Using Artificial Intelligence Algorithms to Estimate and Short-Term Forecast the Daily Reference Evapotranspiration with Limited Meteorological Variables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Meteorological Data Collection
2.2. Data Processing and PM-ET0 Calculation
2.3. Daily ET0 Estimation under Variable-Limited Conditions
2.3.1. Use of PM-Alternative Equations
2.3.2. Estimation of Lacking Meteorological Variables in RPM Approach
2.3.3. ANN Models
2.4. Short-Term Forecasting Daily ET0 under Variable-Limited Conditions
2.5. Performance Comparison Criteria
3. Results and Discussion
3.1. Evaluation of ET0 Estimation Approaches under Variable-Limited Conditions
3.1.1. Performance of ET0 Estimation Methods
3.1.2. Comparison of Different ET0 Estimation Methods and Inputs Combination
3.2. Performance of AI Algorithms for the Short-Term Forecasting ET0 with Limited Variables
3.3. Advantages and Limitations of the Proposed Models
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
ANN | Artificial neural network |
CNN-LSTM | Convolution neural network long- short-term memory |
ea | Actual vapor pressure |
ET0 | Reference evapotranspiration |
HS equation | Hargreaves-Samani equation |
LSTM | Long short-term memory |
MAE | Mean absolute error |
PM equation | Penman-Monteith equation |
r | Correlation coefficient |
Ra | Extraterrestrial radiation |
Rs | Solar radiation |
RMSE | Root mean square error |
RH | Relative humidity |
RPM | Reduced-set Penman-Monteith |
T | Mean air temperature |
Tmax | Maximum temperature |
u2 | Mean wind speed at 2 m above ground |
References
- Sharma, V.; Irmak, S. Mapping spatially interpolated precipitation, reference evapotranspiration, actual crop evapotranspiration, and net irrigation requirements in Nebraska: Part I. Precipitation and reference evapotranspiration. Trans. ASABE 2012, 55, 907–921. [Google Scholar] [CrossRef]
- Sharma, V.; Irmak, S. Mapping spatially interpolated precipitation, reference evapotranspiration, actual crop evapotranspiration, and net irrigation requirements in Nebraska: Part II. Actual crop evapotranspiration and net irrigation requirements. Trans. ASABE 2012, 55, 923–936. [Google Scholar] [CrossRef]
- Rahman, M.A.; Ali, M.; Mojid, M.A.; Anjum, N.; Haq, M.E.; Kainose, A.; Dissanayaka, K.D.C.R. Crop coefficient, reference crop evapotranspiration and water demand of dry-season Boro rice as affected by climate variability: A case study from northeast Bangladesh. Irrig. Drain. 2023, 72, 148–165. [Google Scholar] [CrossRef]
- Dai, A. Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J. Geophys. Res. 2011, 116, D12115. [Google Scholar] [CrossRef]
- Paulo, A.A.; Rosa, R.D.; Pereira, L.S. Climate trends and behavior of drought indices based on precipitation and evapotranspiration in Portugal. Nat. Hazards Earth Syst. Sci. 2012, 12, 1481–1491. [Google Scholar] [CrossRef]
- McEvoy, D.J.; Huntington, J.L.; Abatzoglou, J.T.; Edwards, L.M. An evaluation of multi-scalar drought indices in Nevada and Eastern California. Earth Interact. 2012, 16, 1–18. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO: Rome, Italy, 1998; Volume 56. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [Google Scholar] [CrossRef]
