Agricultural Trade Effects of China’s Free Trade Zone Strategy: A Multidimensional Heterogeneity Perspective
Abstract
:1. Introduction
2. Literature Review and Research Hypothesis
2.1. Theoretical Analysis Framework
2.2. Heterogeneity of Agreement Terms
2.3. Heterogeneity of Years
2.4. Heterogeneity of Product Categories
2.5. Heterogeneity of Network Positions
2.6. Research Hypothesis
3. Methodology and Data
3.1. Methodology
3.1.1. Fixed Effects Model and Poisson Pseudo Maximum Likelihood Estimation Method
3.1.2. PSM–Staggered DID
3.1.3. Synthetic Control Method
3.2. Measurement and Variables
3.2.1. Dependent Variable
3.2.2. Independent Variables
3.2.3. Control Variables
3.3. Data Description
4. Results
4.1. Benchmark Regression Results
4.2. Empirical Results on the Heterogeneity of Agreement Terms
4.3. Empirical Results on the Heterogeneity of Years
4.4. Empirical Results on the Heterogeneity of Product Categories
4.5. Empirical Results on the Heterogeneity of Network Positions
5. Discussion
5.1. Similarities and Differences with Existing Studies
5.2. Limitations and Future Recommendations
6. Conclusions
- In terms of partner selection, China should concentrate on neighboring countries by integrating the major sources of China’s agricultural imports into its FTZ network. This approach not only effectively mitigates the negative impacts of trade diversion effects but also reduces risks and uncertainties associated with agricultural imports, thus further bolstering domestic food security.
- When deciding on the terms of open agreements, there should be an emphasis on broadening the scope of agreement terms and fortifying their legal bindingness. Given that contents not covered under the WTO framework are more conducive to the growth of agricultural trade among member countries, negotiations between member countries should extend beyond tariff reductions and nontariff barrier eliminations, thereby placing more weight on cooperation in areas such as phytosanitary measures, competition policies, and investment policies that are not encompassed by the WTO.
- Concerning the modalities of liberalization, given the national implications of agriculture on food security, China should adopt a flexible liberalization approach. For example, it should provide higher tariffs or exceptional arrangements for products such as grain while adopting a flexible tariff reduction model and allowing a certain buffer period for domestic agricultural industry adjustment.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
References
- Bertsatos, G.; Tsounis, N. Assessing the Impact of Trade Barriers on Energy Use in Turbulent Times: Current Conditions and Future Outlook for Greece. Energies 2023, 16, 5806. [Google Scholar] [CrossRef]
- Fu, J.; Tong, G. The State of Grain Trade between China and Russia: Analysis of Growth Effect and Its Influencing Factors. Agriculture 2023, 13, 1407. [Google Scholar] [CrossRef]
- Fu, J.; Chen, L.; Xue, H. The Impacts of Trade Facilitation Provisions on Fresh Agricultural Products Trade between China and the BRI Countries. Agriculture 2023, 13, 272. [Google Scholar] [CrossRef]
