The Effect of Foliar Application of Oligogalacturonides on the Functional Value of Turfgrass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experiment Design and Pratotechnical Description
2.3. Weather Conditions
2.4. Methods of Plant Evaluation
2.5. Statistical Analysis
3. Results
3.1. Visual Assessment
3.2. Mineral Components
3.3. LAI, NDVI, and SPAD Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borawska-Jarmulowicz, B.; Mastalerczuk, G.; Dlugowska, M. Ocena Nawierzchni Trawnikowych w Wybranych Parkach Warszawy. Łąkarstwo w Polsce 2015, 18, 31–46. [Google Scholar]
- Clifton, N.; Dicklow, M.B.; Ebdon, S.; Jung, G.; Lanier, J.; Owen, M.; Prostak, R.; Spargo, J.; Vittum, P. Best Management Practices for Lawn and Landscape Turf. 2013. Available online: https://ag.umass.edu/sites/ag.umass.edu/files/pdf-doc-ppt/lawn_bmp_establishment_2016_final.pdf (accessed on 26 December 2023).
- Wolski, K.; Markowska, J.; Radkowski, A.; Brennensthul, M.; Sobol, Ł.; Pęczkowski, G.; Bujak, H.; Grzebieniarz, W.; Radkowska, I.; Khachatryan, K. The Influence of the Grass Mixture Composition on the Quality and Suitability for Football Pitches. Sci. Rep. 2021, 11, 20592. [Google Scholar] [CrossRef] [PubMed]
- Wolski, K.; Talar-Krasa, M.; Dradrach, A.; Szymura, M.; Biernacik, M.; Swierszcz, S. Ocena Użytkowa Murawy Piłkarskiej Na Przykładzie KŚ AZS We Wrocławiu. Łąkarstwo Polsce 2015, 18, 241–254. [Google Scholar]
- Szymanska, I.; Kupiec, M.; Osytek, K.; Zbikowska, A. Nanotechnologia w Produkcji Żywności—Możliwości, Zagrożenia, Konsument. Przemysł Spożywczy 2019, 11, 16–21. [Google Scholar] [CrossRef]
- Radkowski, A.; Radkowska, I.; Bocianowski, J.; Sladkovska, T.; Wolski, K. The Effect of Foliar Application of an Amino Acid-Based Biostimulant on Lawn Functional Value. Agronomy 2020, 10, 1656. [Google Scholar] [CrossRef]
- Radkowski, A.; Radkowska, I.; Wolski, K.; Sobol, Ł.; Bujak, H. Lawn Bonitation Value as a Function of Glycine-Complexed Iron Formulation Application. Appl. Sci. 2022, 12, 12102. [Google Scholar] [CrossRef]
- Radkowski, A.; Radkowska, I.; Wolski, K.; Bujak, H.; Jeleń, Ł. The Influence of the Multi-Component Mineral-Organic Concentrate on the Bonitation Value of Turfgrass. Agronomy 2023, 13, 855. [Google Scholar] [CrossRef]
- Talar-Krasa, M.; Wolski, K.; Radkowski, A.; Khachatryan, K.; Bujak, H.; Bocianowski, J. Effects of a Plasma Water and Biostimulant on Lawn Functional Value. Agronomy 2021, 11, 254. [Google Scholar] [CrossRef]
- Chen, Y.; Magen, H.; Clapp, C.E. Mechanisms of Plant Growth Stimulation by Humic Substances: The Role of Organo-Iron Complexes. Soil Sci. Plant Nutr. 2004, 50, 1089–1095. [Google Scholar] [CrossRef]
- Hamza, B.; Suggars, A. Biostimulants: Myths and Realities. TurfGrass Trends 2001, 8, 6–10. [Google Scholar]
- Carlos, W.J.; Wang, S. Fairy Rings In Lawns. Available online: https://agri.nv.gov/uploadedFiles/agrinvgov/Content/Plant/Plant_Pathology/FairyRingsLawns.pdf (accessed on 26 December 2023).