- Landeras, G.; Ortiz-Barredo, A.; López, J.J. Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agric. Water Manag. 2008, 95, 553–565. [Google Scholar] [CrossRef]
- Ferreira, L.B.; da Cunha, F.F.; de Oliveira, R.A.; Fernandes Filho, E.I. Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM—A new approach. J. Hydrol. 2019, 572, 556–570. [Google Scholar] [CrossRef]
- Cai, J.B.; Liu, Y.; Lei, T.W.; Pereira, L.S. Estimating reference evapotranspiration with the FAO Penman-Monteith equation using daily weather forecast messages. Agric. For. Meteorol. 2007, 145, 22–35. [Google Scholar] [CrossRef]
- Sentelhas, P.C.; Gillespie, T.J.; Santos, E.A. Evaluation of FAO Penman-Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canada. Agric. Water Manag. 2010, 97, 635–644. [Google Scholar] [CrossRef]
- Pereira, L.S.; Allen, R.G.; Smith, M.; Raes, D. Crop evapotranspiration estimation with FAO56: Past and future. Agric. Water Manag. 2015, 147, 4–20. [Google Scholar] [CrossRef]
- Tabari, H.; Talaee, P.H. Local calibration of the Hargreaves and Priestley-Taylor equations for estimating reference evapotranspiration in arid and cold climates of Iran based on the Penman-Monteith model. J. Hydrol. Eng. 2011, 16, 837–845. [Google Scholar] [CrossRef]
- Yang, Y.; Cui, Y.; Bai, K.; Luo, T.; Dai, J.; Wang, W.; Luo, Y. Short-term forecasting of daily reference evapotranspiration using the reduced-set Penman-Monteith model and public weather forecasts. Agric. Water Manag. 2019, 211, 70–80. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, X.; Zhu, G.; He, J.; Chen, J.; Chen, Z.; Traore, S.; Liu, J.; Singh, V.P. Short-term daily reference evapotranspiration forecasting using temperature-based deep learning models in different climate zones in China. Agric. Water Manag. 2023, 289, 108498. [Google Scholar] [CrossRef]
- Goyal, P.; Kumar, S.; Sharda, R. A review of the Artificial Intelligence (AI) based techniques for estimating reference evapotranspiration: Current trends and future perspectives. Comput. Electron. Agric. 2023, 209, 107836. [Google Scholar] [CrossRef]
- Wen, X.; Si, J.; He, Z.; Wu, J.; Shao, H.; Yu, H. Support-vector-machine-based models for modeling daily reference evapotranspiration with limited climatic data in extreme arid regions. Water Resour. Manag. 2015, 29, 3195–3209. [Google Scholar] [CrossRef]
- Kumar, M.; Raghuwanshi, N.S.; Singh, R. Artificial neural networks approach in evapotranspiration modeling: A review. Irrig. Sci. 2011, 29, 11–25. [Google Scholar] [CrossRef]
- Adeloye, A.J.; Rustum, R.; Kariyama, I.D. Neural computing modeling of the reference crop evapotranspiration. Environ. Model. Softw. 2012, 29, 61–73. [Google Scholar] [CrossRef]
- Tikhamarine, Y.; Malik, A.; Souag-Gamane, D.; Kisi, O. Artificial intelligence models versus empirical equations for modeling monthly reference evapotranspiration. Environ. Sci. Pollut. Res. 2020, 27, 30001–30019. [Google Scholar] [CrossRef]