- Yin, X.; Xing, L.; Cui, C. The Impact of Multi-Dimensional Vectors on China’s Agricultural Products Export: Based on fsQCA. Agriculture 2023, 13, 1760. [Google Scholar] [CrossRef]
- Baier, S.L.; Bergstrand, J.H. Do free trade agreements actually increase members’ international trade? J. Int. Econ. 2007, 71, 72–95. [Google Scholar] [CrossRef]
- Baier, S.L.; Bergstrand, J.H. Approximating General Equilibrium Impacts of Trade Liberalizations Using the Gravity Equation. In The Gravity Model in International Trade: Advances and Applications; Sucharita, G., Ed.; Cambridge University Press: Cambridge, UK, 2010; pp. 88–134. [Google Scholar]
- Yang, S.; Martinez-Zarzoso, I. A Panel Data Analysis of Trade Creation and Trade Diversion Effects: The Case of ASEAN–China Free Trade Area. China Econ. Rev. 2014, 29, 138–151. [Google Scholar] [CrossRef]
- Tong, G.; Hong, R.; Shi, L. The Growth Effect and Its Influencing Factors: Empirical Evidence Regarding China’s Fruit and Vegetable Exports to RCEP Countries. Agriculture 2023, 13, 1908. [Google Scholar] [CrossRef]
- Yang, F.; Zou, C.; Li, C. The Impact of Carbon Tariffs on China’s Agricultural Trade. Agriculture 2023, 13, 1013. [Google Scholar] [CrossRef]
- Magee, C.S.P. New Measures of Trade Creation and Trade Diversion. J. Int. Econ. 2008, 75, 349–362. [Google Scholar] [CrossRef]
- Viner, J. The Customs Union Issue; Oxford University Press: New York, NY, USA, 2014. [Google Scholar]
- Baldwin, R.; Low, P. (Eds.) Multilateralizing Regionalism: Challenges for the Global Trading System; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Plummer, M.G.; Cheong, D.; Hamanaka, S. Methodology for Impact Assessment of Free Trade Agreements; Asian Development Bank: Metro Manila, Philippines, 2010. [Google Scholar]
- Baldwin, R. Multilateralising 21st Century Regionalism, Global Forum on Trade Reconciling Regionalism and Multilateralism in a Post-Bali World; OECD: Paris, France, 2014. [Google Scholar]
- Mattoo, A.; Mulabdic, A.; Ruta, M. Trade Creation and Trade Diversion in Deep Agreements. Can. J. Econ./Rev. Can. D’Économique 2022, 55, 1598–1637. [Google Scholar] [CrossRef]
- Kohl, T.; Brakman, S.; Garretsen, H. Do Trade Agreements Stimulate International Trade Differently? Evidence from 296 Trade Agreements. World Econ. 2016, 39, 97–131. [Google Scholar] [CrossRef]
- Baier, S.L.; Bergstrand, J.H.; Clance, M.W. Heterogeneous Effects of Economic Integration Agreements. J. Dev. Econ. 2018, 135, 587–608. [Google Scholar] [CrossRef]
- Chen, Z.; Voia, M.C. Short-Term and Long-Term Margins of International Trade: Evidence from the Canada-Chile Free Trade Agreement. Front. Econ. China 2018, 13, 93–115. [Google Scholar]
- Mayer, T.; Melitz, M.J.; Ottaviano, G.I.P. Market Size, Competition, and the Product Mix of Exporters. Am. Econ. Rev. 2014, 104, 495–536. [Google Scholar] [CrossRef]
- Arkolakis, C. Market Penetration Costs and the New Consumers Margin in International Trade. J. Polit. Econ. 2010, 118, 1151–1199. [Google Scholar] [CrossRef]