- Benedetti, M.; Pontiggia, D.; Raggi, S.; Cheng, Z.; Scaloni, F.; Ferrari, S.; Ausubel, F.M.; Cervone, F.; De Lorenzo, G. Plant Immunity Triggered by Engineered in Vivo Release of Oligogalacturonides, Damage-Associated Molecular Patterns. Proc. Natl. Acad. Sci. USA 2015, 112, 5533–5538. [Google Scholar] [CrossRef]
- Gamir, J.; Minchev, Z.; Berrio, E.; García, J.M.; De Lorenzo, G.; Pozo, M.J. Roots Drive Oligogalacturonide-Induced Systemic Immunity in Tomato. Plant. Cell Environ. 2021, 44, 275–289. [Google Scholar] [CrossRef]
- Bittel, P.; Robatzek, S. Microbe-Associated Molecular Patterns (MAMPs) Probe Plant Immunity. Curr. Opin. Plant Biol. 2007, 10, 335–341. [Google Scholar] [CrossRef]
- Boller, T.; Felix, G. A Renaissance of Elicitors: Perception of Microbe-Associated Molecular Patterns and Danger Signals by Pattern-Recognition Receptors. Annu. Rev. Plant Biol. 2009, 60, 379–407. [Google Scholar] [CrossRef] [PubMed]
- Galletti, R.; De Lorenzo, G.; Ferrari, S. Host-Derived Signals Activate Plant Innate Immunity. Plant Signal. Behav. 2009, 4, 33–34. [Google Scholar] [CrossRef] [PubMed]
- Tör, M.; Lotze, M.T.; Holton, N. Receptor-Mediated Signalling in Plants: Molecular Patterns and Programmes. J. Exp. Bot. 2009, 60, 3645–3654. [Google Scholar] [CrossRef] [PubMed]
- De Lorenzo, G.; Brutus, A.; Savatin, D.V.; Sicilia, F.; Cervone, F. Engineering Plant Resistance by Constructing Chimeric Receptors That Recognize Damage-Associated Molecular Patterns (DAMPs). FEBS Lett. 2011, 585, 1521–1528. [Google Scholar] [CrossRef] [PubMed]
- Ranf, S.; Eschen-Lippold, L.; Pecher, P.; Lee, J.; Scheel, D. Interplay between Calcium Signalling and Early Signalling Elements during Defence Responses to Microbe- or Damage-Associated Molecular Patterns. Plant J. 2011, 68, 100–113. [Google Scholar] [CrossRef] [PubMed]
- Davis, K.R.; Darvill, A.G.; Albersheim, P.; Dell, A. Host-Pathogen Interactions: XXIX. Oligogalacturonides Released from Sodium Polypectate by Endopolygalacturonic Acid Lyase Are Elicitors of Phytoalexins in Soybean. Plant Physiol. 1986, 80, 568–577. [Google Scholar] [CrossRef] [PubMed]
- Bellincampi, D.; Dipierro, N.; Salvi, G.; Cervone, F.; De Lorenzo, G. Extracellular H2O2 Induced by Oligogalacturonides Is Not Involved in the Inhibition of the Auxin-Regulated RolB Gene Expression in Tobacco Leaf Explants. Plant Physiol. 2000, 122, 1379–1386. [Google Scholar] [CrossRef] [PubMed]
- Galletti, R.; Denoux, C.; Gambetta, S.; Dewdney, J.; Ausubel, F.M.; De Lorenzo, G.; Ferrari, S. The AtrbohD-Mediated Oxidative Burst Elicited by Oligogalacturonides in Arabidopsis Is Dispensable for the Activation of Defense Responses Effective against Botrytis Cinerea. Plant Physiol. 2008, 148, 1695–1706. [Google Scholar] [CrossRef]