- Antonopoulos, V.Z.; Antonopoulos, A.V. Daily reference evapotranspiration estimates by artificial neural networks technique and empirical equations using limited input climate variables. Comput. Electron. Agric. 2017, 132, 86–96. [Google Scholar] [CrossRef]
- Chen, Z.; Zhu, Z.; Jiang, H.; Sun, S. Estimating daily reference evapotranspiration based on limited meteorological data using deep learning and classical machine learning methods. J. Hydrol. 2020, 591, 125286. [Google Scholar] [CrossRef]
- Sharma, G.; Singh, A.; Jain, S. A hybrid deep neural network approach to estimate reference evapotranspiration using limited climate data. Neural Comput. Applic. 2022, 34, 4013–4032. [Google Scholar] [CrossRef]
- Xing, L.; Cui, N.; Guo, L.; Du, T.; Gong, D.; Zhan, C.; Zhao, L.; Wu, Z. Estimating daily reference evapotranspiration using a novel hybrid deep learning model. J. Hydrol. 2022, 614, 128567. [Google Scholar] [CrossRef]
- Ferreira, L.B.; da Cunha, F.F. Multi-step ahead forecasting of daily reference evapotranspiration using deep learning. Comput. Electron. Agric. 2020, 178, 105728. [Google Scholar] [CrossRef]
- Luo, Y.; Chang, X.; Peng, S.; Khan, S.; Wang, W.; Zheng, Q.; Cai, X. Short-term forecasting of daily reference evapotranspiration using the Hargreaves–Samani model and temperature forecasts. Agric. Water Manag. 2014, 136, 42–51. [Google Scholar] [CrossRef]
- Karbasi, M. Forecasting of multi-step ahead reference evapotranspiration using wavelet-Gaussian process regression model. Water Resour. Manag. 2018, 32, 1035–1052. [Google Scholar] [CrossRef]
- Perera, K.C.; Western, A.W.; Nawarathna, B.; George, B. Forecasting daily reference evapotranspiration for Australia using numerical weather prediction outputs. Agric. Forest Meteorol. 2014, 194, 50–63. [Google Scholar] [CrossRef]
- Roy, D.K.; Sarkar, T.K.; Kamar, S.S.A.; Goswami, T.; Muktadir, M.A.; Al-Ghobari, H.M.; Alataway, A.; Dewidar, A.Z.; El-Shafei, A.A.; Mattar, M.A. Daily prediction and multi-step forward forecasting of reference evapotranspiration using LSTM and Bi-LSTM models. Agronomy 2022, 12, 594. [Google Scholar] [CrossRef]
- Yin, J.; Deng, Z.; Ines, A.V.M.; Wu, J.; Rasu, E. Forecast of short-term daily reference evapotranspiration under limited meteorological variables using a hybrid bi-directional long short-term memory model (Bi-LSTM). Agric. Water Manag. 2020, 242, 106386. [Google Scholar] [CrossRef]
- Narapusetty, B.; DelSole, T.; Tippett, M.K. Optimal estimation of the climatological mean. J. Clim. 2009, 22, 4845–4859. [Google Scholar] [CrossRef]
- McMahon, T.A.; Peel, M.C.; Lowe, L.; Srikanthan, R.; McVicar, T.R. Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: A pragmatic synthesis. Hydrol. Earth Syst. Sci. 2013, 17, 1331–1363. [Google Scholar] [CrossRef]
- Zotarelli, L.; Dukes, M.D.; Romero, C.C.; Migliaccio, K.W.; Morgan, K.T. Step by Step Calculation of the Penman-Monteith Evapotranspiration (FAO-56 Method); Institute of Food and Agricultural Sciences, University of Florida: Gainesville, FL, USA, 2010; Volume AE459, pp. 1–10. [Google Scholar]
