Design and Performance Test of 4UJ-180A Potato Picking and Bagging Machine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overall Machine Structure and Operating Principles
2.2. Working Principle and Key Technical Parameters
2.3. Design of Key Components and Determination of Parameters
2.3.1. Picking Device
2.3.2. Upward Buffering Device
2.3.3. Hydraulic Control Sliding-Rail Bagging Device
2.3.4. Experimental Design
2.3.5. Experimental Conditions and Performance Indicators
3. Results
3.1. Orthogonal Analysis
Variance Analysis
3.2. Field Test
4. Discussion
5. Conclusions
- (1)
- The 4UJ-180A potato picking and bagging machine is a traction-type machine equipped with a ridging shaft, a flexible conveying system, and a hydraulic control system. The ridging shaft is designed to efficiently reduce soil blockage, thus minimizing skin damage on potatoes. Additionally, the machine features a rubberized biomimetic deflector that ensures stable potato conveying, thereby reducing collision-related damage. The hydraulic control system, in conjunction with buffer components and the bagging device, work collaboratively to facilitate a consistent and adaptable potato harvesting and bag unloading process, further decreasing skin damage during harvest.
- (2)
- Field experiments with the 4UJ-180A potato picking and bagging machine show that the skin damage rate, bruise rate, loss rate, and impurity rate are 2.8%, 1.3%, 0.4%, and 0.7% respectively. These performance tests indicate that the machine complies with national industry standards, achieving skin damage rates of less than or equal to 3%, bruise rates of less than or equal to 2%, loss rates of less than or equal to 4%, and impurity rates of less than or equal to 4%. These results satisfy the design criteria for the machine.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.C.; Zhao, W.Y.; Sun, W.; Zhang, H.; Liu, X.L.; Li, H. Research progress on the technology and equipment for potato mechanized harvesting. Trans. Chin. Soc. Agric. Eng. 2023, 39, 1–22. [Google Scholar]
- Fan, J.; Li, Y.; Luo, W.; Yang, K.; Yu, Z.; Wang, S.; Hu, Z.; Wang, B.; Gu, F.; Wu, F. An Experimental Study of Stem Transported-Posture Adjustment Mechanism in Potato Harvesting. Agronomy 2023, 13, 234. [Google Scholar] [CrossRef]
- Zh Shkaruba, N.; Leonov, O.A.; Bogolubova, D.A. Ranking of Quality Indicators Influencing the Choice of Potato Harvester. IOP Conf. Ser. Earth Environ. Sci. 2022, 981, 042038. [Google Scholar] [CrossRef]
- Hrushetsky, S.M.; Yaropud, V.M.; Duganets, V.I.; Pryshliak, V.M.; Kurylo, V.L. Research of constructive and regulatory parameters of the assembly working parts for potato harvesting machines. INMATEH Agric. Eng. 2019, 59, 101–110. [Google Scholar] [CrossRef]
- Ruzhylo, Z.; Bulgakov, V.; Adamchuk, V.; Bondarchuk, A.; Ihnatiev, Y.; Krutyakova, V.; Olt, J. Experimental research into impact of kinematic and design parameters of a spiral potato separator on quality of plant residues and soil separation. J. Agric. Sci. 2020, 31, 202–207. [Google Scholar]
- Wei, Z.; Li, H.; Sun, C.; Su, G.; Liu, W.; Li, X. Experiments and Analysis of a Conveying Device for Soil Separation and Clod-Crushing for a Potato Harvester. Appl. Eng. Agric. 2019, 35, 987–996. [Google Scholar] [CrossRef]
- Zhang, Z.G.; Wang, H.Y.; Li, Y.B.; Yang, X.; Ibrahim, I.; Zhang, Z.D. Design and Experiment of Multi stage Separation Buffer Potato Harvester. Trans. Chin. Soc. Agric. Mach. 2021, 52, 96–109. [Google Scholar]
- Li, X.Q.; Wang, X.H.; Liu, Y.; Wang, F.M.; Meng, P.X.; Wang, J.M. Design and Experiment of Circular Reducing and Collecting Potato Lifting Device for Potato Combine Harvester. Trans. Chin. Soc. Agric. Mach. 2023, 54, 1–12. [Google Scholar]
- Wei, H.A.; Zhang, J.L.; Yang, X.P.; Huang, X.P.; Dai, L.X.; Sun, G.H.; Liu, X. Improvement Design and Experiment of 4UFD-1400 Potato Combine Harvester. Trans. Chin. Soc. Agric. Mach. 2014, 30, 12–17. [Google Scholar]
- Lu, J.Q.; Yang, X.H.; Lu, Y.N.; Li, Z.H.; Li, J.C.; Du, C.L. Analysis and experimentation on tuber damage mechanism during the lifting and separating process of potato harvester. Trans. Chin. Soc. Agric. Mach. 2020, 51, 103–113. [Google Scholar]