- Fojtíková, L. China’s Trade Competitiveness in the Area of Agricultural Products After the Implementation of the World Trade Organization Commitments. Agric. Econ. 2018, 64, 379–388. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, Z. Comparative Advantage of Agricultural Trade in Countries along the Belt and Road and China and Its Dynamic Evolution Characteristics. Foods 2022, 11, 3401. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.H.; Sang, B.C. Welfare Analysis of the Hub-and-Spoke System Within Global FTA Networks: A New Economic Geography Perspective. Financ. Trade Econ. 2012, 7, 88–94. [Google Scholar]
- Hur, J.; Alba, J.D.; Park, D. Effects of Hub-and-Spoke Free Trade Agreements on Trade: A Panel Data Analysis. World Dev. 2010, 38, 1105–1113. [Google Scholar] [CrossRef]
- Krugman, P. The Move Toward Free Trade Zones. Econ. Rev. 1991, 76, 5. [Google Scholar]
- Egger, P.; Larch, M.; Staub, K.E.; Winkelmann, R. The trade effects of endogenous preferential trade agreements. Am. Econ. J. Econ. Policy 2011, 3, 113–143. [Google Scholar] [CrossRef]
- Tinbergen, J. Shaping the World Economy: Suggestions for an International Economic Policy; Twentieth Century Fund: New York, NY, USA, 1962. [Google Scholar]
- Silva, J.; Tenreyro, S. The Log of Gravity. Rev. Econ. Stat. 2006, 88, 641–658. [Google Scholar] [CrossRef]
- Arvis, J.; Shepherd, B. The Poisson Quasi-maximum Likelihood Estimator: A Solution to the ‘Adding up’ Problem in Gravity Models. Appl. Econ. Lett. 2013, 20, 515–519. [Google Scholar] [CrossRef]
- Fally, T. Structural Gravity and Fixed Effects. J. Int. Econ. 2015, 97, 76–85. [Google Scholar] [CrossRef]
- Dai, M.; Yotov, Y.; Zylkin, T. On the Trade-diversion Effects of Free Trade Agreements. Econ. Lett. 2014, 122, 321–325. [Google Scholar] [CrossRef]
- Baier, S.L.; Bergstrand, J.H. Economic Determinants of Free Trade Agreements. J. Int. Econ. 2004, 64, 29–63. [Google Scholar] [CrossRef]
- Foster, N.; Poeschl, J.; Stehrer, R. The Impact of Preferential Trade Agreements on the Margins of International Trade. Econ. Syst. 2011, 35, 84–97. [Google Scholar] [CrossRef]
- Wang, G.J.; Lu, X.X. Can the Belt and Road Initiative Promote China’s Corporate Innovation? J. Financ. Econ. 2019, 45, 43–61. [Google Scholar]
- Regmi, A.; Gehlhar, M.; Wainio, J.; Vollrath, T.; Johnston, P.; Kathuria, N. Market Access for High-Value Foods. Agricultural Economic Report No. AER-840; 2005; pp. 1–48. Available online: https://www.ers.usda.gov/publications/pub-details/?pubid=41734 (accessed on 1 December 2023).
- Horn, H.; Mavroidis, P.C.; Sapir, A. Beyond the WTO? An Anatomy of EU and US Preferential Trade Agreements. World Econ. 2010, 33, 1565–1588. [Google Scholar] [CrossRef]
- Limão, N. Preferential trade agreements. In Handbook of Commercial Policy; North-Holland: Amsterdam, The Netherlands, 2016; Volume 1, pp. 279–367. [Google Scholar]
- Cao, J. The Consideration of Hub-and-Spoke Status in FTA Formation. Bull. Econ. Res. 2015, 67, 382–392. [Google Scholar] [CrossRef]
