An Agronomic Efficiency Analysis of Winter Wheat at Different Sowing Strategies and Nitrogen Fertilizer Rates: A Case Study in Northeastern Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Parameters Determined in the Field
2.3. Statistical Analysis
3. Results
3.1. Weather Conditions
3.2. Plant Density and Tillering
3.3. Yield Components
3.4. Biomass Yield and the Harvest Index
4. Discussion
4.1. Yield Components
4.2. Biomass Yield and the Harvest Index
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Domagała, J. Economic and environmental aspects of agriculture in the EU countries. Energies 2021, 14, 7826. [Google Scholar] [CrossRef]
- Eurostat. Performance of the Agricultural Sector. 2023. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Performance_of_the_agricultural_sector (accessed on 20 December 2023).
- Sunderji, S.; Bass, R.; Hand, D.; Nova, N. Understanding Impact Performance: Agriculture Investments; Global Impact Investing Network: New York, NY, USA, 2020; Available online: https://thegiin.org/assets/Understanding%20Impact%20Performance_Agriculture%20Investments_webfile.pdf (accessed on 20 December 2023).
- Baldock, D.; Buckwell, A. Just Transition in the EU Agriculture and Land Use Sector; Institute for European Environmental Policy: London, UK, 2021. [Google Scholar]
- Bielski, S.; Marks-Bielska, R.; Zielińska-Chmielewska, A.; Romaneckas, K.; Šarauskis, E. Importance of agriculture in creating energy security—A case study of Poland. Energies 2021, 14, 2465. [Google Scholar] [CrossRef]
- Allami, H.A.; Tabasizadeh, M.; Rohani, A.; Nayebzadeh, H.; Farzad, A. Effect of ultrasonic irradiation on the properties and performance of biodiesel produced from date seed oil used in the diesel engine. Ultrason. Sonochem. 2020, 60, 104672. [Google Scholar] [CrossRef]
- Pawlak, K.; Kołodziejczak, M. The role of agriculture in ensuring food security in developing countries: Considerations in the context of the problem of sustainable food production. Sustainability 2020, 12, 5488. [Google Scholar] [CrossRef]
- Reinhardt, J.; Hilgert, P.; Von Cossel, M. Yield performance of dedicated industrial crops on low-temperature characterized marginal agricultural land in Europe—A review. Biofuels Bioprod. Bioref. 2022, 16, 609–622. [Google Scholar] [CrossRef]
- Behnassi, M.; El Haiba, M. Implications of the Russia–Ukraine war for global food security. Nat. Hum. Behav. 2022, 6, 754–755. [Google Scholar] [CrossRef]
- Mottaleb, K.A.; Gideon, K.; Sieglinde, S. Potential impacts of Ukraine-Russia armed conflict on global wheat food security: A quantitative exploration. Globa. Food Sec. 2022, 35, 100659. [Google Scholar] [CrossRef]
- Alabi, M.O.; Ngwenyama, O. Food security and disruptions of the global food supply chains during COVID-19: Building smarter food supply chains for post COVID-19 era. Br. Food J. 2023, 125, 167–185. [Google Scholar] [CrossRef]
- Alexandratos, N.; Bruinsma, J. World Agriculture: Towards 2030/2050; ESA Working Paper No. 12–03; FAO: Rome, Italy, 2012. [Google Scholar]
- FAOSTAT. Food and Agriculture Organization Corporate Statistical Database. 2023. Available online: http://www.apps.fao.org (accessed on 20 December 2023).
- United States Census Bureau. International Programs. International Data Base: World Population. 2016. Available online: http://www.census.gov/population/international/data/idb/worldpoptotal.php (accessed on 22 December 2023).
- Guttieri, M.J.; Frels, K.; Regassa, T.; Waters, B.M.; Baenziger, P.S. Variation for nitrogen use efficiency traits in current and historical Great Plains hard winter wheat. Euphytica 2017, 213, 87. [Google Scholar] [CrossRef]
- United Nations. World Population Prospects. 2019. Available online: https://population.un.org/wpp/Publications/Files/wpp2019_10KeyFindings.pdf (accessed on 20 December 2023).
- Neumann, K.; Verburg, P.H.; Stehfest, E.; Müller, C. The yield gap of global grain production: A spatial analysis. Agric. Syst. 2010, 103, 316–326. [Google Scholar] [CrossRef]
- Buczek, J.; Jarecki, W.; Bobrecka-Jamro, D. The response of population and hybrid wheat to selected agro-environmental factors. Plant Soil Environ. 2016, 62, 67–73. [Google Scholar] [CrossRef]
- Jańczak-Pieniążek, M.; Buczek, J.; Kwiatkowski, C.A.; Harasim, E. The course of physiological processes, yielding, and grain quality of hybrid and population wheat as affected by integrated and conventional cropping systems. Agronomy 2022, 12, 1345. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef]
- Meyfroidt, P.; Carlson, K.M.; Fagan, M.E.; Gutiérrez-Vélez, V.H.; Macedo, M.N.; Curran, L.M.; DeFries, R.S.; Dyer, G.A.; Gibbs, H.K.; Lambin, E.F.; et al. Multiple pathways of commodity crop expansion in tropical forest landscapes. Environ. Res. Lett. 2014, 9, 074012. [Google Scholar] [CrossRef]
- Ren, K.; Xu, M.; Li, R.; Zheng, L.; Wang, H.; Liu, S.; Zhang, W.; Duan, D.; Lu, C. Achieving high yield and nitrogen agronomic efficiency by coupling wheat varieties with soil fertility. Sci. Total Environ. 2023, 881, 163531. [Google Scholar] [CrossRef] [PubMed]
- Economic Research Service. Fertilizer Use and Price. U.S. Department of Agriculture. 2019. Available online: https://data.nal.usda.gov/dataset/fertilizer-use-and-price (accessed on 20 December 2023).