- Wei, Z.C.; Han, M.; Su, G.L.; Zhang, H.; Li, X.Q.; Jin, C.Q. Design and Experiment of 4UL-2 Potato Ton Bag Combine Harvester. Trans. Chin. Soc. Agric. Mach. 2023, 54, 1–12. [Google Scholar]
- Wang, W.; Yang, R.; Pan, Z.; Qing, Y.; Zhang, J.; Chen, D.; Guo, X.; Lyu, S. Design and Experimental Study of Single Plant Harvester for Potato Breeding Experiments. Agriculture 2023, 14, 71. [Google Scholar] [CrossRef]
- Mamatov, F.; Mirzaev, B.; Rustamova, N.; Razzokov, T.; Hamroev, O. Kinematic Mode of Operation of Potato Harvester Auger. E3S Web Conf. 2023, 365, 04029. [Google Scholar] [CrossRef]
- Wang, X.Y.; Lu, D.Y.; Ren, J.Y.; Zhang, M.; Meng, P.X.; Li, X.Q. Development of a bagging-type potato combined harvester with cleaning and sorting device. Trans. Chin. Soc. Agric. Eng. 2022, 38 (Suppl. 1), 8–17. [Google Scholar]
- Wang, X.; Yang, D.Q.; Liu, M.M.; Li, Y.; Chen, X.Y.; Cheng, Z.W. Parameter optimization and experimentation on the picking device of a self-propelled potato picker. Trans. Chin. Soc. Agric. Mach. 2023, 54 (Suppl. 2), 20–29. [Google Scholar]
- Wang, L.; Liu, F.; Wang, Q.; Zhou, J.; Fan, X.; Li, J.; Zhao, X.; Xie, S. Design of a Spring-Finger Potato Picker and an Experimental Study of Its Picking Performance. Agriculture 2023, 13, 945. [Google Scholar] [CrossRef]
- Wei, H.A.; Wang, D.; Lian, W.X.; Shao, S.L.; Yang, X.P.; Huang, X.P. Development of the 4UFD-1400 potato combined harvester. Trans. Chin. Soc. Agric. Eng. 2013, 29, 11–17. [Google Scholar]
- Wang, F.H.; Xiong, H.H.; Lai, Q.H.; Liu, Z.Y.; Chen, K.F.; Lu, C.Y. Research on intelligent design system and evaluation method for potato harvester digging device. Trans. Chin. Soc. Agric. Mach. 2021, 52, 86–97. [Google Scholar]
- Wei, Z.C.; Li, H.W.; Sun, C.Z.; Li, X.Q.; Su, G.L.; Liu, W.Z. Design and experimentation of a potato combined harvester based on multi-stage separation process. Trans. Chin. Soc. Agric. Mach. 2019, 50, 129–140+112. [Google Scholar]
- Dai, F.; Zhao, W.Y.; Sun, W.; Wu, Z.W.; Song, X.F.; Li, Y. Design and experimentation of a combined operation machine for potato harvesting and pneumatic-assisted residual film recovery. Trans. Chin. Soc. Agric. Mach. 2017, 48, 64–72. [Google Scholar]
- Lu, X.H.; Wang, X.; Zhang, W.J.; Shi, M.M.; Wei, H.A. Parameter analysis and experimentation of the separation and conveying device of the 4U-1400 potato combined harvester. J. China Agric. Univ. 2015, 20, 269–276. [Google Scholar]
- Wei, Z.C.; Li, H.W.; Sun, C.Z.; Li, X.Q.; Liu, W.Z.; Su, G.L.; Wang, F.M. Improvement of a two-stage separation potato harvester with vibration and wave. Trans. Chin. Soc. Agric. Eng. 2018, 34, 42–52. [Google Scholar]
- Hou, J.L.; Zhang, E.P.; Zhang, K.B.; Li, Y.H. Optimization design and experimentation of the transplanting device for chili based on DEM-MFBD. Trans. Chin. Soc. Agric. Mach. 2023, 54, 1–14. [Google Scholar]
- Lu, J.Q.; Wang, P.R.; Liu, Z.F.; Li, Z.H.; Zou, F.Y.; Yang, D.Q. Design and experimentation of the potato and haulm separation device for potato harvester. Trans. Chin. Soc. Agric. Mach. 2019, 50, 100–109. [Google Scholar]
- Yang, R.B.; Yang, H.G.; Shang, S.Q.; Xu, P.X.; Cui, G.P.; Liu, L.H. Design and experimentation of a roller pushing-type potato harvester. Trans. Chin. Soc. Agric. Mach. 2016, 47, 119–126. [Google Scholar]
- Xin, L.; Liang, J. Design of Conveyor Separation Device for Potato Harvester and Analysis of Its Vibration Characteristics. J. Comput. Methods Sci. Eng. 2022, 22, 1385–1392. [Google Scholar] [CrossRef]
- Wei, Z.C.; Wang, Y.W.; Li, X.Q.; Wang, J.M.; Su, G.L.; Meng, P.X.; Han, M.; Jin, C.Q.; Li, Z.H. Design and experiments of the potato combine harvester with elastic rubbing technology. Trans. Chin. Soc. Agric. Eng. 2023, 39, 60–69. [Google Scholar]
- Wang, F.A.; Cao, Q.Z.; Li, Y.B.; Pang, Y.L.; Xie, K.T.; Zhang, Z.G. Design and passability testing of a self-propelled potato combined harvester in hilly and mountainous areas. Trans. Chin. Soc. Agric. Mach. 2023, 54 (Suppl. 2), 10–19. [Google Scholar]
- GB/T 5667-2008; Productive Testing Methods for Agricultural Machinery. China Machinery Industry Federation: Beijing, China, 2008.