- Cervone, F.; Hahn, M.G.; de Lorenzo, G.; Darvill, A.; Albersheim, P. Host-Pathogen Interactions: XXXIII. A Plant Protein Converts a Fungal Pathogenesis Factor into an Elicitor of Plant Defense Responses. Plant Physiol. 1989, 90, 542–548. [Google Scholar] [CrossRef]
- Orozco-Cardenas, M.; Ryan, C.A. Hydrogen Peroxide Is Generated Systemically in Plant Leaves by Wounding and Systemin via the Octadecanoid Pathway. Proc. Natl. Acad. Sci. USA 1999, 96, 6553–6557. [Google Scholar] [CrossRef] [PubMed]
- De Lorenzo, G.; Ferrari, S. Polygalacturonase-Inhibiting Proteins in Defense against Phytopathogenic Fungi. Curr. Opin. Plant Biol. 2002, 5, 295–299. [Google Scholar] [CrossRef] [PubMed]
- De Lorenzo, G.; D’Ovidio, R.; Cervone, F. The Role of Polygalacturonase-Inhibiting Proteins (PGIPs) in Defense against Pathogenic Fungi. Annu. Rev. Phytopathol. 2003, 39, 313–335. [Google Scholar] [CrossRef] [PubMed]
- Latimer, G.W.; Horwitz, W. Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2006; ISBN 978-0935584776. [Google Scholar]
- Domanski, P. System Badañ i Oceny Odmian Traw Gazonowych w Polsce. Biul. Inst. Hod. Aklim. Roślin 1992, 183, 251–263. [Google Scholar]
- Domański, P. Metodyka Badań Wartości Gospodarczej Odmian Roślin Uprawnych. Trawy Darniowe: Kostrzewa Czerwona, Tymotka Łąkowa, Wiechlina Łąkowa, Życica Trwała; COBORU: Słupia Wielka, Poland, 1998; pp. 1–35. [Google Scholar]
- Domański, P. Charakterystyka Odmian Trawnikowych; COBORU: Słupia Wielka, Poland, 2015; Volume 14, p. 28. [Google Scholar]
- Pronczuk, M.; Pronczuk, S. Problemy w Ocenie Podatności Traw Gazonowych Na Choroby w Warunkach Trawnikowych. Zesz. Probl. Postępów Nauk. Rol. 1997, 451, 135–146. [Google Scholar]
- Schepers, J.S.; Schepers, J.S. Techniques for Monitoring Crop Nitrogen Status in Corn. Commun. Soil Sci. Plant Anal. 1994, 25, 1791–1800. [Google Scholar] [CrossRef]
- Gregorczyk, A.; Raczyńska, A. Badania Korelacji Między Metodą Arnona a Pomiarami Zawartości Chlorofilu Za Pomocą Chlorofilometru. Zesz. Nauk. AR Szczec 1997, 181, 119–123. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005; Volume 15, ISBN 9780935584752. [Google Scholar]
- Frezzini, M.; Scortica, A.; Capone, M.; Narzi, D.; Benedetti, M.; Angelucci, F.; Mattei, B.; Guidoni, L. Molecular Dynamics Simulations and Kinetic Measurements Provide Insights into the Structural Requirements of Substrate Size-Dependent Specificity of Oligogalacturonide Oxidase 1 (OGOX1). Plant Physiol. Biochem. 2023, 194, 315–325. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, W.; Amombo, E.; Hu, L.; Kjorven, J.O.; Chen, L. Mechanisms of Environmental Stress Tolerance in Turfgrass. Agronomy 2020, 10, 522. [Google Scholar] [CrossRef]
- Francesconi, S.; Ronchetti, R.; Camaioni, E.; Giovagnoli, S.; Sestili, F.; Palombieri, S.; Balestra, G.M. Boosting Immunity and Management against Wheat Fusarium Diseases by a Sustainable, Circular Nanostructured Delivery Platform. Plants 2023, 12, 1223. [Google Scholar] [CrossRef] [PubMed]