- Jacobson, L.S.; LaLonde, R.J.; Sullivan, D.G. Earnings Losses of Displaced Workers. Am. Econ. Rev. 1993, 83, 685–709. [Google Scholar]
Variables | Observations | Average | Standard Deviation | Maximum | Minimum | Variable Description |
---|---|---|---|---|---|---|
779,003 | 3.406 | 3.424 | 17.120 | −6.908 | Agricultural trade value | |
667,254 | 3.072 | 3.332 | 14.189 | −6.908 | Export value of agricultural products | |
283,687 | 3.561 | 3.413 | 17.120 | −6.908 | Import value of agricultural products | |
779,003 | 0.207 | 0.405 | 1.000 | 0.000 | “WTO+” Index | |
779,003 | 0.117 | 0.321 | 1.000 | 0.000 | “WTO-X” Index | |
779,003 | 0.493 | 1.334 | 4.615 | 0.000 | Provision coverage index | |
779,003 | 0.284 | 0.818 | 3.838 | 0.000 | Provision binding index | |
779,003 | 0.450 | 1.222 | 4.470 | 0.000 | Whether the FTZ is established | |
779,003 | 0.407 | 1.111 | 4.096 | 0.000 | Whether the country is a partner country of the FTZ | |
779,003 | 2.396 | 0.839 | 4.000 | 1.000 | The sum of the economic size of China and the countries | |
778,836 | 28.71 | 1.954 | 33.667 | 20.179 | Differences in factor endowments between China and other countries | |
778,498 | 1.163 | 0.681 | 4.204 | 0.000 | The squared term of DKL | |
778,498 | 1.817 | 1.729 | 17.676 | 0.000 | The inverse of the distance between China and the largest cities of various countries | |
779,003 | −8.799 | 0.648 | −6.862 | −9.868 | Average distance between China and countries from the rest of the world | |
779,003 | 3.406 | 3.424 | 17.120 | −6.908 | Whether China shares a border with various countries. |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
0.191 *** | 0.096 *** | 0.282 *** | 0.507 *** | −0.019 | 0.888 *** | |
(0.02) | (0.02) | (0.03) | (0.036) | (0.024) | (0.054) | |
Constant | −11.144 ** | −13.754 *** | −43.777 *** | −8.759 *** | −4.836 *** | −16.290 *** |
* (1.42) | (1.44) | (6.58) | (0.767) | (0.319) | (1.342) | |
Control variables | Yes | Yes | Yes | Yes | Yes | Yes |
Country–year fixed effects | NO | NO | NO | Yes | Yes | Yes |
Product fixed effects | Yes | Yes | Yes | Yes | Yes | Yes |
Country fixed effects | Yes | Yes | Yes | NO | NO | NO |
Year fixed effects | Yes | Yes | Yes | NO | NO | NO |
Sample size | 634,426 | 536,390 | 266,932 | 634,426 | 634,426 | 634,426 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
---|---|---|---|---|---|---|---|---|
0.054 *** | 0.115 *** | |||||||
(0.00) | (0.014) | |||||||
0.061 *** | 0.171 *** | |||||||
(0.01) | (0.018) | |||||||
0.058 *** | 0.124 *** | |||||||
(0.00) | (0.015) | |||||||
0.060 *** | 0.137 *** | |||||||
(0.00) | (0.016) | |||||||
Constant | 14.478 *** | 14.459 *** | 14.496 *** | 14.451 *** | −11.410 *** | −11.505 *** | −11.430 *** | −11.424 *** |
(2.06) | (2.06) | (2.06) | (2.06) | (0.751) | (0.753) | (0.749) | (0.753) | |
Control variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Country–year fixed effects | NO | NO | NO | NO | Yes | Yes | Yes | Yes |