- NY/T2464-2013; Operating Quality for Potato Harvesters. Ministry of Agriculture of the PRC: Beijing, China, 2013.
- Lu, J.Q.; Sun, H.; Dui, H.; Peng, M.M.; Yu, J.Y. Improved design and experimentation of the separation and conveying device of a potato harvester in sticky and heavy soils. Trans. Chin. Soc. Agric. Mach. 2017, 48, 146–155. [Google Scholar]
- Chang, H.; Shi, W.; Li, W.; Wang, C.; Zhou, L.; Liu, J.; Yang, Y.; Ramesh, K.A. Experimental Optimization of Jet Self-Priming Centrifugal Pump Based on Orthogonal Design and Grey-Correlational Method. J. Therm. Sci. 2020, 29, 241–250. [Google Scholar] [CrossRef]
- Tang, S.Q.; Yang, D.Y.; Bai, Q.Q. Orthogonal Testing Optimum Design in Radial Electrodynamic Magnetic Bearings. Appl. Mech. Mater. 2013, 397–400, 779–782. [Google Scholar] [CrossRef]
- Wei, Z.C.; Han, M.; Su, G.L.; Zhang, H.; Li, X.Q.; Jin, C.Q. Design and experimentation of the bagging and unbagging potato combined harvester. Trans. Chin. Soc. Agric. Mach. 2023, 54, 92–104. [Google Scholar]
Parameter | Value |
---|---|
Overall dimensions length × width × height/mm | 5200 × 2023 × 1550 |
Working width/mm | 1600 |
Overall weight/kg | 2500 |
Power supply/kw | 66.1~88.2 |
Attachment Method | tractor-towed |
Levels | A/(m/s) | B/(rpm) | C/(rpm) |
---|---|---|---|
1 | 1 | 20 | 35 |
2 | 1.5 | 24 | 40 |
3 | 2 | 28 | 45 |
Test Number | Factors | Evaluation Indicators | ||||||
---|---|---|---|---|---|---|---|---|
Empty Column | A | B | C | Skin Damage Rate W (%) | Bruise Rate X (%) | Loss Rate Y (%) | Impurity Rate Z (%) | |
1 | 1 | 1 | 1 | 1 | 4.9 | 1.7 | 0.5 | 0.8 |
2 | 1 | 2 | 2 | 2 | 9.2 | 3.5 | 1.1 | 0.7 |
3 | 1 | 3 | 3 | 3 | 10.4 | 4.4 | 1.3 | 1.4 |
4 | 2 | 1 | 2 | 3 | 7.7 | 2.3 | 1 | 0.9 |
5 | 2 | 2 | 3 | 1 | 7.3 | 1.3 | 0.7 | 1 |
6 | 2 | 3 | 1 | 2 | 9.2 | 6.4 | 1 | 1.2 |
7 | 3 | 1 | 3 | 2 | 3.4 | 2.2 | 0.9 | 0.9 |
8 | 3 | 2 | 1 | 3 | 9.8 | 4.2 | 1.5 | 0.7 |
9 | 3 | 3 | 2 | 1 | 8.7 | 3.4 | 1.4 | 0.8 |
Experimental Indicator | Analysis Item | Error | A | B | C |
---|---|---|---|---|---|
Skin Damage Rate/% | K1 | 24.5 | 16 | 23.9 | 20.9 |
K2 | 24.2 | 26.3 | 25.6 | 21.8 | |
K3 | 21.9 | 28.3 | 21.1 | 27.9 | |
Range | 0.87 | 4.1 | 1.5 | 2.3 | |
Importance order | A > C > B | ||||
Optimal choice | A1C1B3 | ||||
Bruise Rate/% | K1 | 9.6 | 6.2 | 12.3 | 6.4 |
K2 | 10 | 9 | 9.2 | 12.1 | |
K3 | 9.8 | 14.2 | 7.9 | 10.9 | |
Range | 0.1 | 2.7 | 1.5 | 1.9 | |
Importance order | A > C > B | ||||
Optimal choice | A1C1B3 | ||||
Loss Rate/% | K1 | 2.9 | 2.4 | 3 | 2.6 |