- Vicente-Serrano, S.M.; Azorin-Molina, C.; Sanchez-Lorenzo, A.; Revuelto, J.; López-Moreno, J.I.; González-Hidalgo, J.C.; Moran-Tejeda, E.; Espejo, F. Reference evapotranspiration variability and trends in Spain, 1961–2011. Glob. Planet. Change 2014, 121, 26–40. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- De Bruin, H.A.R.; Lablans, W.N. Reference crop evapotranspiration determined with a modified Makkink equation. Hydrol. Process. 1998, 12, 1053–1062. [Google Scholar] [CrossRef]
- Valiantzas, J.D. Simplified forms for the standardized FAO-56 Penman-Monteith reference evapotranspiration using limited weather data. J. Hydrol. 2013, 505, 13–23. [Google Scholar] [CrossRef]
- Kuo, C.-E.; Chen, G.-T. Automatic sleep staging based on a hybrid stacked LSTM neural network: Verification using large-scale dataset. IEEE Access 2020, 8, 111837–111849. [Google Scholar] [CrossRef]
- Lin, Y.-S.; Fang, S.-L.; Kang, L.; Chen, C.-C.; Yao, M.-H.; Kuo, B.-J. Combining recurrent neural network and sigmoid growth models for short-term temperature forecasting and tomato growth prediction in a plastic greenhouse. Horticulturae 2024, 10, 230. [Google Scholar] [CrossRef]
- Wunsch, A.; Liesch, T.; Broda, S. Groundwater level forecasting with artificial neural networks: A comparison of long short-term memory (LSTM), convolutional neural networks (CNNs), and non-linear autoregressive networks with exogenous input (NARX). Hydrol. Earth Syst. Sci. 2021, 25, 1671–1687. [Google Scholar] [CrossRef]
- Rahimi Khoob, A. Comparative study of Hargreaves’s and artificial neural network’s methodologies in estimating reference evapotranspiration in a semiarid environment. Irrig. Sci. 2008, 26, 253–259. [Google Scholar] [CrossRef]
- Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 2222–2232. [Google Scholar] [CrossRef] [PubMed]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Córdova, M.; Carrillo-Rojas, G.; Crespo, P.; Wilcox, B.; Célleri, R. Evaluation of the Penman-Monteith (FAO 56 PM) method for calculating reference evapotranspiration using limited data. Mt. Res. Dev. 2015, 35, 230–239. [Google Scholar] [CrossRef]
- Fisher, J.B.; Terry, A.; DeBiase, A.; Qi1, Y.; Xu, M.; Allen, H. Evapotranspiration models compared on a Sierra Nevada forest ecosystem. Environ. Model. Softw. 2005, 20, 783–796. [Google Scholar] [CrossRef]
- Makwana, J.J.; Tiwari, M.K.; Deora, B.S. Development and comparison of artificial intelligence models for estimating daily reference evapotranspiration from limited input variables. Smart Agric. Technol. 2023, 3, 100115. [Google Scholar] [CrossRef]
- Traore, S.; Wang, Y.-M.; Kerh, T. Artificial neural network for modeling reference evapotranspiration complex process in Sudano-Sahelian zone. Agric. Water Manag. 2010, 97, 707–714. [Google Scholar] [CrossRef]
- Jain, S.K.; Nayak, P.C.; Sudheer, K.P. Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation. Hydrol. Process. An Int. J. 2008, 22, 2225–2234. [Google Scholar] [CrossRef]