- Giraldo, P.; Benavente, E.; Manzano-Agugliaro, F.; Gimenez, E. Worldwide Research Trends on Wheat and Barley: A Bibliometric Comparative Analysis. Agronomy 2019, 9, 352. [Google Scholar] [CrossRef]
Parameter/Element | Amount | Level/Range |
---|---|---|
pHKCl | 7.6 | alkaline |
N (total nitrogen) | 2.24 g∙kg−1 soil | - |
P (available phosphorus) | 61.57 mg∙kg−1 soil | medium |
K (available potassium) | 182.12 mg∙kg−1 soil | medium |
Mg (magnesium) | 129.74 mg∙kg−1 soil | high |
Species | Variety | Participation [%] |
---|---|---|
Perennial Ryegrass (Lolium perenne L.) | Stadion | 10 |
Perennial Ryegrass (Lolium perenne L.) | Bokser | 55 |
Tall Fescue (Festuca arundinacea Shreb.) | Escalante | 10 |
Red Fescue (Festuca rubra L.) | Gross | 6 |
Red Fescue (Festuca rubra L.) | Adio | 19 |
Month | Precipitation [mm] | Average Temperature [°C] | ||||
---|---|---|---|---|---|---|
2021 | 2022 | 2023 | 2021 | 2022 | 2023 | |
January | 31.6 | 21.6 | 66.2 | −0.9 | 0.4 | 2.8 |
February | 40.2 | 24.4 | 35.8 | −0.9 | 3.4 | 1.3 |
March | 19.8 | 14.6 | 19.1 | 3.6 | 4.0 | 5.7 |
April | 64.0 | 41.0 | 53.8 | 6.4 | 7.1 | 7.9 |
May | 86.8 | 20.6 | 90.0 | 12.6 | 15.2 | 13.0 |
June | 112.4 | 35.2 | 65.8 | 19.5 | 19.7 | 17.8 |
July | 139.2 | 85.8 | 106.0 | 21.3 | 19.6 | 20.2 |
August | 191.0 | 65.2 | 97.6 | 17.5 | 20.6 | 20.3 |
September | 39.6 | 51.8 | 55.0 | 14.4 | 12.9 | 14.4 |
October | 22.0 | 17.4 | 57.5 | 9.4 | 11.8 | 8.7 |
November | 43.0 | 45.0 | 85.5 | 4.9 | −2.4 | 3.1 |
December | 17.8 | 23.5 | 12.0 | −0.7 | −3.9 | −1.1 |
Total precipitation IV–IX * Total precipitation I–XII Average temperature IV–IX Average temperature I–XII | 633.0 | 299.6 | 468.2 | – | – | |
807.4 | 446.1 | 744.3 | – | – | ||
– | – | – | 15.3 | 15.8 | 15.6 | |
– | – | – | 8.9 | 9.0 | 9.5 |
Assesment | Overall Aspect | Turf Density | Color | Severity to Diseases | Leaf Texture |
---|---|---|---|---|---|
1 | bad (no plants) | bad | yellow-green | plants completely infestated | very wide |
2 | bad to poor | bad to poor | olive green | very large to large | very wide to wide |
3 | weak | weak | bright-green | large | wide |
4 | weak to fair | weak to fair | green-grey | large to medium | wide to intermediate |
5 | sufficient | sufficient | juicy green | medium | intermediate |
6 | sufficient to good | sufficient to good | green | medium to small | intermediate to slender |
7 | good | good | grass green | small | slender |
8 | good to very good | good to very good | dirty green | small to very small | subtle to very slender |
9 | very good | very good | emerald | no symptoms of infestation | very slender |
Variant I | Variant II | Variant III | Variant IV | |
---|---|---|---|---|
General aspect | 6.08 ± 2.02 a | 6.97 ± 2.38 b | 7.36 ± 1.36 bc | 7.95 ± 0.45 c |
Turf Density | 6.28 ± 1.88 a | 7.72 ± 2.14 b | 7.55 ± 1.59 b | 8.37 ± 0.63 c |
