Yield Gap Analysis of Super High-Yielding Rice (>15 t ha−1) in Two Ecological Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Details
2.2. Data Analyses
3. Results
3.1. Grain Yield and Yield Components of Super High-Yielding Rice in Two Ecological Regions
3.2. Total Biomass and Harvest Indices of Super High-Yielding Rice in Two Ecological Regions
3.3. Climatic Factors of Super High-Yielding Rice Plants in Two Ecological Regions
3.4. Biomass Production and CGR of Super High-Yielding Rice in Two Ecological Regions
3.5. Climatic Factors and Their Relationship with Grain Yield
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Zhang, W.; Cao, G.; Li, X.; Zhang, H.; Wang, C.; Liu, Q.; Chen, X.; Cui, Z.; Shen, J.; Jiang, R.; et al. Closing yield gaps in China by empowering smallholder farmers. Nature 2016, 537, 671–674. [Google Scholar] [CrossRef]
- Li, L.; He, L.; Li, Y.; Wang, Y.; Ashraf, U.; Hamoud, Y.A.; Hu, X.; Wu, T.; Tang, X.; Pan, S. Deep fertilization combined with straw incorporation improved rice lodging resistance and soil properties of paddy fields. Eur. J. Agron. 2023, 142, 126659. [Google Scholar] [CrossRef]
- Deng, N.; Grassini, P.; Yang, H.; Huang, J.; Cassman, K.G.; Peng, S. Closing yield gaps for rice self-sufciency in China. Nat. Commun. 2019, 10, 1725. [Google Scholar] [CrossRef] [PubMed]
- Huang, M. The decreasing area of hybrid rice production in China: Causes and potential effects on Chinese rice self-sufficiency. Food Secur. 2022, 14, 267–272. [Google Scholar] [CrossRef]
- Cheng, S.; Cao, L.; Zhuang, J.; Chen, S.; Zhan, X.; Fan, Y.; Zhu, D.; Min, S. Super hybrid rice breeding in China: Achievements and prospects. J. Integr. Plant Biol. 2007, 49, 805–810. [Google Scholar] [CrossRef]
- Cheng, S.; Liao, X.; Min, S. China’s “super”rice research: Background, goals and issues. China Rice 1998, 1, 3–5. [Google Scholar]
- Yuan, L.P. Breeding of super hybrid rice. In Rice Research for Food Security and Poverty Alleviation; Peng, S.B., Hardy, B., Eds.; International Rice Research Institue: Los Baños, Philippines, 2001; pp. 143–149. [Google Scholar]
- Peng, S.; Khush, G.S.; Virk, P.; Tang, Q.; Zou, Y. Progress in ideotype breeding to increase rice yield potential. Field Crops Res. 2008, 108, 32–38. [Google Scholar] [CrossRef]
- Yuan, L.P. Development of hybrid rice to ensure food security. Rice Sci. 2014, 21, 1–2. [Google Scholar] [CrossRef]
- Yuan, L. Progress in superhybrid rice breeding. Crops J. 2017, 5, 100–102. [Google Scholar] [CrossRef]
- Zou, Y.; Zhou, S.; Tang, Q. Status and prospect of high yielding cultivation studies on China super hybrid rice. J. Hunan Agric. Univ. 2003, 29, 78–84. (In Chinese) [Google Scholar]
- Ying, J.; Peng, S.; He, Q.; Yang, H.; Yang, C.; Visperas, R.M.; Cassman, K.G. Comparison of high-yield rice in tropical and subtropical environments: I. Determinants of grain and dry matter yields. Field Crops Res. 1998, 57, 71–84. [Google Scholar] [CrossRef]
- Katsura, K.; Maeda, S.; Lubis, I.; Horie, T.; Cao, W.; Shiraiwa, T. The high yield of irrigated rice in Yunnan, China—‘A cross-location analysis’. Field Crops Res. 2008, 107, 1–11. [Google Scholar] [CrossRef]