- Barzegar, R.; Aalami, M.T.; Adamowski, J. Short-term water quality variable prediction using a hybrid CNN–LSTM deep learning model. Stoch. Environ. Res. Risk Assess. 2020, 34, 415–433. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, W.; Jiao, X.; Guo, W.; Hamoud, Y.A. Evaluation of stacking and blending ensemble learning methods for estimating daily reference evapotranspiration. Comput. Electron. Agric. 2021, 184, 106039. [Google Scholar] [CrossRef]
- Bellido-Jimenez, J.A.; Estevez, J.; Garcia-Marin, A.P. New machine learning approaches to improve reference evapotranspiration estimates using intra-daily temperature-based variables in a semi-arid region of Spain. Agric. Water Manag. 2021, 245, 106558. [Google Scholar] [CrossRef]
- Bellido-Jimenez, J.A.; Estevez, J.; Garcia-Marin, A.P. A regional machine learning method to outperform temperature-based reference evapotranspiration estimations in Southern Spain. Agric. Water Manag. 2022, 274, 107955. [Google Scholar] [CrossRef]
- Su, Y.-C.; Kuo, B.-J. Risk assessment of rice damage due to heavy rain in Taiwan. Agriculture 2023, 13, 630. [Google Scholar] [CrossRef]
- Esparza-Gómez, J.M.; Luque-Vega, L.F.; Guerrero-Osuna, H.A.; Carrasco-Navarro, R.; García-Vázquez, F.; Mata-Romero, M.E.; Olvera-Olvera, C.A.; Carlos-Mancilla, M.A.; Solís-Sánchez, L.O. Long short-term memory recurrent neural network and extreme gradient boosting algorithms applied in a greenhouse’s internal temperature prediction. Appl. Sci. 2023, 13, 12341. [Google Scholar] [CrossRef]
- Shiri, J.; Nazemi, A.H.; Sadraddini, A.A.; Landeras, G.; Kisi, O.; Fard, A.F.; Marti, P. Comparison of heuristic and empirical approaches for estimating reference evapotranspiration from limited inputs in Iran. Comput. Electron. Agric. 2014, 108, 230–241. [Google Scholar] [CrossRef]
- Jato-Espino, D.; Charlesworth, S.M.; Perales-Momparler, S.; Andrés-Doménech, I. Prediction of evapotranspiration in a Mediterranean region using basic meteorological variables. J. Hydrol. Eng. 2017, 22, 04016064. [Google Scholar] [CrossRef]
- Hsu, H.H.; Chen, C.T. Observed and projected climate change in Taiwan. Meteorol. Atmos. Phys. 2002, 79, 87–104. [Google Scholar] [CrossRef]
- Yu, P.S.; Yang, T.C.; Wu, C.K. Effects of climate change on evapotranspiration from paddy fields in southern Taiwan. Clim. Change 2002, 54, 165–179. [Google Scholar] [CrossRef]
- de la Casa, A.C.; Ovando, G.G. Variation of reference evapotranspiration in the central region of Argentina between 1941 and 2010. J. Hydrol. Reg. Stud. 2016, 5, 66–79. [Google Scholar] [CrossRef]
- Fan, J.; Wu, L.; Zhang, F.; Xiang, Y.; Zheng, J. Climate change effects on reference crop evapotranspiration across different climatic zones of China during 1956–2015. J. Hydrol. 2016, 542, 923–937. [Google Scholar] [CrossRef]
- Łabędzki, L.; Bąk, B.; Smarzyńska, K. Spatio-temporal variability and trends of Penman-Monteith reference evapotranspiration (FAO-56) in 1971–2010 under climatic conditions of Poland. Pol. J. Environ. Stud. 2014, 23, 2083–2091. [Google Scholar] [CrossRef] [PubMed]
- Maček, U.; Bezak, N.; Šraj, M. Reference evapotranspiration changes in Slovenia, Europe. Agric. For. Meteorol. 2018, 260, 183–192. [Google Scholar] [CrossRef]
