglish, G.J.; Collins, P.J.; Pavic, H.; Kopittke, R.A. Effects of time and concentration on mortality of phosphine-resistant Sitophilus oryzae (L) fumigated with phosphine. Pest Manag. Sci. Former. Pestic. Sci. 2002, 58, 1015–1021. [Google Scholar] [CrossRef] [PubMed]
- Opit, G.P.; Phillips, T.W.; Aikins, M.J.; Hasan, M.M. Phosphine resistance in Tribolium castaneum and Rhyzopertha dominica from stored wheat in Oklahoma. J. Econ. Entomol. 2012, 105, 1107–1114. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, M.A.G.; Faroni, L.R.D.A.; Tótola, M.R.; Guedes, R.N.C. Phosphine resistance, respiration rate and fitness consequences in stored-product insects. Pest Manag. Sci. Former. Pestic. Sci. 2007, 63, 876–881. [Google Scholar] [CrossRef] [PubMed]
- Jagadeesan, R.; Nayak, M.K.; Pavic, H.; Chandra, K.; Collins, P.J. Susceptibility to sulfuryl fluoride and lack of cross-resistance to phosphine in developmental stages of the red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae). Pest Manag. Sci. 2015, 71, 1379–1386. [Google Scholar] [CrossRef]
- Tian, X.; Hao, J.; Wu, F.; Hu, H.; Zhou, G.; Liu, X.; Zhang, T. 1-Pentadecene, a volatile biomarker for the detection of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) infested brown rice under different temperatures. J. Stored Prod. Res. 2022, 97, 101981. [Google Scholar] [CrossRef]
- Wirtz, R.A.; Taylor, S.L.; Semey, H.G. Concentrations of substituted p-benzoquinones and 1-pentadecene in the flour beetles tribolium confusum J. Du Val and tribolium castaneum (herbst). Comp. Biochem. Physiol. Part B Biochem. 1978, 61, 25–28. [Google Scholar] [CrossRef]
- Kan, X.; Fan, Y.; Fang, Z.; Cao, L.; Xiong, N.N.; Yang, D.; Li, X. A novel IoT network intrusion detection approach based on adaptive particle swarm optimization convolutional neural network. Inf. Sci. 2021, 568, 147–162. [Google Scholar] [CrossRef]
- Karsoliya, S. Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture. Int. J. Eng. Trends Technol. 2012, 3, 714–717. [Google Scholar]
- Beattie, J.R.; Esmonde-White, F.W. Exploration of principal component analysis: Deriving principal component analysis visually using spectra. Appl. Spectrosc. 2021, 75, 361–375. [Google Scholar] [CrossRef]
- Wang, C.; Feng, Y.; Zhang, S.; Fu, T.; Sheng, Y.; Zhang, Y.; Zhang, D. Effects of storage on brown rice (Oryza sativa L.) metabolites, analyzed using gas chromatography and mass spectrometry. Food Sci. Nutr. 2020, 8, 2882–2894. [Google Scholar] [CrossRef]
- Rolo, A.; Teodoro, J.; Palmeira, C. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic. Biol. Med. 2012, 52, 59–69. [Google Scholar] [CrossRef]
- Cocco, T.; Di, M.; Papa, P.; Lorusso, M. Arachidonic acid interaction with the mitochondrial electron transport chain promotes reactive oxygen species generation. Free Radic. Biol. Med. 1999, 27, 51–59. [Google Scholar] [CrossRef]