Product fixed effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Country fixed effects | Yes | Yes | Yes | Yes | NO | NO | NO | NO |
Year fixed effects | Yes | Yes | Yes | Yes | NO | NO | NO | NO |
Sample size | 778,498 | 778,498 | 778,498 | 778,498 | 778,498 | 778,498 | 778,498 | 778,498 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
---|---|---|---|---|---|---|---|---|
0.030 *** | 0.079 *** | |||||||
(0.00) | (0.01) | |||||||
0.031 *** | 0.081 *** | |||||||
(0.01) | (0.01) | |||||||
0.032 *** | 0.084 *** | |||||||
(0.00) | (0.01) | |||||||
0.033 *** | 0.088 *** | |||||||
(0.00) | (0.01) | |||||||
Constant | 0.081 | 0.117 | 0.089 | 0.091 | −5.506 *** | −5.767 *** | −5.518 *** | −5.524 *** |
(0.53) | (0.53) | (0.53) | (0.53) | (0.22) | (0.22) | (0.22) | (0.22) | |
Control variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Product fixed effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Year fixed effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Country fixed effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Sample size | 666,827 | 666,827 | 666,827 | 666,827 | 283,559 | 283,559 | 283,559 | 283,559 |
R2 | 0.451 | 0.451 | 0.451 | 0.451 | 0.263 | 0.263 | 0.263 | 0.263 |
Variables | (1) | (2) | (3) |
---|---|---|---|
0.124 ***(0.04) | 0.098 **(0.04) | −0.016(0.07) | |
0.189 ***(0.04) | 0.127 ***(0.04) | 0.227 ***(0.07) | |
0.112 ***(0.04) | 0.081 **(0.04) | 0.087(0.07) | |
0.097 **(0.04) | 0.082 **(0.04) | 0.147 **(0.07) | |
0.080 **(0.04) | −0.008(0.04) | 0.239 ***(0.07) | |
0.088 **(0.04) | −0.014(0.04) | 0.279 ***(0.07) | |
0.103 **(0.04) | 0.004(0.04) | 0.281 ***(0.07) | |
0.084 **(0.04) | −0.044(0.04) | 0.265 ***(0.07) | |
0.148 ***(0.04) | 0.085 **(0.04) | 0.378 ***(0.07) | |
0.285 ***(0.04) | 0.175 ***(0.04) | 0.520 ***(0.07) | |
0.282 ***(0.04) | 0.204 ***(0.04) | 0.493 ***(0.07) | |
0.336 ***(0.04) | 0.231 ***(0.04) | 0.583 ***(0.07) | |
0.260 ***(0.04) | 0.170 ***(0.04) | 0.461 ***(0.07) | |
0.309 ***(0.04) | 0.236 ***(0.04) | 0.428 ***(0.07) | |
0.367 ***(0.04) | 0.203 ***(0.04) | 0.556 ***(0.07) | |
0.445 ***(0.04) | 0.286 ***(0.04) | 0.485 ***(0.07) | |
0.444 ***(0.03) | 0.318 ***(0.03) | 0.519 ***(0.06) | |
Constant | −10.496 ***(1.42) | −13.280 ***(1.44) | −40.127 ***(6.58) |
Control variables | Yes | Yes | Yes |
Country fixed effects | Yes | Yes | Yes |
Year fixed effects | Yes | Yes | Yes |
Product fixed effects | Yes | Yes | Yes |
Sample size | 634,426 | 536,390 | 266,932 |
R2 | 0.390 | 0.427 | 0.261 |
Primary Agricultural Products | Semi-Processed Agricultural Products | Horticultural Agricultural Products | Processed Agricultural Products | |||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
0.253 *** | 0.285 *** | 0.083 *** | 0.269 *** | 0.444 *** | 0.110 *** | 0.368 *** | 0.020 | |
(0.04) | (0.09) | (0.02) | (0.03) | (0.09) | (0.04) | (0.07) | (0.04) | |
Constant | −9.504 *** | −10.339 *** | 9.413 *** | −34.354 *** | 40.492 *** | −9.989 | −11.422 | 58.663 *** |
(0.41) | (0.89) | (2.47) | (9.47) | (4.90) | (24.85) | (19.33) | (5.82) | |