- Mojid, M.A.; Rannu, R.P.; Karim, N.N. Climate change impacts on reference crop evapotranspiration in North-West hydrological region of Bangladesh. Int. J. Climatol. 2015, 35, 4041–4046. [Google Scholar] [CrossRef]
- Shadmani, M.; Marofi, S.; Roknian, M. Trend analysis in reference evapotranspiration using Mann-Kendall and Spearman’s Rho tests in arid regions of Iran. Water Resour. Manag. 2012, 26, 211–224. [Google Scholar] [CrossRef]
- Tabari, H.; Marofi, S.; Aeini, A.; Talaee, P.H.; Mohammadi, K. Trend analysis of reference evapotranspiration in the western half of Iran. Agric. For. Meteorol. 2011, 151, 128–136. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, X.; Hong, H. Assessing the effect of climate change on reference evapotranspiration in China. Stoch. Environ. Res. Risk Assess. 2013, 27, 1871–1881. [Google Scholar] [CrossRef]
- Chia, M.Y.; Huang, Y.F.; Koo, C.H.; Fung, K.F. Recent advances in evapotranspiration estimation using artificial intelligence approaches with a focus on hybridization techniques—A review. Agronomy 2020, 10, 101. [Google Scholar] [CrossRef]
- Fang, S.-L.; Chang, T.-J.; Tu, Y.-K.; Chen, H.-W.; Yao, M.-H.; Kuo, B.-J. Plant-response-based control strategy for irrigation and environmental controls for greenhouse tomato seedling cultivation. Agriculture 2022, 12, 633. [Google Scholar] [CrossRef]
- Incrocci, L.; Thompson, R.B.; Fernandez-Fernandez, M.D.; De Pascale, S.; Pardossi, A.; Stanghellini, C.; Rouphael, Y.; Gallardo, M. Irrigation management of European greenhouse vegetable crops. Agric. Water Manag. 2020, 242, 106393. [Google Scholar] [CrossRef]
- Fernández, M.D.; Bonachela, S.; Orgaz, F.; Thompson, R.; López, J.C.; Granados, M.R.; Gallardo, M.; Fereres, E. Measurement and estimation of plastic greenhouse reference evapotranspiration in a Mediterranean climate. Irrig. Sci. 2010, 28, 497–509. [Google Scholar] [CrossRef]
Region | Station | T (°C) | RH (%) | u2 (m/s) | Rs (MJ/m2/day) | ET0 (mm/day) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
Northern | 72C440 | 22.27 | 5.36 | 80.85 | 9.40 | 3.94 | 1.95 | 12.97 | 7.39 | 4.19 | 2.23 |
72D080 | 17.32 | 4.80 | 88.31 | 9.64 | 0.50 | 0.24 | 9.83 | 6.03 | 2.74 | 1.76 | |
82A750 | 20.06 | 5.33 | 85.94 | 10.01 | 1.45 | 1.21 | 10.43 | 8.00 | 3.11 | 2.38 | |
82C160 | 21.56 | 5.53 | 82.30 | 9.86 | 2.89 | 1.50 | 11.76 | 7.15 | 3.71 | 2.23 | |
K2E360 | 22.23 | 5.39 | 82.30 | 9.19 | 2.36 | 1.32 | 13.18 | 6.34 | 4.04 | 2.02 | |
Central | 72G600 | 23.39 | 4.93 | 80.54 | 7.83 | 1.99 | 0.92 | 11.60 | 5.32 | 3.72 | 1.64 |
72K220 | 23.38 | 4.81 | 81.22 | 7.40 | 1.87 | 0.82 | 12.35 | 5.00 | 3.88 | 1.57 | |
72M360 | 23.59 | 4.83 | 82.76 | 7.89 | 3.02 | 1.22 | 15.03 | 5.86 | 4.51 | 1.77 | |
82H840 | 21.52 | 4.38 | 87.25 | 11.13 | 0.91 | 0.46 | 12.69 | 5.26 | 3.64 | 1.59 | |
G2F820 | 23.52 | 4.73 | 81.67 | 7.31 | 2.21 | 0.92 | 12.53 | 5.72 | 3.94 | 1.78 | |
U2H480 | 17.05 | 3.55 | 89.49 | 6.32 | 1.06 | 0.35 | 9.24 | 3.97 | 2.49 | 1.08 | |
Southern | 72Q010 | 24.98 | 3.80 | 78.70 | 8.45 | 1.45 | 0.63 | 12.35 | 6.40 | 4.02 | 1.95 |