- Liu, T.; Chen, X.; Sun, J.; Jiang, X.; Wu, Y.; Yang, S.; Du, X. Palmitic acid-induced podocyte apoptosis via the reactive oxygen species-dependent mitochondrial pathway. Kidney Blood Press. Res. 2018, 43, 206–219. [Google Scholar] [CrossRef]
- Wang, N.; Ma, H.; Li, J.; Meng, C.; Zou, J.; Wang, H.; Wang, K. HSF1 functions as a key defender against palmitic acid-induced ferroptosis in cardiomyocytes. J. Mol. Cell. Cardiol. 2021, 150, 65–76. [Google Scholar] [CrossRef]
- Fatima, S.; Hu, X.; Gong, R.; Huang, C.; Chen, M.; Wong, H.; Kwan, H. Palmitic acid is an intracellular signaling molecule involved in disease development. Cell. Mol. Life Sci. 2019, 76, 2547–2557. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, G. Jasmonates: Biosynthesis, perception and signal transduction. Essays Biochem. 2020, 64, 501–512. [Google Scholar]
- Niwa, R.; Niwa, Y.S. Enzymes for ecdysteroid biosynthesis: Their biological functions in insects and beyond. Biosci. Biotechnol. Biochem. 2014, 78, 1283–1292. [Google Scholar] [CrossRef]
- Czuba, E.; Steliga, A.; Lietzau, G.; Kowiański, P. Cholesterol as a modifying agent of the neurovascular unit structure and function under physiological and pathological conditions. Metab. Brain Dis. 2017, 32, 935–948. [Google Scholar] [CrossRef]
- Shen, G.; Zhou, L.; Liu, W.; Cui, Y.; Xie, W.; Chen, H.; Li, H. Di (2-ethylhexyl) phthalate alters the synthesis and β-oxidation of fatty acids and hinders ATP supply in mouse testes via UPLC-Q-Exactive Orbitrap MS-based Metabonomics study. J. Agric. Food Chem. 2017, 65, 5056–5063. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, K.; Eaton, S. Mitochondrial β-oxidation. Eur. J. Biochem. 2004, 271, 462–469. [Google Scholar] [CrossRef]
- Kim, D.; Kim, K.; Lee, Y.H.; Lee, S.E. Transcriptome and Micro-CT analysis unravels the cuticle modification in phosphine-resistant stored grain insect pest, Tribolium castaneum (Herbst). Chem. Biol. Technol. Agric. 2023, 10, 88. [Google Scholar] [CrossRef]
- Shen, X.; Che, M.; Xu, H.; Zhuang, X.; Chen, E.; Tang, P.; Wang, K. Insight into the molecular mechanism of phosphine toxicity provided by functional analysis of cytochrome b5 fatty acid desaturase and dihydrolipoamide dehydrogenase in the red flour beetle, Tribolium castaneum. Pestic. Biochem. Physiol. 2023, 194, 105482. [Google Scholar] [CrossRef]
- Zuryn, S.; Kuang, J.; Ebert, P. Mitochondrial modulation of phosphine toxicity and resistance in Caenorhabditis elegans. Toxicol. Sci. 2008, 102, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Lee, S.W.; Kim, J.I.; Yang, J.O.; Koo, H.N.; Kim, G.H. Synergistic effects of oxygen on phosphine and ethyl formate for the control of Phthorimaea operculella (Lepidoptera: Gelechiidae). J. Econ. Entomol. 2015, 108, 2572–2580. [Google Scholar] [CrossRef] [PubMed]
Strain (Response Phenotype a) | N b | Slope ± SE | LC30 (mg/L) (95%FL c) | LC50 (mg/L) (95%FL) | LC99 (mg/L) (95%FL) | Heterogeneity Factor | df d | G-Factor e | Mean Deviance Ratio f | RR g (CL h) | Classification |