K2 | 2.7 | 3.3 | 3.5 | 3 | |
K3 | 3.8 | 3.7 | 2.9 | 3.8 | |
Range | 0.37 | 0.43 | 0.2 | 0.4 | |
Importance order | A > C > B | ||||
Optimal choice | A1C1B3 | ||||
Impurity Rate/% | K1 | 2.9 | 2.6 | 2.7 | 2.6 |
K2 | 3.1 | 2.4 | 2.4 | 2.8 | |
K3 | 2.4 | 3.4 | 3.3 | 3 | |
Range | 0.2 | 0.33 | 0.3 | 0.1 | |
Importance order | A > B > C | ||||
Optimal choice | A2B2C1 |
Experimental Indicator | Sources of Variance | Sum of Squares of Deviations | Degrees of Freedom | Mean Squared Sum of Deviations | F-Value | p-Value |
---|---|---|---|---|---|---|
Skin Damage Rate/% | Error | 1.35 | 2 | 0.68 | ||
A | 29.04 | 2 | 14.52 | 21.53 | 0.0444 * | |
B | 3.44 | 2 | 1.72 | 2.55 | 0.2815 | |
C | 9.67 | 2 | 4.84 | 7.17 | 0.1224 | |
Total TK | 43.5 | 8 | 21.76 | |||
Bruise Rate/% | Error | 0.03 | 2 | 0.02 | ||
A | 10.99 | 2 | 5.50 | 412.00 | 0.0024 ** | |
B | 3.41 | 2 | 1.71 | 127.75 | 0.0078 ** | |
C | 6.02 | 2 | 3.01 | 225.75 | 0.0044 ** | |
Total TK | 20.45 | 8 | 10.24 | |||
Loss Rate/% | Error | 0.23 | 2 | 0.12 | ||
A | 0.30 | 2 | 0.15 | 1.29 | 0.4364 | |
B | 0.07 | 2 | 0.04 | 0.30 | 0.7687 | |
C | 0.25 | 2 | 0.13 | 1.09 | 0.4791 | |
Total TK | 0.85 | 8 | 0.44 | |||
Impurity Rate/% | Error | 0.09 | 2 | 0.05 | ||
A | 0.19 | 2 | 0.01 | 2.15 | 0.3171 | |
B | 0.14 | 2 | 0.07 | 1.62 | 0.3824 | |
C | 0.03 | 2 | 0.02 | 0.31 | 0.7647 | |
Total TK | 0.45 | 8 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Wu, Y.; Wang, L.; Liu, F.; Zhao, X.; Bai, H.; Dong, W.; Kong, X.; Hu, H.; Zhong, W.; et al. Design and Performance Test of 4UJ-180A Potato Picking and Bagging Machine. Agriculture 2024, 14, 454. https://doi.org/10.3390/agriculture14030454
Yang X, Wu Y, Wang L, Liu F, Zhao X, Bai H, Dong W, Kong X, Hu H, Zhong W, et al. Design and Performance Test of 4UJ-180A Potato Picking and Bagging Machine. Agriculture. 2024; 14(3):454. https://doi.org/10.3390/agriculture14030454
Chicago/Turabian StyleYang, Xu, Yingsi Wu, Lihe Wang, Fei Liu, Xuan Zhao, Hongbin Bai, Wenxue Dong, Xiang Kong, Hengtong Hu, Wendong Zhong, and et al. 2024. "Design and Performance Test of 4UJ-180A Potato Picking and Bagging Machine" Agriculture 14, no. 3: 454. https://doi.org/10.3390/agriculture14030454
APA StyleYang, X., Wu, Y., Wang, L., Liu, F., Zhao, X., Bai, H., Dong, W., Kong, X., Hu, H., Zhong, W., Xuan, D., Yang, A., & Ma, Y. (2024). Design and Performance Test of 4UJ-180A Potato Picking and Bagging Machine. Agriculture, 14(3), 454. https://doi.org/10.3390/agriculture14030454