- Cui, Z.; Zhang, H.; Chen, X.; Zhang, C.; Ma, W.; Huang, C.; Zhang, W.; Mi, G.; Miao, Y.; Li, X.; et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 2018, 7696, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Li, Y.; Zhang, X.; Sun, Z.; Sun, N.; Duan, Y.; Xu, M.; Wu, L. Response of crop yield and nitrogen use efficiency for wheat-maize cropping system to future climate change in Northern China. Agric. For. Meteorol. 2018, 262, 310–321. [Google Scholar] [CrossRef]
- Zhang, C.; Ju, X.; Powlson, D.; Oenema, O.; Smith, P.J. Nitrogen surplus benchmarks for controlling N pollution in the main cropping systems of China. Environ. Sci. Technol. 2019, 53, 6678–6687. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, J.M.G.; Bonfim-Silva, E.M.; Da Silva, T.J.A.; Sousa, H.H.D.F.; Guimarães, S.L.; Pacheco, A.B. Nitrogen and potassium in production, nutrition and water use efficiency in wheat plants. Cienc. Investig. Agrar. 2016, 43, 442–451. [Google Scholar] [CrossRef]
- Ladha, J.; Tirol-Padre, A.; Reddy, C.K.; Cassman, K.G.; Verma, S.; Powlson, D.S.; Van Kessel, C.; Richter, D.D.B.; Chakraborty, D.; Pathak, H. Global nitrogen budgets in cereals: A 50-year assessment for maize, rice and wheat production systems. Sci. Rep. 2016, 6, 19355. [Google Scholar] [CrossRef]
- Rossini, F.; Provenzano, M.E.; Sestili, F.; Ruggeri, R. Synergistic effect of sulfur and nitrogen in the organic and mineral fertilization of durum wheat: Grain yield and quality traits in the Mediterranean environment. Agronomy 2018, 8, 189. [Google Scholar] [CrossRef]
- Shah, A.N.; Yang, G.; Tanveer, M.; Iqbal, J. Leaf gas exchange, source–sink relationship, and growth response of cotton to the interactive effects of nitrogen rate and planting density. Acta Physiol. Plant. 2017, 39, 119. [Google Scholar] [CrossRef]
- Bhattacharya, A. Global Climate Change and Its Impact on Agriculture. In Changing Climate and Resource Use Efficiency in Plants; Academic Press: Cambridge, MA, USA, 2019; pp. 1–50. [Google Scholar]
- Bhattarai, D.; Abagandura, G.O.; Nleya, T.; Kumar, S. Responses of soil surface greenhouse gas emissions to nitrogen and sulfur fertilizer rates to Brassica carinata grown as a bio-jet fuel. GCB Bioenergy 2021, 13, 627–639. [Google Scholar] [CrossRef]
- Shah, A.N.; Iqbal, J.; Tanveer, M.; Yang, G.; Hassan, W.; Fahad, S.; Yousaf, M.; Wu, Y. Nitrogen fertilization and conservation tillage: A review on growth, yield, and greenhouse gas emissions in cotton. Environ. Sci. Pollut. Res. 2017, 24, 2261–2272. [Google Scholar] [CrossRef] [PubMed]
- Efretuei, A.; Gooding, M.; White, E.; Spink, J.; Hackett, R. Effect of nitrogen fertilizer application timing on nitrogen use efficiency and grain yield of winter wheat in Ireland. Ir. J. Agric. Food Res. 2016, 55, 63–73. [Google Scholar] [CrossRef]
- Litke, L.; Gaile, Z.; Ruža, A. Effect of nitrogen fertilization on winter wheat yield and yield quality. Agron. Res. 2018, 16, 200–209. [Google Scholar]
- Zörb, C.; Ludewig, U.; Hawkesford, M.J. Perspective on wheat yield and quality with reduced nitrogen supply. Trends Plant Sci. 2018, 23, 1029–1037. [Google Scholar] [CrossRef]
- Moitzi, G.; Neugschwandtner, R.W.; Kaul, H.P.; Wagentristl, H. Efficiency of mineral nitrogen fertilization in winter wheat under Pannonian climate conditions. Agriculture 2020, 10, 541. [Google Scholar] [CrossRef]
- Tabak, M.; Lepiarczyk, A.; Filipek-Mazur, B.; Lisowska, A. Efficiency of nitrogen fertilization of winter wheat depending on sulfur fertilization. Agronomy 2020, 10, 1304. [Google Scholar] [CrossRef]
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants: BBCH Monograph; Julius Kühn-Institut: Quedlinburg, Germany, 2018; Available online: https://www.julius-kuehn.de/media/Veroeffentlichungen/bbch%20epaper%20en/page.pdf (accessed on 10 December 2023).
- Wall, D.P.; Plunkett, M. Major and Micro Nutrient Advice for Productive Agricultural Crops; Teagasc Johnstown Castle: Wexford, Ireland, 2020; p. 176. [Google Scholar]
- Limaux, F.; Recous, S.; Meynard, J.M.; Guckert, A. Relationship between rate of crop growth at date of fertilizer N application and fate of fertilizer N applied to winter wheat. Plant Soil 1999, 214, 49–59. [Google Scholar] [CrossRef]
- Grzebisz, W. Cereals. In Crop Fertilization Technologies—The Physiology of Crop Yield; Cereals and Maize; Grzebisz, W., Ed.; PWRiL: Poznań, Poland, 2012; pp. 8–193. (In Polish) [Google Scholar]
- Budzyński, W. Common wheat. In Wheats—Common, Spelt, Durum; Budzyński, W., Ed.; PWRiL: Poznań, Poland, 2012; pp. 23–150. (In Polish) [Google Scholar]
- Podolska, G. Effect of nitrogen fertilization doses and way of its application on yield and technological quality of winter wheat cultivars grain. Acta Sci. Pol. Agric. 2008, 7, 57–65. (In Polish) [Google Scholar]