---|---|---|---|---|---|---|---|---|---|---|---|
TC-S (Con-S) | 450 | 1.667 ± 0.242 | 0.004 (0.000, 0.010) | 0.009 (0.003, 0.014) | 0.223 (0.080, 1.089) | 1.858 | 16 | 0.331 | 63.262 (p < 0.001) | - | Susceptibility |
TC-M (Con-M) | 540 | 1.880 ± 0.176 | 0.122 (0.084, 0.157) | 0.232 (0.184, 0.285) | 4.010 (2.211, 10.993) | 1.060 | 16 | 0.140 | 80.178 (p < 0.001) | 25.778 (18.120, 33.991) | Moderate |
TC-SR (Con-SR) | 540 | 3.359 ± 0.290 | 5.323 (4.012, 6.372) | 7.626 (6.371, 9.064) | 37.579 (24.559, 87.334) | 2.040 | 16 | 0.119 | 54.434 (p < 0.001) | 847.333 (645.920, 1069.069) | Strong |
Strain (Response Phenotype a) | N b | Slope ± SE | LC30 (95%FL c) | LC50 (95%FL) | LC99 (95%FL) | Heterogeneity Factor | df d | G-Factor e | Mean Deviance Ratio f | RR g (CL h) |
---|---|---|---|---|---|---|---|---|---|---|
TC-S (EF-S) | 900 | 15.138 ± 0.980 | 16.833 (16.407, 17.218) | 18.230 (17.850, 18.610) | 25.970 (24.877, 27.415) | 0.916 | 16 | 0.038 | 158.212 (p < 0.001) | - |
TC-M (EF-M) | 900 | 14.995 ± 0.996 | 16.006 (15.584, 16.384) | 17.348 (16.974, 17.719) | 24.797 (23.732, 26.216) | 0.460 | 16 | 0.040 | 110.284 (p < 0.001) | 0.952 (0.872, 1.033) |
TC-SR (EF-SR) | 900 | 11.918 ± 0.736 | 14.497 (14.042, 14.906) | 16.043 (15.636, 16.443) | 25.146 (23.906, 26.780) | 0.498 | 16 | 0.034 | 90.786 (p < 0.001) | 0.880 (0.806, 0.955) |
Metabolite | RT 1 | RI (Exp) 2 | RI (Lit) 3 | Relative Abundance (%) ± SD 5 | Log2(FC) | p-Value (10−3) | CAS | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Con-S | Con-M | Con-SR | EF-S | EF-M | EF-SR | |||||||
2-Methyl-p-Benzoquinone | 6.930 | 1028 | 1018 | 0.22 ± 0.01 f | 0.45 ± 0.01 e | 0.65 ± 0.03 d | 0.92 ± 0.01 c | 0.97 ± 0.01 b | 1.27 ± 0.01 a | 1.28 | 1.78 × 10−3 | 553-97-9 |
2-Ethyl-p-Benzoquinone | 8.915 | 1122 | 1215 | 0.42 ± 0.01 f | 1.05 ± 0.06 d | 0.81 ± 0.01 e | 2.46 ± 0.17 a | 1.41 ± 0.05 c | 1.78 ± 0.25 b | 1.30 | 3.88 × 10−5 | 4754-26-1 |
Orcinol | 13.666 | 1359 | 1374 | 1.45 ± 0.09 a | 1.39 ± 0.11 a | 1.16 ± 0.08 b | 1.34 ± 0.08 a | 1.33 ± 0.04 a | 1.01 ± 0.04 c | −0.12 | 2.46 × 10−4 | 504-15-4 |
2-Undecenal | 14.126 | 1383 | 1367 | N.D. 4 b | 0.58 ± 0.03 a | 0.56 ± 0.01 a | N.D. b | 0.69 ± 0.01 a | 0.67 ± 0.04 a | −0.058 | 3.98 × 10−2 | 2463-77-6 |
Ethyl p-Hydroxybenzoate | 15.212 | 1443 | 1438 | 1.89 ± 0.05 bc | 3.28 ± 0.23 c | 3.72 ± 0.17 d | 1.94 ± 0.01 abc | 3.16 ± 0.22 a | 3.24 ± 0.55 ab | 0.29 | 14.84 | 120-47-8 |
2-Dodecen-1-ol | 16.09 | 1472 | 1472 | 0.97 ± 0.1 b | 0.8 ± 0.09 c | 1.08 ± 0.03 b | 1.52 ± 0.05 a | 1.08 ± 0.03 b | 1.52 ± 0.23 a | 0.49 | 5.04 | 22104-81-0 |
1-Pentadecene | 16.491 | 1492 | 1515 | 21.3 ± 0.43 ab | 21.55 ± 0.48 ab | 19.84 ± 0.47 b | 22.87 ± 2.45 ab | 24.18 ± 2.3 a | 22.66 ± 0.24 ab | 0.16 | 53 | 13360-61-7 |
1-(2-Hydroxy-4-methoxyphenyl)propan-1-one | 17.324 | 1564 | 1538 * | 1.37 ± 0.03 c | 2.15 ± 0.1 c | 2.45 ± 0.04 b | 1.62 ± 0.03 b | 1.85 ± 0.09 b | 2.92 ± 0.3 a | 0.59 | 1.87 × 10−5 | 6270-44-6 |