B2N890 | 23.71 | 4.49 | 82.31 | 7.08 | 1.82 | 0.82 | 12.19 | 5.18 | 3.80 | 1.58 | |
B2Q810 | 25.34 | 3.11 | 77.25 | 7.93 | 4.12 | 1.65 | 16.40 | 6.54 | 5.47 | 1.80 | |
Eastern | 72S200 | 22.50 | 4.02 | 81.18 | 8.02 | 1.51 | 0.47 | 8.72 | 4.85 | 2.88 | 1.54 |
72S590 | 22.43 | 3.76 | 86.26 | 8.85 | 1.30 | 0.69 | 7.84 | 5.31 | 2.48 | 1.58 | |
72T250 | 22.92 | 4.24 | 81.50 | 6.77 | 1.13 | 0.54 | 10.56 | 6.67 | 3.34 | 2.01 | |
72U480 | 22.45 | 4.99 | 83.44 | 8.36 | 1.82 | 0.76 | 11.64 | 7.67 | 3.63 | 2.36 |
Region | ||
---|---|---|
Northern | 0.13 | 2.23 |
Central | 0.12 | 1.84 |
Southern | 0.15 | 2.46 |
Eastern | 0.10 | 1.44 |
Inputs Variables | Number of Hidden Layers/Number of Hidden Units | |||
---|---|---|---|---|
Northern | Central | Southern | Eastern | |
T | 3/170 | 2/200 | 2/140 | 2/110 |
T, Rs | 1/190 | 1/170 | 1/180 | 1/180 |
T, RH | 1/140 | 1/170 | 1/160 | 1/120 |
T, Rs, RH | 1/180 | 1/200 | 1/150 | 1/160 |
Algorithm | Inputs Variables | Number of LSTM Layers/Number of LSTM Units | |||
---|---|---|---|---|---|
Northern | Central | Southern | Eastern | ||
LSTM | T, Rs | 1/160 | 3/110 | 3/150 | 1/180 |
T, RH | 3/70 | 2/160 | 3/200 | 2/70 | |
T, Rs, RH | 1 /110 | 2/110 | 3/200 | 1/190 | |
CNN-LSTM | T, Rs | 1/170 | 3/180 | 3/180 | 3/200 |
T, RH | 2/10 | 3/190 | 3/180 | 1/30 | |
T, Rs, RH | 1/190 | 2/180 | 3/140 | 2/120 |
Method’s Name | Variables Need Observed | Northern | Central | Southern | Eastern | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
r | MAE | RMSE | r | MAE | RMSE | r | MAE | RMSE | r | MAE | RMSE | ||
HS | T, Tmax, Tmin | 0.735 | 1.22 | 1.56 | 0.699 | 0.95 | 1.22 | 0.444 | 1.41 | 1.85 | 0.685 | 1.22 | 1.50 |
Makkink | T, Rs | 0.978 | 1.50 | 1.75 | 0.980 | 1.52 | 1.67 | 0.972 | 1.93 | 2.08 | 0.990 | 1.33 | 1.53 |
Turc | T, Rs, RH | 0.989 | 0.68 | 0.89 | 0.992 | 0.59 | 0.74 | 0.984 | 0.84 | 1.03 | 0.997 | 0.50 | 0.68 |
RPM (T) | T | 0.735 | 2.42 | 3.04 | 0.698 | 2.44 | 2.84 | 0.357 | 2.87 | 3.39 | 0.719 | 2.12 | 2.72 |
RPM (T, u2) | T, u2 | 0.674 | 2.47 | 3.07 | 0.631 | 2.46 | 2.85 | 0.468 | 2.99 | 3.47 | 0.645 | 2.13 | 2.72 |
RPM (T, Rs) | T, Rs | 0.975 | 0.33 | 0.49 | 0.980 | 0.28 | 0.36 | 0.953 | 0.41 | 0.59 | 0.990 | 0.21 | 0.27 |
RPM (T, RH) | T, RH | 0.804 | 2.44 | 3.03 | 0.704 | 2.59 | 2.96 | 0.610 | 2.81 | 3.28 | 0.706 | 2.17 | 2.77 |
RPM (T, u2, Rs) | T, u2, Rs | 0.976 | 0.28 | 0.48 | 0.983 | 0.24 | 0.33 | 0.952 | 0.38 | 0.61 | 0.992 | 0.18 | 0.25 |
RPM (T, u2, RH) | T, u2, RH | 0.655 | 2.40 | 3.00 | 0.616 | 2.56 | 2.94 | 0.527 | 2.82 | 3.28 | 0.614 | 2.15 | 2.76 |
RPM (T, Rs, RH) | T, Rs, RH | 0.995 | 0.14 | 0.24 | 0.996 | 0.09 | 0.16 | 0.990 | 0.18 | 0.27 | 0.998 | 0.07 | 0.12 |
ANN (T) | T | 0.701 | 1.25 | 1.56 | 0.616 | 1.04 | 1.32 | 0.543 | 1.36 | 1.68 | 0.731 | 1.04 | 1.32 |
ANN (T, Rs) | T, Rs | 0.979 | 0.27 | 0.45 | 0.983 | 0.21 | 0.31 | 0.977 | 0.30 | 0.43 | 0.991 | 0.19 | 0.25 |
ANN (T, RH) | T, RH | 0.828 | 0.94 | 1.23 | 0.744 | 0.87 | 1.12 | 0.710 | 1.12 | 1.40 | 0.803 | 0.88 | 1.15 |
ANN (T, Rs, RH) | T, Rs, RH | 0.994 | 0.14 | 0.24 | 0.996 | 0.10 | 0.15 | 0.992 | 0.16 | 0.25 | 0.998 | 0.07 | 0.12 |