- Barad, B.B.; Mathukia, R.K.; Bodar, K.H.; Der, H.N. Real time nitrogen fertilization using precision tools for enhancing productivity of wheat (Triticum aestivum L.). Int. J. Pure Appl. Biosci. 2018, 6, 434–440. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C. Enhancing nitrogen use efficiency in crop plants. Adv. Agron. 2005, 88, 97–185. [Google Scholar]
- Sun, H.; Zhang, X.; Chen, S.; Pei, D.; Liu, C. Effects of harvest and sowing time on the performance of the rotation of winter wheat–summer maize in the North China Plain. Ind. Crops Prod. 2007, 25, 239–247. [Google Scholar] [CrossRef]
- Dai, X.; Wang, Y.; Dong, X.; Qian, T.; Yin, L.; Dong, S.; He, M. Delayed sowing can increase lodging resistance while maintaining grain yield and nitrogen use efficiency in winter wheat. Crop J. 2017, 5, 541–552. [Google Scholar] [CrossRef]
- Dai, X.; Zhou, X.; Jia, D.; Xiao, L.; Kong, H.; He, M. Managing the seeding rate to improve nitrogen-use efficiency of winter wheat. Field Crops Res. 2013, 154, 100–109. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Ort, D.R. How do we improve crop production in a warming world? Plant Physiol. 2010, 154, 526–530. [Google Scholar] [CrossRef]
- Xiao, D.; Tao, F.; Liu, Y.; Shi, W.; Wang, M.; Liu, F.; Zhang, S.; Zhu, Z. Observed changes in winter wheat phenology in the North China Plain for 1981–2009. Int. J. Biometeorol. 2013, 57, 275–285. [Google Scholar] [CrossRef]
- Xiao, D.; Moiwo, J.P.; Tao, F.; Yang, Y.; Shen, Y.; Xu, Q.; Liu, J.; Zhang, H.; Liu, F. Spatiotemporal variability of winter wheat phenology in response to weather and climate variability in China. Mitig. Adapt. Strateg. Glob. Chang. 2015, 20, 1191–1202. [Google Scholar] [CrossRef]
- Yin, L.; Dai, X.; He, M. Delayed sowing improves nitrogen utilization efficiency in winter wheat without impacting yield. Field Crops Res. 2018, 221, 90–97. [Google Scholar] [CrossRef]
- Hochman, Z.; Horan, H. Causes of wheat yield gaps and opportunities to advance the water-limited yield frontier in Australia. Field Crops Res. 2018, 228, 20–30. [Google Scholar] [CrossRef]
- Jaenisch, B.R.; de Oliveira Silva, A.; DeWolf, E.; Ruiz-Diaz, D.A.; Lollato, R.P. Plant population and fungicide economically reduced winter wheat yield gap in Kansas. Agron. J. 2019, 111, 650–665. [Google Scholar] [CrossRef]
- Lollato, R.P.; Ruiz Diaz, D.A.; DeWolf, E.; Knapp, M.; Peterson, D.E.; Fritz, A.K. Agronomic practices for reducing wheat yield gaps: A quantitative appraisal of progressive producers. Crop Sci. 2019, 59, 333. [Google Scholar] [CrossRef]
- Whaley, J.M.; Sparkes, D.L.; Foulkes, M.J.; Spink, J.H.; Semere, T.; Scott, R.K. The physiological response of winter wheat to reductions in plant density. Ann. Appl. Biol. 2000, 137, 165–177. [Google Scholar] [CrossRef]
- Fischer, R.A.; Ramos, O.M.; Monasterio, I.O.; Sayre, K.D. Yield response to plant density, row spacing, and raised beds in low latitude spring wheat with ample soil resources: An update. Field Crops Res. 2019, 232, 95–105. [Google Scholar] [CrossRef]
- Lloveras, J.; Manent, J.; Viudas, J.; Lopez, A.; Santiveri, P. Seeding rate influence on yield and yield components of irrigated winter wheat in a Mediterranean climate. Agron. J. 2004, 96, 1258–1265. [Google Scholar] [CrossRef]
- Laghari, G.M.; Oad, F.C.; Tunio, S.; Chachar, Q.; Ghandahi, A.; Siddiqui, M.H.; Hassan, S.W.; Ali, A. Growth and yield attributes of wheat at different seed rates. Sarhad J. Agric. 2011, 27, 177–183. [Google Scholar]
- Valério, I.P.; De Carvalho, F.I.F.; Benin, G.; Da Silveira, G.; Da Silva, J.A.G.; Nornberg, R.; Hagemann, T.; Luche, H.D.S.; De Oliveira, A.C. Seeding density in wheat: The more, the merrier? Sci. Agric. 2013, 70, 176–184. [Google Scholar] [CrossRef]
- Bastos, L.M.; Carciochi, W.; Lollato, R.P.; Jaenisch, B.R.; Rezende, C.R.; Schwalbert, R.; Prasad, P.V.V.; Zhang, G.; Fritz, A.K.; Foster, C.; et al. Winter wheat yield response to plant density as a function of yield environment and tillering potential: A review and field studies. Front. Plant Sci. 2020, 11, 54. [Google Scholar] [CrossRef]
- Arduini, I.; Masoni, A.; Ercoli, L.; Mariotti, M. Grain yield, and dry matter and nitrogen accumulation and remobilization in durum wheat as affected by variety and seeding rate. Eur. J. Agron. 2006, 25, 309–318. [Google Scholar] [CrossRef]
- Dai, X.; Xiao, L.; Jia, D.; Kong, H.; Wang, Y.; Li, C.; Zhang, Y.; He, M. Increased plant density of winter wheat can enhance nitrogen–uptake from deep soil. Plant Soil 2014, 384, 141–152. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Y.; Zhang, J.; Liu, W.; Dang, Z.; Cao, W.; Qiang, Q. Effects of mulch, N fertilizer, and plant density on wheat yield, wheat nitrogen uptake, and residual soil nitrate in a dryland area of China. Nutr. Cycl. Agroecosyt. 2009, 85, 109–121. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2022; FAO: Rome, Italy, 2022; Available online: https://eurasian-soil-portal.info/wp-content/uploads/2022/07/wrb_fourth_edition_2022-3.pdf (accessed on 20 December 2023).