- Yuan, L. Development of super hybrid rice for food security in China. Engineering 2015, 1, 13–14. [Google Scholar] [CrossRef]
- Huang, M.; Jiang, L.; Xia, B.; Zou, Y.; Jiang, P.; Ao, H. Yield gap analysis of super hybrid rice between two subtropical environments. Aust. J. Crop Sci. 2013, 7, 600–608. [Google Scholar]
- Li, G.; Xue, L.; Gu, W.; Yang, C.; Wang, S.; Ling, Q.; Qin, X.; Ding, Y. Comparison of yield components and plant type characteristics of high-yield rice between Taoyuan, a ‘special eco-site’ and Nanjing, China. Field Crops Res. 2009, 112, 214–221. [Google Scholar] [CrossRef]
- Jiang, P.; Xie, X.; Huang, M.; Zhou, X.; Zhang, R.; Chen, J.; Wu, D.; Xia, B.; Xiong, H.; Xu, F.; et al. Potential yield increase of hybrid rice at five locations in southern China. Rice 2016, 9, 11. [Google Scholar] [CrossRef]
- Jiang, P.; Xie, X.B.; Huang, M.; Zhou, X.F.; Zhang, R.C.; Chen, J.N.; Wu, D.D.; Xia, B.; Xu, F.X.; Xiong, H.; et al. Comparisons of yield performance and nitrogen response between hybrid and inbred rice under difference ecological conditions in south China. J. Integr. Agric. 2015, 14, 1283–1294. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, X.; Song, W.; Khan, A.; Najeeb, U.; Li, P.; Cao, C. Water-saving cultivation plus super rice hybrid genotype improves water productivity and yield. Agron. J. 2020, 112, 1764–1777. [Google Scholar] [CrossRef]
- Chen, T.; Yang, X.; Fu, W.; Li, G.; Feng, B.; Fu, G.; Tao, L. Strengthened Assimilate Transport Improves Yield and Quality of Super Rice. Agronomy 2022, 12, 753. [Google Scholar] [CrossRef]
- Nagarajan, S.; Jagadish, S.V.K.; Prasad, A.H.; Thomar, A.K.; Anand, A.; Pal, M.; Agarwal, P.K. Local climate affects growth, yield and grain quality of aromatic and nonaromatic rice in northwestern India. Agric. Ecosyst. Environ. 2010, 138, 274–281. [Google Scholar] [CrossRef]
- Sheehy, J.E.; Mitchell, P.L.; Ferrer, A.B. Decreases in rice grain yields with temperature: Models and correlations can yield different estimates. Field Crops Res. 2006, 98, 151–156. [Google Scholar] [CrossRef]
- Chang, S.; Chang, T.; Song, Q. Architectural and Physiological Features to Gain High Yield in an Elite Rice Line YLY1. Rice 2020, 13, 60. [Google Scholar] [CrossRef]
- Welch, J.R.; Vincent, J.R.; Auffhammer, M. Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proc. Natl. Acad. Sci. USA 2010, 107, 14562–14567. [Google Scholar] [CrossRef] [PubMed]
- Kanno, K.; Makino, A. Increased grain yield and biomass allocation in rice under cool night temperature. Soil Sci. Plant Nutr. 2010, 56, 412–417. [Google Scholar] [CrossRef]
- Peng, S.; Huang, J.; Sheehy, J.E.; Laza, R.C.; Visperas, R.M.; Zhong, X.; Centeno, G.S.; Khush, G.S.; Cassman, K.G. Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. USA 2004, 101, 9971–9975. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Ashraf, U.; Cheng, S.; Rao, G.; Mo, Z.; Tian, H.; Pan, S.; Tang, X. Short-term water management at early filling stage improves early-season rice performance under high temperature stress in South China. Eur. J. Agron. 2017, 90, 117–126. [Google Scholar] [CrossRef]