1-Hexadecene | 18.079 | 1609 | 1592 | 0.76 ± 0.05 d | 1.02 ± 0.09 c | 0.95 ± 0.05 c | 1.7 ± 0.06 a | 1.43 ± 0.11 b | 1.73 ± 0.3 a | 0.82 | 2.18 × 10−3 | 629-73-2 |
(Z,Z)-1,8,11-Heptadecatriene | 19.252 | 1682 | 1665 | 0.78 ± 0.05 c | 0.72 ± 0.1 c | 0.72 ± 0.02 c | 1.68 ± 0.12 a | 1.25 ± 0.18 b | 1.77 ± 0.24 a | 1.07 | 1.59 × 10−3 | 56134-03-3 |
(Z)-9-Tetradecen-1-ol | 19.411 | 1691 | 1667 | 10.22 ± 0.87 d | 12.21 ± 0.46 c | 13.41 ± 1.12 bc | 14.91 ± 1.13 ab | 15.77 ± 0.85 a | 14.2 ± 1.71 abc | 0.35 | 3.61 | 35153-15-2 |
1-Hexadecanol | 19.756 | 1714 | 1880 | 10.36 ± 0.30 b | 10.17 ± 0.27 b | 12.75 ± 0.43 b | 13.52 ± 0.76 a | 13.66 ± 1.60 a | 10.36 ± 0.30 a | 0.59 | 8.95 | 36653-82-4 |
Palmitic acid | 23.762 | 1983 | 1968 | 1.78 ± 0.14 c | 1.96 ± 0.12 b | 1.91 ± 0.06 bc | 2.99 ± 0.13 a | 2.95 ± 0.2 a | 3.01 ± 0.4 a | 0.68 | 2.11 × 10−1 | 66321-94-6 |
Alpha-linolenic acid | 26.446 | 2160 | 2139 | 0.68 ± 0.1 c | 0.78 ± 0.1 bc | 0.87 ± 0.01 a | 0.61 ± 0.05 ab | 0.67 ± 0.02 a | 1.09 ± 0.26 ab | 0.56 | 20.495 | 463-40-1 |
Oleic acid | 26.801 | 2184 | 2141 | 1.77 ± 0.15 c | 2 ± 0.02 bc | 1.43 ± 0.08 ab | 2.08 ± 0.12 c | 2.34 ± 0.24 c | 2.53 ± 0.28 a | 0.0064 | 1.54 × 10−1 | 112-80-1 |
Tricosane | 31.872 | 2337 | 2300 | 1.4 ± 0.23 a | 0.38 ± 0.04 c | 0.29 ± 0.03 c | 1.32 ± 0.54 b | N.D. c | N.D. c | 1.09 | 8.46 × 10−1 | 638-67-5 |
Pentacosane | 33.426 | 2369 | 2500 | 1.82 ± 0.2 ab | 2.32 ± 0.24 a | 1.72 ± 0.13 ab | 1.65 ± 0.12 c | 1.21 ± 0.12 bc | 1.54 ± 0.41 ab | −0.51 | 3.58 × 10−2 | 629-99-2 |
11-Methylheptacosane | 34.422 | 2489 | 2535 | 2.26 ± 0.035 c | 2.65 ± 0.021 a | 2.48 ± 0.064 b | 2.19 ± 0.056 c | 2.03 ± 0.035 d | 2.46 ± 0.10 b | −0.16 | 1.05 × 10−1 | 15689-68-6 |
Hexacosane | 34.634 | 2704 | 2600 | 2.48 ± 0.18 b | 2.8 ± 0.23 b | 2.84 ± 0.33 b | 1.84 ± 0.11 a | 2.06 ± 0.15 a | 1.9 ± 0.12 a | −0.25 | 8.70 | 630-01-3 |
13-Methylheptacosane | 35.561 | 2721 | 2731 | 0.65 ± 0.03 a | 0.58 ± 0.06 ab | 0.5 ± 0.06 bc | 0.6 ± 0.05 a | 0.47 ± 0.04 c | 0.4 ± 0.05 d | −0.070 | 2.98 × 10−2 | 15689-72-2 |
Octacosane | 36.083 | 2731 | 2800 | 6.96 ± 0.49 a | 6.94 ± 0.46 a | 7.4 ± 0.85 a | 3.78 ± 0.37 b | 3.75 ± 0.31 b | 3.52 ± 0.59 b | −0.81 | 9.05 × 10−5 | 630-02-4 |
Nonacosane | 37.352 | 2755 | 2900 | N.D. c | 0.98 ± 0.02 bc | 1.09 ± 0.01 bc | 1.88 ± 0.2 a | 1.42 ± 0.07 b | 1.99 ± 0.29 a | 0.78 | 40.506 | 630-03-5 |
15-Methylnonacosane | 37.921 | 2766 | 2923 | 3.17 ± 0.27 bc | 3.29 ± 0.33 a | 3.31 ± 0.17 b | 2.89 ± 0.16 c | 2.41 ± 0.12 d | 2.4 ± 0.29 d | −0.51 | 2.40 × 10−5 | 65820-60-2 |
Triacontane | 38.276 | 2772 | 3000 | 3.35 ± 0.22 a | 3.37 ± 0.24 a | 3.55 ± 0.35 a | 3.37 ± 0.26 a | 3.7 ± 0.17 a | 3.95 ± 0.014 a | 0.085 | 133 | 638-68-6 |
Lathosterol | 40.392 | 3320 | 3170 | 2.63 ± 0.11 b | 2.67 ± 0.44 b | 2.22 ± 0.2 b | 3.78 ± 0.27 a | 4.0 5 ± 0.27 a | 4.27 ± 0.6 a | 0.68 | 4.31 × 10−1 | 80-99-9 |