- TIBCO Software Inc. Statistica (Data Analysis Software System), Version 13; TIBCO Software Inc.: Palo Alto, CA, USA, 2017. [Google Scholar]
- Agami, R.A.; Alamri, S.A.; Abd El-Mageed, T.A.; Abousekken, M.S.M.; Hashem, M. Role of exogenous nitrogen supply in alleviating the deficit irrigation stress in wheat plants. Agric. Water Manag. 2018, 210, 261–270. [Google Scholar] [CrossRef]
- Rivera-Amado, C.; Trujillo-Negrellos, E.; Molero, G.; Reynolds, M.P.; Sylvester-Bradley, R.; Foulkes, M.J. Optimizing dry-matter partitioning for increased spike growth, grain number and harvest index in spring wheat. Field Crops Res. 2019, 240, 154–167. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, Z.; Zhang, Y.; Shi, Y. Split nitrogen fertilizer application improved grain yield in winter wheat (Triticum aestivum L.) via modulating antioxidant capacity and 13 C photosynthate mobilization under water-saving irrigation conditions. Ecol. Process. 2021, 10, 21. [Google Scholar] [CrossRef]
- Arduini, I.; Pellegrino, E.; Ercoli, L. Contribution of main culm and tillers to grain yield of durum wheat: Influence of sowing date and plant traits. Ital. J. Agron. 2018, 13, 235–247. [Google Scholar] [CrossRef]
- Ma, S.C.; Wang, T.C.; Guan, X.K.; Zhang, X. Effect of sowing time and seeding rate on yield components and water use efficiency of winter wheat by regulating the growth redundancy and physiological traits of root and shoot. Field Crop. Res. 2018, 221, 166–174. [Google Scholar] [CrossRef]
- Zhai, Y.; Wu, Q.; Chen, G.; Zhang, H.; Yin, X.; Chen, F. Broadcasting winter wheat can increase grain yield without reducing the kernels per spike and the kernel weight. Sustainability 2018, 10, 4858. [Google Scholar] [CrossRef]
- Shah, F.; Coulter, J.A.; Ye, C.; Wu, W. Yield penalty due to delayed sowing of winter wheat and the mitigatory role of increased seeding rate. Eur. J. Agron. 2020, 119, 126120. [Google Scholar] [CrossRef]
- Sattar, A.; Cheema, M.A.; Farooq, M.; Wahid, M.A.; Wahid, A.; Babar, B.H. Evaluating the performance of wheat cultivars under late sown conditions. Int. J. Agric. Biol. 2010, 12, 561–565. [Google Scholar]
- Wajid, A.; Hussain, A.; Ahmad, A.; Goheer, A.R.; Ibrahim, M.; Mussaddique, M. Effect of sowing date and plant population on biomass, grain yield and yield components of wheat. Int. J. Agric. Biol. 2004, 6, 1003–1005. [Google Scholar]
- Tahir, M.; Ali, A.; Nadeem, M.A.; Hussain, A.; Khalid, F. Effect of different sowing dates on growth and yield of wheat (Triticum aestivum L.) varieties in district Jhang, Pakistan. Pak. J. Life Soc. Sci. 2009, 27, 66–69. [Google Scholar]
- Baloch, M.S.; Shah, I.T.H.; Nadim, M.A.; Khan, M.I.; Khakwani, A.A. Effect of seeding density and planting time on growth and yield attributes of wheat. J. Anim. Plant Sci. 2010, 20, 239–240. [Google Scholar]
- Khosravi, V.; Khajoie-Nejad, G.; Mohammadi-Nejad, G.; Yousefi, K. The effect of different sowing dates on yield and yield components of wheat (Triticum aestivum L.) cultivars. Int. J. Agron. Plant Prod. 2010, 1, 77–82. [Google Scholar]
- Aslani, F.; Mehrvar, M.R. Responses of wheat genotypes as affected by different sowing dates. Asian J. Agric. Sci. 2012, 4, 72–74. [Google Scholar]
- Mukherjee, D. Effect of different sowing dates on growth and yield of wheat (Triticum aestivum) cultivars under mid hill situation of West Bengal. Indian J. Agron. 2012, 57, 152–156. [Google Scholar] [CrossRef]
- Alam, M.P.; Kumar, S.; Ali, N.; Manjhi, R.P.; Kumari, N.; Lakra, R.K.; Izhar, T. Performance of wheat varieties under different sowing dates in Jharkhand. J. Wheat Res. 2013, 5, 61–64. [Google Scholar]
- Silva, R.R.; Benin, G.; Almeida, J.L.D.; Fonseca, I.C.D.B.; Zucareli, C. Grain yield and baking quality of wheat under different sowing dates. Acta Sci. Agron. 2014, 36, 201–210. [Google Scholar] [CrossRef]
- Gupta, S. Effect of different sowing dates on growth and yield attributes of wheat in Udham Singh Nagar district of Uttarakhand, India. Plant Arch. 2017, 17, 232–236. [Google Scholar]
- Gebrel, E.E.; Gad, M.A.; Kishk, A.M.S. Effect of sowing dates on potential yield and rust resistance of some wheat cultivars. J. Plant Prod. 2018, 9, 369–375. [Google Scholar] [CrossRef]
- Madhu, U.; Begum, M.; Salam, A.; Sarkar, S.K. Influence of sowing date on the growth and yield performance of wheat (Triticum aestivum L.) varieties. Arch. Agric. Environ. Sci. 2018, 3, 89–94. [Google Scholar] [CrossRef]
- Pathania, R.; Prasad, R.; Rana, R.S.; Mishra, S.; Sharma, S. Growth and yield of wheat as influenced by dates of sowing and varieties in north western Himalayas. J. Pharmacogn. Phytochem. 2018, 7, 517–520. [Google Scholar]
- Tahir, S.; Ahmad, A.; Khaliq, T.; Cheema, M.J.M. Evaluating the impact of seed rate and sowing dates on wheat productivity in semi-arid environment. Int. J. Agric. Biol. 2019, 22, 57–64. [Google Scholar]
- Yusuf, M.; Kumar, S.; Dhaka, A.K.; Singh, B.; Bhuker, A. Effect of sowing dates and varieties on yield and quality performance of wheat (Triticum aestivum L.). Agric. Sci. Dig. 2019, 39, 306–310. [Google Scholar] [CrossRef]
- Zhou, B.; Sun, X.; Ge, J.; Li, C.; Ding, Z.; Ma, S.; Ma, W.; Zhao, M. Wheat growth and grain yield responses to sowing date-associated variations in weather conditions. Agron. J. 2020, 112, 985–997. [Google Scholar] [CrossRef]