- Mohammed, A.R.; Tarpley, L. High nighttime temperatures affect rice productivity through altered pollen germination and spikelet fertility. Agric. For. Meteorol. 2009, 149, 999–1008. [Google Scholar] [CrossRef]
- Guo, Y.P.; Zhou, H.F.; Zhang, L.C. Photosynthetic characteristics and protective mechanism against photooxidation during high temperature stress in two citrus species. Sci. Hortic. 2006, 108, 260–267. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Q.; Zou, Y.; Li, D.; Qin, J.; Yang, S.; Chen, L.; Xia, B.; Peng, S. Yield potential and radiation use efficiency of “super” hybrid rice grown under subtropical conditions. Field Crops Res. 2009, 114, 91–98. [Google Scholar] [CrossRef]
- Ibrahim, M.; Peng, S.B.; Tang, Q.Y.; Huang, M.; Jiang, P.; Zou, Y.B. Comparison of yield and growth behaviors of hybrid rice under different nitrogen management methods in tropical and subtropical environments. J. Integr. Agric. 2013, 12, 621–629. [Google Scholar] [CrossRef]
- Kobata, T.; Nagano, T.; Ida, K. Critical factors for grain filling in low grain ripening rice cultivars. Agron. J. 2006, 98, 536–544. [Google Scholar] [CrossRef]
- Huang, M.; Xia, B.; Zou, Y.B.; Jiang, P.; Shi, W.J.; Hongthong, P.; Xie, X.B. Improvement in super hybrid rice: A comparative study between super hybrid and inbred varieties. Res. Crops 2012, 13, 1–10. [Google Scholar]
- Bueno, C.S.; Lafarge, T. Higher crop performance of hybrids than of elite inbreds in the tropics: 1. Hybrids accumulate more biomass during each phenological phase. Field Crops Res. 2009, 112, 229–237. [Google Scholar] [CrossRef]
- Song, X.F.; Agata, W.; Kawamitsu, Y. Studies on dry matter and grain production of F1 hybrid rice in China: I Characteristics of dry matter production. Jpn. J. Crop Sci. 1990, 59, 19–28. [Google Scholar] [CrossRef]
- Horie, T.; Ohnishi, O.; Angus, J.F.; Lewin, L.G.; Tsukaguchi, T.; Matano, T. Physiological characteristics of high–yielding rice inferred from cross–location experiments. Field Crops Res. 1997, 52, 56–67. [Google Scholar] [CrossRef]
- Yang, W.; Peng, S.; Laza, R.C.; Visperas, R.M.; Dionisio-Sese, M.L. Yield gap analysis between dry and wet season rice crop grown under high–yielding management conditions. Agron. J. 2008, 100, 1390–1395. [Google Scholar] [CrossRef]
- Laza, R.C.; Peng, S.B.; Akita, S.; Saka, H. Contribution of biomass partitioning and translocation of grain yield under sub–optimum growing conditions in irrigated rice. Plant Prod. Sci. 2003, 6, 28–35. [Google Scholar] [CrossRef]
- Deng, H.; Wang, X.; Deng, S. Silicon (Si) Application Improved the Antioxidant Response and Grain Yield Formation in rice Under High Temperature Conditions. Silicon 2023, 15, 4375–4385. [Google Scholar] [CrossRef]
Year | Variety | Effective | Spikelets | Seed | 1000-Grain | Rice |
---|---|---|---|---|---|---|
/Location | Panicles | per | Setting | Weight | Yield | |
× 104 ha−1 | Panicle | Rate (%) | (g) | (t ha−1) | ||
2020 | ||||||
YONG | XLY900 | 208.50 a | 416.90 a | 89.39 a | 27.16 a | 19.19 b |
SHENG | YLY900 | 223.30 a | 393.62 a | 89.91 a | 26.46 b | 20.10 a |
Mean | 215.90 A | 405.26 A | 89.65 A | 26.81 A | 19.65 A | |
LONGHUI | XLY900 | 208.56 a | 341.60 a | 91.58 a | 27.19 a | 15.27 a |