Leaf colour | 5.93 ± 2.13 a | 6.98 ± 1.89 b | 7.47 ± 1.80 bc | 7.99 ± 0.99 c |
Leaf texture—slenderness | 5.64 ± 2.52 a | 6.51 ± 1.43 b | 7.08 ± 1.50 bc | 7.41 ± 1.51 c |
Pink snow mold | 8.13 ± 3.13 a | 8.26 ± 3.16 ab | 8.37 ± 3.09 ab | 8.73 ± 1.58 b |
Leaf spot | 6.98 ± 2.02 a | 7.50 ± 1.50 a | 8.32 ± 1.32 b | 8.74 ± 0.74 b |
P | K | Ca | Mg | Na | Mn | Fe | Zn | Cu | |
---|---|---|---|---|---|---|---|---|---|
Var II | 120.85 | 103.83 | 103.62 | 133.04 | 84.12 | 106.27 | 103.40 | 87.52 | 98.22 |
Var III | 107.58 | 103.12 | 95.00 | 104.30 | 91.33 | 107.83 | 106.97 | 93.40 | 100.47 |
Var IV | 112.11 | 105.72 | 99.29 | 109.19 | 123.70 | 101.76 | 112.86 | 91.12 | 99.39 |
P | K | Ca | Mg | Na | Mn | Fe | Zn | Cu | |
---|---|---|---|---|---|---|---|---|---|
P | 1 | −0.046 | 0.407 | 0.490 | −0.419 | 0.506 | 0.363 | −0.160 | −0.187 |
K | −0.046 | 1 | −0.505 | −0.250 | 0.228 | −0.226 | −0.324 | −0.037 | −0.265 |
Ca | 0.407 | −0.505 | 1 | 0.653 | −0.319 | 0.481 | 0.222 | −0.236 | 0.184 |
Mg | 0.490 | −0.250 | 0.653 | 1 | −0.409 | 0.535 | −0.059 | 0.019 | 0.454 |
Na | −0.419 | 0.228 | −0.319 | −0.409 | 1 | −0.413 | −0.008 | 0.372 | −0.101 |
Mn | 0.506 | −0.226 | 0.481 | 0.535 | −0.413 | 1 | −0.041 | 0.142 | 0.226 |
Fe | 0.363 | −0.324 | 0.222 | −0.059 | −0.008 | −0.041 | 1 | −0.047 | −0.244 |
Zn | −0.160 | −0.037 | −0.236 | 0.019 | 0.372 | 0.142 | −0.047 | 1 | 0.492 |
Cu | −0.187 | −0.265 | 0.184 | 0.454 | −0.101 | 0.226 | −0.244 | 0.492 | 1 |
Variant | LAI | LAI [%] | NDVI | NDVI [%] | SPAD | SPAD [%] |
---|---|---|---|---|---|---|
Var II | −0.0021 | −0.19 | 0.0259 | 3.25 | 1.5234 | 4.21 |
Var III | 0.0218 | 1.99 | 0.0462 | 5.81 | 2.5959 | 7.18 |
Var IV | 0.0382 | 3.48 | 0.0637 | 8.00 | 3.7557 | 10.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radkowski, A.; Radkowska, I.; Kozdęba, M.; Khachatryan, K.; Wolski, K.; Bujak, H. The Effect of Foliar Application of Oligogalacturonides on the Functional Value of Turfgrass. Agriculture 2024, 14, 369. https://doi.org/10.3390/agriculture14030369
Radkowski A, Radkowska I, Kozdęba M, Khachatryan K, Wolski K, Bujak H. The Effect of Foliar Application of Oligogalacturonides on the Functional Value of Turfgrass. Agriculture. 2024; 14(3):369. https://doi.org/10.3390/agriculture14030369
Chicago/Turabian StyleRadkowski, Adam, Iwona Radkowska, Michał Kozdęba, Karen Khachatryan, Karol Wolski, and Henryk Bujak. 2024. "The Effect of Foliar Application of Oligogalacturonides on the Functional Value of Turfgrass" Agriculture 14, no. 3: 369. https://doi.org/10.3390/agriculture14030369
APA StyleRadkowski, A., Radkowska, I., Kozdęba, M., Khachatryan, K., Wolski, K., & Bujak, H. (2024). The Effect of Foliar Application of Oligogalacturonides on the Functional Value of Turfgrass. Agriculture, 14(3), 369. https://doi.org/10.3390/agriculture14030369