- Chen, C.; Neill, K.; Wichman, D.; Westcott, M. Hard red spring wheat response to row spacing, seeding rate, and nitrogen. Agron. J. 2008, 100, 1296–1302. [Google Scholar] [CrossRef]
- Budzyński, W.S.; Bepirszcz, K.; Jankowski, K.J.; Dubis, B.; Hłasko-Nasalska, A.; Sokólski, M.M.; Olszewski, J.; Załuski, D. The responses of winter cultivars of common wheat, durum wheat and spelt to agronomic factors. J. Agric. Sci. 2018, 156, 1163–1174. [Google Scholar] [CrossRef]
- Lindsey, L.E.; Goodwin, A.W.; Harrison, S.K.; Paul, P.A. Optimum seeding rate and stand assessment of soft red winter wheat. Agron. J. 2020, 112, 4069–4075. [Google Scholar] [CrossRef]
- Kondić, D.; Bajić, M.; Hajder, Đ.; Bosančić, B. The rate of productive tillers per plant of winter wheat (Triticum aestivum L.) cultivars under different sowing densities. Agro-Know. J. 2017, 17, 345–357. [Google Scholar] [CrossRef]
- Valério, I.P.; Carvalho, F.I.F.; Oliveira, A.C.; Benin, G.; Souza, V.Q.; Machado, A.A.; Bertan, I.; Busato, C.C.; Silveira, G.; Fonseca, D.A.R. Seeding density in wheat genotypes as a function of tillering potential. Sci. Agric. 2009, 66, 28–39. [Google Scholar] [CrossRef]
- Mehring, G.H. Determining Optimum Seeding Rates for Diverse Hard Red Spring Wheat (Triticum aestivum L.) Cultivars; North Dakota State University ProQuest Dissertations Publishing: Fargo, ND, USA, 2016; p. 10144681. [Google Scholar]
- Sander, G.; da Costa, A.C.T.; Júnior, J.B.D. Agronomic performance of wheat as a function of different spacing and sowing densities in two agricultural years. Afr. J. Agric. Res. 2017, 12, 3099–3105. [Google Scholar]
- Khan, A.; Ahmad, A.; Ali, W.; Hussain, S.; Ajayo, B.S.; Raza, M.A.; Kamran, M.; Te, X.; Al Amin, N.; Ali, S. Optimization of plant density and nitrogen regimes to mitigate lodging risk in wheat. Agron. J. 2020, 112, 2535–2551. [Google Scholar] [CrossRef]
- Bavec, M.; Bavec, F.; Varga, B.; Kovacevic, V. Relationship among yield, it’s quality and yield components in winter wheat (Triticum aestivum L.) cultivars affected by seeding rates. Die Bodenkult. 2002, 53, 143–151. [Google Scholar]
- Bokan, N.; Malešević, M. The planting density effect on wheat yield structure. Acta Agric. Serb. 2004, 9, 65–79. [Google Scholar]
- Podolska, G.; Wyzińska, M. The response of new winter wheat cultivars to density and sowing date. Pol. J. Agron. 2011, 6, 44–51. (In Polish) [Google Scholar]
- Buczek, J.; Bobrecka-Jamro, D. Response of population and hybrid wheat to diverse sowing rate. Fragm. Agron. 2015, 32, 7–16. (In Polish) [Google Scholar]
- Tavares, L.C.V.; Foloni, J.S.S.; Bassoi, M.C.; Prete, C.E.C. Wheat genotypes under different seeding rates. Pesqui. Agropecu. Trop. 2014, 44, 166–174. (In Portuguese) [Google Scholar] [CrossRef]
- López-Bellido, L.; López-Bellido, R.J.; Redondo, R. Nitrogen efficiency in wheat under rainfed Mediterranean conditions as affected by split nitrogen application. Field Crop Res. 2005, 94, 86–97. [Google Scholar] [CrossRef]
- Budzyński, W.; Bielski, S. The effect of nitrogen fertilization on winter wheat yields. Fragm. Agron. 2008, 25, 27–38. (In Polish) [Google Scholar]
- Brzozowska, I.; Brzozowski, J.; Hruszka, M. Yielding and yield structure of winter wheat in dependence on methods of crop culivation and nitrogen fertilisation. Acta Agropys. 2008, 11, 597–611. (In Polish) [Google Scholar]
- Ferrari, M.; Szareski, V.J.; Nardino, M.; de Pelegrin, A.J.; Carvalho, I.R.; de Souza, V.Q. Effects of sources and split application of nitrogen fertilizer on wheat genotypes performance. Aust. J. Crop Sci. 2016, 11, 1669–1674. [Google Scholar] [CrossRef]
- Tester, M.; Langridge, P. Breeding technologies to increase crop production in a changing world. Science 2010, 327, 818–822. [Google Scholar] [CrossRef]
- Jan, A.; Hamid, I.; Muhammad, T. Seed rates and sowing dates effect on the performance of wheat variety Bakhtawar–92. Pak. J. Biol. Sci. 2000, 3, 1409–1411. [Google Scholar]
- Hussain, S.; Khaliq, A.; Bajwa, A.A.; Matloob, A.; Areeb, A.; Ashraf, U.; Hafeez, A.; Imran, M. Crop growth and yield losses in wheat due to little seed canary grass infestation differ with weed densities and changes in environment. Planta Daninha 2017, 35, e017162328. [Google Scholar] [CrossRef]
- Kaur, C. Performance of wheat varieties under late and very late sowing conditions. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 3488–3492. [Google Scholar] [CrossRef]
- Garg, D.; Sareen, S.; Dalal, S.; Tiwari, R.; Singh, R. Grain filling duration and temperature pattern influence on the performance of wheat genotypes under late planting. Cereal Res. Commun. 2013, 41, 500–507. [Google Scholar] [CrossRef]
- Bailey–Serres, J.; Parker, J.E.; Ainsworth, E.A.; Oldroyd, G.E.D.; Schroeder, J.I. Genetic strategies for improving crop yields. Nature 2019, 575, 109–118. [Google Scholar] [CrossRef]
- Dubey, R.; Pathak, H.; Singh, S.; Chakravarti, B.; Thakur, A.K.; Fagodia, R.K. Impact of sowing dates on terminal heat tolerance of different wheat (Triticum aestivum L.) cultivars. Acad. Sci. Lett. 2019, 42, 445–449. [Google Scholar] [CrossRef]