Control variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Country fixed effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Year fixed effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Product fixed effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Sample size | 498.63 | 156.87 | 409,805 | 189,833 | 104,074 | 286.02 | 469.86 | 986.16 |
R2 | 0.365 | 0.220 | 0.455 | 0.267 | 0.467 | 0.275 | 0.285 | 0.437 |
Experimental Group | Control Group 1 | Control Group 2 | Control Group 3 | Control Group 4 | Control Group 5 | |
---|---|---|---|---|---|---|
ASEAN | Reference Countries | Japan | United States | Uzbekistan | Brazil | Russia |
Weights | 0.656 | 0.280 | 0.052 | 0.002 | 0.009 | |
Chile | Reference Countries | Japan | Ukraine | Latvia | Cape Verde | Burkina Faso |
Weights | 0.399 | 0.205 | 0.136 | 0.118 | 0.063 | |
Pakistan | Reference Countries | India | Canada | Ecuador | Angola | Qatar |
Weights | 0.276 | 0.193 | 0.183 | 0.141 | 0.099 | |
New Zealand | Reference Countries | Japan | Brazil | Malta | Uzbekistan | Zimbabwe |
Weights | 0.349 | 0.272 | 0.085 | 0.050 | 0.046 | |
Peru | Reference Countries | Japan | Angola | Ecuador | Mozambique | Brazil |
Weights | 0.486 | 0.151 | 0.137 | 0.100 | 0.070 | |
Costa Rica | Reference Countries | Kyrgyzstan | Colombia | Belarus | Azerbaijan | Ecuador |
Weights | 0.330 | 0.258 | 0.205 | 0.160 | 0.029 | |
Iceland | Reference Countries | Niger | Japan | Dominican Republic | Ghana | Estonia |
Weights | 0.258 | 0.139 | 0.116 | 0.112 | 0.099 | |
Switzerland | Reference Countries | Japan | Ecuador | Kazakhstan | Guinea | Tajikistan |
Weights | 0.232 | 0.134 | 0.122 | 0.116 | 0.081 | |
Korea | Reference Countries | Japan | Argentina | United States | Mozambique | Iraq |
Weights | 0.629 | 0.156 | 0.097 | 0.033 | 0.028 | |
Australia | Reference Countries | Japan | Brazil | United States | Bahrain | Ecuador |
Weights | 0.409 | 0.233 | 0.158 | 0.079 | 0.066 | |
Georgia | Reference Countries | Nicaragua | Ethiopia | Cape Verde | Republic of Moldova | Liberia |
Weights | 0.320 | 0.226 | 0.153 | 0.120 | 0.105 |
ASEAN | Chile | Pakistan | New Zealand | Peru | Costa Rica | Iceland | Switzerland | Korea | Australia | Georgia | Total | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2004 | −0.12 | - | - | - | - | - | - | - | - | - | - | −0.12 |
2005 | −0.09 | - | - | - | - | - | - | - | - | - | - | −0.09 |
2006 | 0.06 | 0.38 | - | - | - | - | - | - | - | - | - | 0.44 |
2007 | 0.32 | 0.09 | −0.08 | - | - | - | - | - | - | - | - | 0.33 |
2008 | 0.48 | 0.36 | −0.12 | 0.23 | - | - | - | - | - | - | - | 0.95 |
2009 | 0.51 | 0.37 | 0.02 | 0.41 | - | - | - | - | - | - | - | 1.31 |
2010 | 0.54 | 0.08 | 0.00 | 0.51 | −0.03 | - | - | - | - | - | - | 1.10 |
2011 | 0.66 | 0.14 | −0.29 | 0.80 | −0.09 | −0.05 | - | - | - | - | - | 1.17 |
2012 | 0.64 | 0.50 | −0.03 | 0.79 | −0.27 | 0.10 | - | - | - | - | - | 1.73 |
2013 | 0.76 | 0.43 | −0.32 | 1.11 | −0.28 | 0.66 | - | - | - | - | - | 2.36 |
2014 | 0.88 | 0.58 | −0.10 | 1.23 | −0.40 | 0.12 | −0.52 | −0.06 | - | - | - | 1.73 |