YLY900 | 211.51 a | 345.40 a | 90.67 a | 26.40 b | 15.45 a | |
Mean | 210.04 A | 343.50 B | 91.13 A | 26.80 A | 15.36 B | |
2021 | ||||||
YONG | XLY900 | 192.60 b | 387.52 a | 91.20 a | 27.50 a | 18.90 a |
SHENG | YLY900 | 217.10 a | 407.28 a | 88.94 a | 27.72 a | 18.81 a |
Mean | 204.85 A | 397.40 A | 90.07 A | 27.61 A | 18.86 A | |
LONGHUI | XLY900 | 205.50 a | 336.70 a | 90.44 a | 27.26 a | 15.34 a |
YLY900 | 209.92 a | 343.30 a | 91.60 a | 26.56 b | 15.38 a | |
Mean | 207.71 A | 340.00 B | 91.02 A | 26.91 B | 15.36 B | |
Analysis of variance | ||||||
L (Location) | ns | ** | ns | ** | ** | |
Y (Year) | ns | ns | ns | ** | ns | |
V (Variety) | ns | ns | ns | ** | ns | |
L × Y | ns | ns | ns | ** | * | |
L × V | * | ns | ns | * | ns | |
Y × V | ns | ns | ns | ns | ns | |
L × Y × V | ns | ns | ns | * | ns |
Year | Variety | Total | Harvest |
---|---|---|---|
Biomass (g m−2) | Index (%) | ||
2020 | YUNAN | ||
XLY900 | 2817.80 a | 64.40 a | |
YLY900 | 2829.50 a | 63.00 a | |
Mean | 2823.7 A | 63.7 A | |
YONGSHENG | |||
XLY900 | 2418.00 a | 60.00 a | |
YLY900 | 2456.40 a | 57.60 a | |
Mean | 2437.2 B | 58.8 B | |
2021 | YUNAN | ||
XLY900 | 2846.10 a | 63.40 a | |
YLY900 | 2803.60 a | 64.00 a | |
Mean | 2824.9 A | 63.7 A | |
YONGSHENG | |||
XLY900 | 2426.00 | 58.80 a | |
YLY900 | 2500.20 | 57.80 a | |
Mean | 2463.1 B | 58.3 B | |
Analysis of variance | |||
L (Location) | ** | ** | |
Y (Year) | ns | ns | |
V (Variety) | ns | ns | |
L × Y | ns | ns | |
L × V | ns | ns | |
Y × V | ns | ns | |
L × Y × V | ns | ns |
Year Site | Cultivar | Average Maximum Temperature (°C) | Average Minimum Temperature (°C) | Growth Duration (d) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
TP-HS | HS-MS | TP-MS | TP-HS | HS-MS | TP-MS | TP-HS | HS-MS | TP-MS | ||
2020 | ||||||||||
YONG | XLY900 | 30.41 | 29.88 | 30.14 | 19.83 | 18.55 | 19.19 | 88 | 50 | 50 |
SHENG | YLY900 | 30.49 | 29.52 | 30.01 | 19.78 | 18.67 | 19.23 | 90 | 50 | 50 |
Mean | 30.45 | 29.7 | 30.08 | 19.81 | 18.61 | 19.21 | 89 | 50 | 139 | |
LONG | XLY900 | 31.43 | 30.06 | 30.74 | 23.16 | 21.08 | 22.12 | 68 | 44 | 44 |
HUI | YLY900 | 31.49 | 29.49 | 30.49 | 23.18 | 20.73 | 21.96 | 70 | 44 | 44 |
Mean | 31.46 | 29.78 | 30.62 | 23.17 | 20.91 | 22.04 | 69 | 44 | 113 | |
2021 | ||||||||||
YONG | XLY900 | 30.3 | 28.18 | 29.26 | 20.4 | 18.58 | 19.49 | 81 | 52 | 52 |
SHENG | YLY900 | 29.76 | 28.8 | 29.28 | 20.28 | 18.58 | 19.43 | 84 | 52 | 52 |
Mean | 30.03 | 28.49 | 29.27 | 20.34 | 18.58 | 19.46 | 82.5 | 52 | 134.5 | |
LONG | XLY900 | 30.26 | 32.75 | 31.5 | 21.26 | 22.34 | 21.8 | 69 | 46 | 46 |
HUI | YLY900 | 30.31 | 32.74 | 31.53 | 21.29 | 22.2 | 21.75 | 73 | 49 | 49 |
Mean | 30.29 | 32.75 | 31.52 | 21.28 | 22.27 | 21.78 | 71 | 47.5 | 118.5 | |
Parameters | Intercept | 71.68 | 41.61 | 78.30 | 45.01 | 40.87 | 48.52 | - | - | - |
Slope | −1.78 | −0.81 | −2.01 | −1.31 | −1.17 | −1.51 | - | - | - | |
R2 | 0.25 | 0.41 | 0.57 | 0.71 | 0.87 | 0.97 | - | - | - | |
F Value | 2.01 ns | 4.22 ns | 6.68 * | 15.01 ** | 39.16 ** | 211.48 ** | - | - | - |
Year/Site | Cultivar | Average Daytime Temperature (°C) | Average Night Temperature (°C) | Average Temperature (°C) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