- Ali, M.; Ali, L.; Sattar, M.; Ali, M.A. Improvement in wheat (Triticum aestivum L.) yield by manipulating seed rate and row spacing in Vehari zone. J. Anim. Plant Sci. 2010, 20, 225–230. [Google Scholar]
- Prey, L.; Germer, M.; Schmidhalter, U. Temporal and organ-specific responses in NUE traits to N fertilization, fungicide intensity and early sowing in winter wheat cultivars. Agronomy 2019, 9, 313. [Google Scholar] [CrossRef]
- Oleksiak, T. Effect of sowing date on winter wheat yields in Poland. J. Cent. Eur. Agric. 2014, 15, 83–99. [Google Scholar] [CrossRef]
- Paymard, P.; Bannayan, M.; Haghighi, R.S. Analysis of the climate change effect on wheat production systems and investigate the potential of management strategies. Nat. Hazards 2018, 91, 1237–1255. [Google Scholar] [CrossRef]
- Ding, D.; Feng, H.; Zhao, Y.; He, J.; Zou, Y.; Jin, J. Modifying winter wheat sowing date as an adaptation to climate change on the Loess Plateau. Agron. J. 2016, 108, 53–63. [Google Scholar] [CrossRef]
- Donaldson, E.; Schillinger, W.F.; Dofing, S.M. Straw production and grain yield relationships in winter wheat. Crop Sci. 2001, 41, 100–106. [Google Scholar] [CrossRef]
- Moustafa, A.T.H.; El-Sawi, S.A. Influence of sowing date on development, harvest index and yield components for bread wheat cultivars having different thermal responses in middle Egypt. J. Plant Prod. 2014, 5, 211–226. [Google Scholar] [CrossRef]
- Shirinzadeh, A.; Abad, H.H.S.; Nourmohammadi, G.; Harvan, E.M.; Madani, H. Effect of planting date on growth periods, yield, and yield components of some bread wheat cultivars in Parsabad Moghan. Int. J. Farm. Allied Sci. 2017, 6, 109–119. [Google Scholar]
- Acharya, R.; Marahatta, S.; Amgain, L.P. Response of wheat cultivars in different agricultural practices differed by sowing date. Int. J. Appl. Sci. Biotechnol. 2017, 5, 250–255. [Google Scholar] [CrossRef]
- Singh, Y.P.; Singh, S.; Dhangrah, V.K.; Mishra, T. Effects of sowing dates on yield and yield components of different varieties of wheat (Triticum aestivum L.) in western Uttar Pradesh. Int. J. Econ. Plants 2021, 8, 188–192. [Google Scholar] [CrossRef]
- Slafer, G.A.; Savin, R.; Sadras, V.O. Coarse and fine regulation of wheat yield components in response to genotype and environment. Field Crops Res. 2014, 157, 71–83. [Google Scholar] [CrossRef]
- Rozbicki, J.; Ceglińska, A.; Gozdowski, D.; Jakubczak, M.; Cacak-Pietrzak, G.; Mądry, W.; Golba, J.; Piechociński, M.; Sobczyński, G.; Studnicki, M.; et al. Influence of the cultivar, environment and management on the grain yield and bread-making quality in the winter wheat. J. Cereal Sci. 2015, 61, 126–132. [Google Scholar] [CrossRef]
- Aćin, V. Sowing Dates and Densities in a Function of Winter Wheat Yield in the Long-Term Field Trial. Ph.D. Thesis, University of Novi Sad, Faculty of Agriculture, Novi Sad, Serbia, 2016. (In Serbian). [Google Scholar]
- Dubis, B.; Budzyński, W. Response of winter wheat to the date and density of sowing. Acta Sci. Pol. Agric. 2006, 5, 15–24. (In Polish) [Google Scholar]
- Ahmadi, G.H.; Kahrizi, D.; Mohammadi, G.; Shirkhani, A. Effects of sowing density on yield and yield components of irrigated bread wheat cultivars. Agric. Food Sci. 2011, 5, 91–95. [Google Scholar]
- Gross, T.F.; Dias, A.R.; Kappes, C.; Schiebelbein, L.M.; Anselmo, J.L.; Holanda, H.V. Productive performance of wheat in different sowing methods and densities. Sci. Agrar. Parana. 2012, 11, 50–60. (In Portuguese) [Google Scholar]
- Teixeira Filho, M.C.M.; Buzetti, S.; Alvarez, R.; de Freitas, J.G.; Arf, O.; de Sá, M.E. Response of wheat cultivars to plant population and nitrogen fertilization in a cerrado region. Científica 2008, 36, 97–106. (In Portuguese) [Google Scholar]
- El-Metwally, E.A.; Mekkei, M.E.R.; El-Salam, A.; Abo Shama, H.M. Effect of some mineral and bio fertilization treatments on yield and yield components of bread wheat under two seeding rates. J. Plant Prod. 2018, 9, 733–738. [Google Scholar] [CrossRef]
- Staggenborg, S.; Whitney, D.; Fjell, D.; Shroyer, J. Seeding and nitrogen rates required to optimize winter wheat yields following grain sorghum and soybean. Agron. J. 2003, 95, 253–259. [Google Scholar] [CrossRef]
- Kristó, I.; Gyuris, K.; Torma, M.; Hódi-Szél, M.; Petróczi, I.M. Investigation of sowing date and seeding rate on the yield of winter wheat. Cereal Res. Commun. 2007, 35, 685–688. [Google Scholar] [CrossRef]
- Hu, C.; Zheng, C.; Sadras, V.O.; Ding, M.; Yang, X.; Zhang, S. Effect of straw mulch and seeding rate on the harvest index, yield and water use efficiency of winter wheat. Sci. Rep. 2018, 8, 8167. [Google Scholar] [CrossRef]
- Farooq, U.; Khan, E.A.; Khakwani, A.A.; Ahmed, S.; Ahmed, N.; Zaman, G. Impact of sowing time and seeding density on grain yield of wheat variety Gomal-08. Asian J. Agric. Biol. 2016, 2, 38–44. [Google Scholar]
- Abd El-Lattief, E.A. Determining the optimization seeding rate for improved productivity of wheat under Southern Egypt conditions. Int. J. Agron. Agric. Res. 2014, 4, 47–57. [Google Scholar]
- Porker, K.; Straight, M.; Hunt, J.R. Evaluation of G×E×M interactions to increase harvest index and yield of early sown wheat. Front. Plant Sci. 2020, 11, 994. [Google Scholar] [CrossRef]