2015 | 0.94 | 0.73 | 0.13 | 0.99 | −0.21 | −0.09 | −0.27 | −0.10 | 0.08 | 0.27 | - | 2.47 |
2016 | 1.03 | 1.02 | 0.30 | 0.92 | −0.32 | −0.01 | 0.05 | 0.11 | 0.15 | 0.17 | - | 3.42 |
2017 | 1.11 | 0.81 | 0.02 | 1.20 | 0.05 | 0.49 | 0.15 | 0.19 | 0.14 | 0.35 | - | 4.51 |
2018 | 1.25 | 0.92 | −0.02 | 1.10 | −0.03 | 0.56 | 0.31 | 0.04 | 0.26 | 0.23 | −0.12 | 4.50 |
2019 | 1.30 | 1.07 | −0.07 | 1.33 | −0.17 | −0.05 | 0.21 | −0.23 | 0.08 | 0.29 | 0.39 | 4.15 |
2020 | 1.24 | 0.98 | −0.11 | 1.34 | −0.34 | 0.17 | −0.30 | −0.09 | 0.05 | 0.15 | 0.52 | 3.61 |
Average | 0.68 | 0.56 | −0.05 | 0.92 | −0.19 | 0.19 | −0.05 | −0.02 | 0.13 | 0.24 | 0.26 | 2.67 |
Year | ASEAN | Chile | Pakistan | New Zealand | Peru | Costa Rica | Iceland | Switzerland | Korea | Australia | Georgia |
---|---|---|---|---|---|---|---|---|---|---|---|
2004 | 0.64 | - | - | - | - | - | - | - | - | - | - |
2005 | 0.85 | - | - | - | - | - | - | - | - | - | - |
2006 | 0.91 | 0.47 | - | - | - | - | - | - | - | - | - |
2007 | 0.82 | 0.28 | 0.10 | - | - | - | - | - | - | - | - |
2008 | 0.42 | 0.30 | 0.10 | 0.23 | - | - | - | - | - | - | - |
2009 | 0.61 | 0.75 | 0.63 | 0.69 | - | - | - | - | - | - | - |
2010 | 0.68 | 0.62 | 1.06 | 0.96 | 0.52 | - | - | - | - | - | - |
2011 | 0.61 | 0.83 | 0.72 | 1.15 | 0.04 | 0.56 | - | - | - | - | - |
2012 | 0.58 | 0.84 | 1.03 | 1.34 | −0.11 | 0.45 | - | - | - | - | - |
2013 | 0.56 | 1.29 | 0.70 | 2.13 | 0.11 | 1.05 | - | - | - | - | - |
2014 | 0.65 | 1.46 | 0.57 | 1.82 | 0.33 | 1.00 | 0.02 | 0.09 | - | - | - |
2015 | 0.78 | 1.49 | 0.73 | 1.56 | 0.96 | 0.76 | 1.08 | 0.12 | 0.80 | 1.05 | - |
2016 | 0.83 | 1.85 | 0.70 | 1.56 | 0.63 | 0.76 | 1.19 | 0.41 | 0.79 | 1.04 | - |
2017 | 0.76 | 1.51 | 0.30 | 1.91 | 0.88 | 0.84 | 0.96 | 0.48 | 0.71 | 1.21 | - |
2018 | 0.95 | 1.78 | 0.40 | 1.98 | 0.98 | 1.44 | 1.15 | 0.67 | 0.76 | 1.22 | 0.62 |
2019 | 1.23 | 2.16 | 0.68 | 2.14 | 0.54 | 1.40 | 1.12 | 0.54 | 0.78 | 1.32 | 0.77 |
2020 | 1.30 | 1.99 | 0.64 | 2.10 | 0.26 | 1.40 | 0.51 | 0.58 | 0.85 | 1.36 | 1.05 |
Average value | 0.78 | 1.17 | 0.60 | 1.50 | 0.47 | 0.97 | 0.86 | 0.41 | 0.78 | 1.20 | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, H.; Yan, Y.; Tao, L.; Luo, Y. Agricultural Trade Effects of China’s Free Trade Zone Strategy: A Multidimensional Heterogeneity Perspective. Agriculture 2024, 14, 390. https://doi.org/10.3390/agriculture14030390
Zeng H, Yan Y, Tao L, Luo Y. Agricultural Trade Effects of China’s Free Trade Zone Strategy: A Multidimensional Heterogeneity Perspective. Agriculture. 2024; 14(3):390. https://doi.org/10.3390/agriculture14030390
Chicago/Turabian StyleZeng, Huasheng, Yue Yan, Ling Tao, and Yuxi Luo. 2024. "Agricultural Trade Effects of China’s Free Trade Zone Strategy: A Multidimensional Heterogeneity Perspective" Agriculture 14, no. 3: 390. https://doi.org/10.3390/agriculture14030390
APA StyleZeng, H., Yan, Y., Tao, L., & Luo, Y. (2024). Agricultural Trade Effects of China’s Free Trade Zone Strategy: A Multidimensional Heterogeneity Perspective. Agriculture, 14(3), 390. https://doi.org/10.3390/agriculture14030390