Model’s Name | Inputs Variables | Northern | Central | Southern | Eastern | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
r | MAE | RMSE | r | MAE | RMSE | r | MAE | RMSE | r | MAE | RMSE | ||
LSTM (T, Rs) | T, Rs | 0.746 | 1.31 | 1.62 | 0.743 | 1.04 | 1.35 | 0.609 | 1.23 | 1.62 | 0.755 | 1.13 | 1.47 |
LSTM (T, RH) | T, RH | 0.711 | 1.50 | 1.82 | 0.606 | 1.32 | 1.60 | 0.159 | 1.60 | 2.01 | 0.691 | 1.29 | 1.62 |
LSTM (T, Rs, RH) | T, Rs, RH | 0.751 | 1.28 | 1.61 | 0.744 | 1.05 | 1.35 | 0.608 | 1.23 | 1.62 | 0.756 | 1.12 | 1.47 |
CNN-LSTM (T, Rs) | T, Rs | 0.642 | 1.55 | 1.87 | 0.617 | 1.29 | 1.59 | 0.341 | 1.45 | 1.84 | 0.683 | 1.31 | 1.64 |
CNN-LSTM (T, RH) | T, RH | 0.612 | 1.63 | 1.93 | 0.476 | 1.46 | 1.77 | 0.336 | 1.74 | 2.15 | 0.557 | 1.51 | 1.87 |
CNN-LSTM (T, Rs, RH) | T, Rs, RH | 0.742 | 1.32 | 1.63 | 0.733 | 1.08 | 1.37 | 0.595 | 1.24 | 1.64 | 0.742 | 1.17 | 1.51 |
Region | Station | Observed ET0 (mm) | Forecasted ET0 (mm) | Error a/Percentage Error b |
---|---|---|---|---|
Northern | 72C440 | 2435.03 | 2333.41 | 4.17% |
72D080 | 1694.40 | 1594.58 | 5.89% | |
82A750 | 1679.82 | 1747.94 | 68.12/4.06% | |
82C160 | 2206.86 | 2200.66 | 0.28% | |
K2E360 | 2194.46 | 2163.84 | 1.40% | |
Central | 72G600 | 2626.29 | 2525.82 | 3.83% |
72K220 | 2516.21 | 2433.42 | 3.29% | |
72M360 | 2689.00 | 2567.05 | 4.54% | |
82H840 | 2131.62 | 2075.59 | 2.63% | |
G2F820 | 2614.64 | 2525.49 | 3.41% | |
U2H480 | 1396.68 | 1407.67 | 10.99/0.79% | |
Southern | 72Q010 | 3221.07 | 3063.86 | 4.88% |
B2N890 | 2493.22 | 2554.38 | 61.16/2.45% | |
B2Q810 | 2897.23 | 2845.22 | 1.80% | |
Eastern | 72S200 | 2051.92 | 1974.23 | 3.79% |
72S590 | 2000.07 | 1834.02 | 8.30% | |
72T250 | 1963.31 | 1956.38 | 0.35% | |
72U480 | 1914.17 | 1933.81 | 19.64/1.03% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, S.-L.; Lin, Y.-S.; Chang, S.-C.; Chang, Y.-L.; Tsai, B.-Y.; Kuo, B.-J. Using Artificial Intelligence Algorithms to Estimate and Short-Term Forecast the Daily Reference Evapotranspiration with Limited Meteorological Variables. Agriculture 2024, 14, 510. https://doi.org/10.3390/agriculture14040510
Fang S-L, Lin Y-S, Chang S-C, Chang Y-L, Tsai B-Y, Kuo B-J. Using Artificial Intelligence Algorithms to Estimate and Short-Term Forecast the Daily Reference Evapotranspiration with Limited Meteorological Variables. Agriculture. 2024; 14(4):510. https://doi.org/10.3390/agriculture14040510
Chicago/Turabian StyleFang, Shih-Lun, Yi-Shan Lin, Sheng-Chih Chang, Yi-Lung Chang, Bing-Yun Tsai, and Bo-Jein Kuo. 2024. "Using Artificial Intelligence Algorithms to Estimate and Short-Term Forecast the Daily Reference Evapotranspiration with Limited Meteorological Variables" Agriculture 14, no. 4: 510. https://doi.org/10.3390/agriculture14040510
APA StyleFang, S. -L., Lin, Y. -S., Chang, S. -C., Chang, Y. -L., Tsai, B. -Y., & Kuo, B. -J. (2024). Using Artificial Intelligence Algorithms to Estimate and Short-Term Forecast the Daily Reference Evapotranspiration with Limited Meteorological Variables. Agriculture, 14(4), 510. https://doi.org/10.3390/agriculture14040510