- Hussain, S.; Sajjad, A.; Hussain, M.I.; Saleem, M. Growth and yield response of three wheat varieties to different seeding densities. Int. J. Agric. Biol. 2001, 3, 228–229. [Google Scholar]
- Dalia, A.A.; Hag, D.A.E. Effect of seeding rates on yield and yield components of two bread wheat cultivars. J. Agric. Res. 2016, 42, 71–81. [Google Scholar]
- Basso, B.; Cammarano, D.; Fiorentino, C.; Ritchie, J.T. Wheat yield response to spatially variable nitrogen fertilizer in Mediterranean environment. Eur. J. Agron. 2013, 51, 65–70. [Google Scholar] [CrossRef]
- Vogeler, I.; Jensen, J.L.; Thomsen, I.K.; Labouriau, R.; Hansen, E.M. Fertiliser N rates interact with sowing time and catch crops in cereals and affect yield and nitrate leaching. Eur. J. Agron. 2021, 124, 126244. [Google Scholar] [CrossRef]
- Saint Pierre, C.; Peterson, C.J.; Ross, A.S.; Ohm, J.B.; Verhoeven, M.C.; Larson, M.; Hoefer, B. White wheat grain quality changes with genotype, nitrogen fertilization, and water stress. Agron. J. 2008, 100, 414–420. [Google Scholar] [CrossRef]
- Harasim, E.; Wesołowski, M.; Kwiatkowski, C.; Harasim, P.; Staniak, M.; Feledyn-Szewczyk, B. The contribution of yield components in determining the productivity of winter wheat (Triticum aestivum L.). Acta Agrobot. 2016, 69, 1675. [Google Scholar] [CrossRef]
- Sieling, K.; Stahl, C.; Winkelmann, C.; Christen, O. Growth and yield of winter wheat in the first 3 years of a monoculture under varying N fertilization in NW Germany. Eur. J. Agron. 2005, 22, 71–84. [Google Scholar] [CrossRef]
- Shekoofa, A.; Emam, Y. Effects of nitrogen fertilization and plant growth regulators (PGRs) on yield of wheat (Triticum aestivum L.) cv. Shiraz. J. Agric. Sci. Technol. 2010, 10, 101–108. [Google Scholar]
- Xue, H.; Han, Y.; Li, Y.; Wang, G.; Feng, L.; Fan, Z.; Du, W.; Yang, B.; Cao, C.; Mao, S. Spatial distribution of light interception by different plant population densities and its relationship with yield. Field Crop. Res. 2015, 184, 17–27. [Google Scholar] [CrossRef]
- Hu, C.; Sadras, V.O.; Lu, G.; Zhang, P.; Han, Y.; Liu, L.; Xie, J.; Yang, X.; Zhang, S. A global meta-analysis of split nitrogen application for improved wheat yield and grain protein content. Soil Tillage Res. 2021, 213, 105111. [Google Scholar] [CrossRef]
- Pisarek, M.; Rozbicki, J.; Samborski, S.; Wawryło, B.; Golba, J. Effect of seven agronomic factors on winter wheat productivity cultivating in condition of an excessive share of cereals in crop rotation. Part II. Grain yield and it’s components. Fragm. Agron. 2013, 30, 113–120. (In Polish) [Google Scholar]
- Sedlář, O.; Balík, J.; Černý, J.; Peklová, L.; Kulhánek, M. Nitrogen uptake by winter wheat (Triticum aestivum L.) depending on fertilizer application. Cereal Res. Commun. 2015, 43, 515–524. [Google Scholar] [CrossRef]
- Belete, F.; Dechassa, N.; Molla, A.; Tana, T. Effect of split application of different N rates on productivity and nitrogen use efficiency of bread wheat (Triticum aestivum L.). Agric. Food Secur. 2018, 7, 92. [Google Scholar] [CrossRef]
- Školníková, M.; Škarpa, P.; Ryant, P.; Kozáková, Z.; Antošovský, J. Response of winter wheat (Triticum aestivum L.) to fertilizers with nitrogen-transformation inhibitors and timing of their application under field conditions. Agronomy 2022, 12, 223. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Shi, Y.; Yu, Z. Optimized split nitrogen fertilizer increases photosynthesis, grain yield, nitrogen use efficiency, and water use efficiency under water-saving irrigation. Sci. Rep. 2020, 10, 20310. [Google Scholar] [CrossRef]
- Zain, M.; Si, Z.; Li, S.; Gao, Y.; Mehmood, F.; Rahman, S.U.; Hamani, A.K.M.; Duan, A. The coupled effects of irrigation scheduling and nitrogen fertilization mode on growth, yield, and water use efficiency in drip-irrigated winter wheat. Sustainability 2021, 13, 2742. [Google Scholar] [CrossRef]
- Abubakar, S.A.; Hamani, A.K.M.; Chen, J.; Traore, A.; Abubakar, N.A.; Usman Ibrahim, A.; Duan, A. Optimized drip fertigation scheduling improves nitrogen productivity of winter wheat in the North China Plain. J. Soil Sci. Plant Nutr. 2022, 22, 2955–2968. [Google Scholar] [CrossRef]
- Hamani, A.K.M.; Abubakar, S.A.; Si, Z.; Kama, R.; Gao, Y.; Duan, A. Responses of grain yield and water-nitrogen dynamic of drip-irrigated winter wheat (Triticum aestivum L.) to different nitrogen fertigation and water regimes in the North China Plain. Agric. Water Manag. 2023, 288, 108494. [Google Scholar] [CrossRef]
- Pisarek, M.; Rozbicki, J.; Samborski, S.; Wawryło, B.; Golba, J. Effect of seven agronomic factors on winter wheat productivity cultivating in condition of an excessive share of cereals in crop rotation. Part I. Yield of aboveground biomass, nitrogen nutrition index and infection rate of root rot. Fragm. Agron. 2013, 30, 99–112. (In Polish) [Google Scholar]
- Akhter, S.; Kotru, R.; Lone, B.A.; Jan, R. Effect of split application of potassium and nitrogen on wheat (Triticum aestivum) growth and yield under temperate Kashmir. Indian J. Agron. 2017, 62, 49–53. [Google Scholar]
Trait | Plants m−2 (BBCH 12–13) | Plants m−2 (BBCH 22–25) | Shoots Plant−1 (BBCH 29) | Shoots m−2 (BBCH 29) | Spikes m−2 | Grains Spike−1 | 1000-Grain Weight (g) | Grain Yield (Mg ha−1) | Straw Yield (Mg ha−1) | Harvest Index |