Classification | Metabolite (CAS Number) | VIP Score 1 | p-Value 2 | FDR 3 | Log2(Fold Change) | Regulation |
---|---|---|---|---|---|---|
Fatty acid | Palmitic acid (CAS: 66321-94-6) | 1.27625 | 4.17 × 10−9 | 4.17 × 10−9 | 0.68 | Up |
Alpha-linolenic acid (CAS: 463-40-1) | 1.0192 | 7.69 × 10−4 | 1.75 × 10−3 | 0.56 | Up | |
Alcohol | Lathosterol (CAS: 80-99-9) | 1.2758 | 5.61 × 10−8 | 6.10 × 10−8 | 0.68 | Up |
1-Hexadecanol (CAS: 36653-82-4) | 1.13047 | 4.69 × 10−5 | 6.52 × 10−5 | 0.59 | Up | |
Alkene | 1-Hexadecene (CAS: 629-73-2) | 1.26547 | 7.13 × 10−8 | 8.10 × 10−8 | 0.82 | Up |
(Z,Z)-1,8,11-Heptadecatriene (CAS: 56134-03-3) | 1.26488 | 1.02 × 10−7 | 1.21 × 10−7 | 1.07 | Up | |
Alkane | Octacosane (CAS: 630-02-4) | 1.31529 | 2.65 × 10−8 | 2.76 × 10−8 | −0.81 | Down |
15-Methylnonacosane (CAS: 65820-60-2) | 1.14394 | 4.88 × 10−3 | 1.36 × 10−2 | −0.51 | Down | |
Nonacosane (CAS: 630-03-5) | 1.13624 | 2.76 × 10−4 | 4.59 × 10−4 | 0.78 | Up | |
Aromatic | 2-Methyl-p-Benzoquinone (CAS: 553-97-9) | 1.19573 | 1.85 × 10−6 | 2.43 × 10−6 | 1.28 | Up |
2-Ethyl-p-Benzoquinone (CAS: 4754-26-1) | 1.13628 | 4.80 × 10−5 | 7.05 × 10−5 | 1.30 | Up |
Pathway | Total | Hit Compounds | p-Value | Holm P | Impact |
---|---|---|---|---|---|
Fatty acid degradation | 50 | Palmitic acid, 1-hexadecanol | 0.00155 | 0.138 | 0.0655 |
Biosynthesis of unsaturated fatty acids | 74 | Palmitic acid, Alpha-linolenic acid | 0.00337 | 0.297 | 0.097 |
Fatty acid elongation | 40 | Palmitic acid | 0.0514 | 1 | 0.0524 |
Alpha-linolenic acid metabolism | 44 | Alpha-linolenic acid | 0.0565 | 1 | 0.0577 |
Steroid biosynthesis | 57 | Lathosterol | 0.0727 | 1 | 0.0747 |
Fatty acid biosynthesis | 58 | Palmitic acid | 0.0739 | 1 | 0.076 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, C.; You, X.; Li, L.; Du, X.; Ren, Y.; Liu, T. Toxicity of Ethyl Formate to Tribolium castaneum (Herbst) Exhibiting Different Levels of Phosphine Resistance and Its Influence on Metabolite Profiles. Agriculture 2024, 14, 323. https://doi.org/10.3390/agriculture14020323
Shan C, You X, Li L, Du X, Ren Y, Liu T. Toxicity of Ethyl Formate to Tribolium castaneum (Herbst) Exhibiting Different Levels of Phosphine Resistance and Its Influence on Metabolite Profiles. Agriculture. 2024; 14(2):323. https://doi.org/10.3390/agriculture14020323
Chicago/Turabian StyleShan, Changyao, Xinyue You, Li Li, Xin Du, Yonglin Ren, and Tao Liu. 2024. "Toxicity of Ethyl Formate to Tribolium castaneum (Herbst) Exhibiting Different Levels of Phosphine Resistance and Its Influence on Metabolite Profiles" Agriculture 14, no. 2: 323. https://doi.org/10.3390/agriculture14020323
APA StyleShan, C., You, X., Li, L., Du, X., Ren, Y., & Liu, T. (2024). Toxicity of Ethyl Formate to Tribolium castaneum (Herbst) Exhibiting Different Levels of Phosphine Resistance and Its Influence on Metabolite Profiles. Agriculture, 14(2), 323. https://doi.org/10.3390/agriculture14020323