TP-HS | HS-MS | TP-MS | TP-HS | HD-MS | TP-MS | TP-HS | HS-MS | TP-MS | ||
2020 | ||||||||||
YONG | XLY900 | 26.91 | 25.58 | 26.24 | 22.45 | 20.16 | 21.3 | 24.68 | 22.87 | 23.77 |
SHENG | YLY900 | 26.93 | 25.38 | 26.16 | 22.37 | 20.27 | 21.32 | 24.65 | 22.82 | 23.74 |
Mean | 26.92 | 25.48 | 26.2 | 22.41 | 20.22 | 21.31 | 24.67 | 22.85 | 23.76 | |
LONG | XLY900 | 28.76 | 26.9 | 27.83 | 24.44 | 22.25 | 23.35 | 26.6 | 24.58 | 25.59 |
HUI | YLY900 | 28.85 | 26.33 | 27.59 | 24.48 | 21.84 | 23.16 | 26.66 | 24.08 | 25.37 |
Mean | 28.81 | 26.62 | 27.71 | 24.46 | 22.05 | 23.26 | 26.63 | 24.33 | 25.48 | |
2021 | ||||||||||
YONG | XLY900 | 27 | 24.69 | 25.83 | 22.4 | 20.01 | 21.19 | 24.67 | 22.35 | 23.51 |
SHENG | YLY900 | 26.65 | 24.9 | 25.77 | 22.16 | 20.11 | 21.13 | 24.4 | 22.51 | 23.45 |
Mean | 26.83 | 24.8 | 25.8 | 22.28 | 20.06 | 21.16 | 24.54 | 22.43 | 23.48 | |
LONG | XLY900 | 27.56 | 29.38 | 28.47 | 22.77 | 23.63 | 23.2 | 25.16 | 26.5 | 25.83 |
HUI | YLY900 | 27.61 | 29.28 | 28.44 | 22.8 | 23.5 | 23.15 | 25.21 | 26.39 | 25.8 |
Mean | 27.59 | 29.33 | 28.46 | 22.79 | 23.57 | 23.18 | 25.19 | 26.45 | 25.82 | |
Parameters | Intercept | 72.58 | 41.26 | 63.15 | 54.26 | 43.94 | 60.55 | 62.95 | 42.86 | 62.89 |
Slope | −2.01 | −0.90 | −1.70 | −1.61 | −1.24 | −1.95 | −1.81 | −1.06 | −1.85 | |
R2 | 0.65 | 0.62 | 0.86 | 0.51 | 0.81 | 0.94 | 0.58 | 0.72 | 0.92 | |
F Value | 11.30 * | 9.84 * | 36.71 ** | 6.14 * | 26.20 ** | 101.34 ** | 8.23 * | 15.09 ** | 67.23 ** |
Year/Site | Cultivar | Cumulative Daily Radiation (MJ m−2) | ||
---|---|---|---|---|
TP-HS | HS-MS | TP-MS | ||
2020 | ||||
YONGSHENG | XLY900 | 446.44 | 368.03 | 417.82 |
YLY900 | 445.97 | 368.25 | 418.02 | |
Mean | 446.21 | 368.14 | 417.92 | |
LONGHUI | XLY900 | 369.71 | 325.75 | 352.44 |
YLY900 | 371.58 | 312.22 | 348.66 | |
Mean | 370.65 | 318.99 | 350.55 | |
2021 | ||||
YONGSHENG | XLY900 | 432.09 | 384.5 | 413.46 |
YLY900 | 428.15 | 385.14 | 411.58 | |
Mean | 430.12 | 384.82 | 412.52 | |
LONGHUI | XLY900 | 397.07 | 330.52 | 370.68 |
YLY900 | 404.87 | 311.48 | 369.55 | |
Mean | 400.97 | 321 | 370.12 | |
Parameters | Intercept | −8.59 | −4.04 | −8.68 |
Slope | 0.063 | 0.061 | 0.067 | |
R2 | 0.84 | 0.83 | 0.92 | |
F Value | 31.61 ** | 28.75 ** | 67.55 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Z.; Zhang, Y.; Jin, W. Yield Gap Analysis of Super High-Yielding Rice (>15 t ha−1) in Two Ecological Regions. Agriculture 2024, 14, 491. https://doi.org/10.3390/agriculture14030491
Wei Z, Zhang Y, Jin W. Yield Gap Analysis of Super High-Yielding Rice (>15 t ha−1) in Two Ecological Regions. Agriculture. 2024; 14(3):491. https://doi.org/10.3390/agriculture14030491
Chicago/Turabian StyleWei, Zhongwei, Yuzhu Zhang, and Wenyu Jin. 2024. "Yield Gap Analysis of Super High-Yielding Rice (>15 t ha−1) in Two Ecological Regions" Agriculture 14, no. 3: 491. https://doi.org/10.3390/agriculture14030491
APA StyleWei, Z., Zhang, Y., & Jin, W. (2024). Yield Gap Analysis of Super High-Yielding Rice (>15 t ha−1) in Two Ecological Regions. Agriculture, 14(3), 491. https://doi.org/10.3390/agriculture14030491