---|---|---|---|---|---|---|---|---|---|---|
Y | 11.086 ** | 10.515 ** | 32.657 ** | 9.677 ** | 179.406 ** | 83.788 ** | 101.954 ** | 256.557 ** | 46.733 ** | 11.226 ** |
SDE | 5.938 ** | 5.310 ** | 22.008 ** | 32.784 ** | 29.615 ** | 0.893 ns | 6.377 ** | 115.474 ** | 3.745 * | 9.994 ** |
SDY | 101.444 ** | 93.057 ** | 3.913 * | 68.407 ** | 22.660 ** | 15.478 ** | 0.647 ns | 3.702 * | 3.602 * | 0.047 ns |
N | 0.025 ns | 0.030 ns | 3.542 * | 3.475 * | 3.382 * | 0.191 ns | 0.547 ns | 3.100 * | 0.892 ns | 0.261 ns |
Y × SDE | 8.551 ** | 7.932 ** | 12.085 ** | 14.453 ** | 22.752 ** | 3.724 ** | 1.372 ns | 28.858 ** | 4.696 ** | 4.245 ** |
Y × SDY | 0.220 ns | 0.231 ns | 2.282 ns | 0.541 ns | 2.408 ns | 1.268 ns | 2.197 ns | 3.125 * | 0.499 ns | 0.941 ns |
Y × N | 0.050 ns | 0.040 ns | 3.750 ** | 2.862 ns | 1.636 ns | 1.886 ns | 0.430 ns | 0.686 ns | 0.496 ns | 0.154 ns |
SDE × SDY | 0.820 ns | 0.758 ns | 0.512 ns | 1.039 ns | 1.821 ns | 0.662 ns | 0.867 ns | 1.950 ns | 6.093 ** | 0.511 ns |
SDE × N | 0.040 ns | 0.032 ns | 0.219 ns | 0.184 ns | 2.325 ns | 0.793 ns | 1.992 ns | 0.906 ns | 1.094 ns | 0.155 ns |
SDY × N | 0.022 ns | 0.015 ns | 0.211 ns | 0.240 ns | 0.380 ns | 0.286 ns | 0.377 ns | 0.800 ns | 0.526 ns | 0.313 ns |
Y × SDE × SDY | 1.948 ns | 1.829 ns | 1.822 ns | 1.859 ns | 0.893 ns | 0.772 ns | 0.756 ns | 0.414 ns | 1.707 ns | 0.889 ns |
Y × SDE × N | 0.036 ns | 0.041 ns | 0.142 ns | 0.188 ns | 0.945 ns | 0.352 ns | 0.488 ns | 0.381 ns | 0.245 ns | 0.094 ns |
Y × SDY × N | 0.030 ns | 0.028 ns | 0.227 ns | 0.135 ns | 1.805 ns | 1.853 ns | 0.096 ns | 0.343 ns | 0.266 ns | 0.082 ns |
SDE × SDY × N | 0.032 ns | 0.044 ns | 0.352 ns | 0.209 ns | 1.151 ns | 0.771 ns | 0.805 ns | 0.191 ns | 0.623 ns | 0.630 ns |
Y × SDE × SDY × N | 0.040 ns | 0.039 ns | 0.280 ns | 0.256 ns | 1.155 ns | 0.781 ns | 0.558 ns | 0.181 ns | 0.388 ns | 0.444 ns |
Parameter | Plants m−2 | Shoots Plant−1 (BBCH 29) | Shoots m−2 (BBCH 29) | |
---|---|---|---|---|
BBCH 12–13 | BBCH 22–25 | |||
Growing season | ||||
2018/2019 | 257 b | 254 b | 5.0 b | 1268 b |
2019/2020 | 319 a | 316 a | 3.9 c | 1232 b |
2020/2021 | 285 b | 282 b | 5.4 a | 1491 a |
Sowing date, mean for 2018–2021 | ||||
Early | 299 a | 295 a | 5.4 a | 1560 a |
Delayed (+14 days) | 301 a | 298 a | 4.7 b | 1380 b |
Delayed (+28 days) | 261 b | 258 b | 4.1 c | 1051 c |
Sowing density (live grains m−2), mean for 2018–2021 | ||||
200 | 193 c | 191 c | 5.0 a | 959 c |
300 | 286 b | 283 b | 4.7 ab | 1326 b |
400 | 381 a | 377 a | 4.5 b | 1705 a |
Split spring N rate (kg ha−1), mean for 2018–2021 † | ||||
40 + 100 | 287 | 284 | 4.5 b | 1272 b |
70 + 70 | 285 | 282 | 4.6 ab | 1292 ab |
100 + 40 | 288 | 286 | 5.0 a | 1427 a |
Parameter | Spikes m−2 | Grains Spike−1 | 1000-Grain Weight (g) |
---|---|---|---|
Growing season | |||
2018/2019 | 538 a | 43.7 c | 45.53 b |
2019/2020 | 507 b | 45.4 b | 47.76 a |
2020/2021 | 406 c | 51.5 a | 43.39 c |
Sowing date, mean for 2018–2021 | |||
Early | 452 b | 47.3 | 44.95 c |
Delayed (+14 days) | 504 a | 46.5 | 45.72 b |
Delayed (+28 days) | 495 a | 46.7 | 46.01 a |
Sowing density (live grains m−2), mean for 2018–2021 | |||
200 | 456 b | 48.8 a | 45.60 |
300 | 492 a | 46.3 b | 45.37 |
400 | 503 a | 45.4 b | 45.71 |
Split spring N rate (kg ha−1), mean for 2018–2021 † | |||
40 + 100 | 477 b | 46.8 | 45.63 |
70 + 70 | 479 ab | 47.1 | 45.67 |
100 + 40 | 495 a | 46.7 | 45.38 |
Parameter | Grain Yield (Mg ha−1) | Straw Yield (Mg ha−1) | Harvest Index |
---|---|---|---|
Growing season | |||
2018/2019 | 10.57 b | 6.78 a | 0.61 b |
2019/2020 | 10.90 a | 5.89 b | 0.65 a |
2020/2021 | 8.99 c | 5.28 c | 0.64 a |
Sowing date, mean for 2018–2021 | |||
Early | 9.36 b | 6.10 a | 0.61 b |
Delayed (+14 days) | 10.58 a | 6.11 a | 0.64 a |
Delayed (+28 days) | 10.52 a | 5.74 b | 0.65 a |
Sowing density (live grains m−2), mean for 2018–2021 | |||
200 | 10.02 b | 5.87 | 0.64 |
300 | 10.19 ab | 6.07 | 0.64 |
400 | 10.25 a | 6.01 | 0.63 |
Split spring N rate (kg ha−1), mean for 2018–2021 † | |||
40 + 100 | 10.03 b | 6.23 a | 0.63 |
70 + 70 | 10.17 ab | 5.87 b | 0.63 |
100 + 40 | 10.25 a | 5.86 b | 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lachutta, K.; Jankowski, K.J. An Agronomic Efficiency Analysis of Winter Wheat at Different Sowing Strategies and Nitrogen Fertilizer Rates: A Case Study in Northeastern Poland. Agriculture 2024, 14, 442. https://doi.org/10.3390/agriculture14030442
Lachutta K, Jankowski KJ. An Agronomic Efficiency Analysis of Winter Wheat at Different Sowing Strategies and Nitrogen Fertilizer Rates: A Case Study in Northeastern Poland. Agriculture. 2024; 14(3):442. https://doi.org/10.3390/agriculture14030442
Chicago/Turabian StyleLachutta, Krzysztof, and Krzysztof Józef Jankowski. 2024. "An Agronomic Efficiency Analysis of Winter Wheat at Different Sowing Strategies and Nitrogen Fertilizer Rates: A Case Study in Northeastern Poland" Agriculture 14, no. 3: 442. https://doi.org/10.3390/agriculture14030442
APA StyleLachutta, K., & Jankowski, K. J. (2024). An Agronomic Efficiency Analysis of Winter Wheat at Different Sowing Strategies and Nitrogen Fertilizer Rates: A Case Study in Northeastern Poland. Agriculture, 14(3), 442. https://doi.org/10.3390/agriculture14030442